1
|
Sheraz M, Sun XF, Siddiqui A, Hu S, Song Z. Research Advances in Natural Polymers for Environmental Remediation. Polymers (Basel) 2025; 17:559. [PMID: 40076053 PMCID: PMC11902826 DOI: 10.3390/polym17050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The search for sustainable and efficient remediation techniques is required to control increasing environmental pollution caused by synthetic dyes, heavy metal ions, and other harmful pollutants. From this point of view, natural polymers like chitosan, cellulose, lignin, and pectin have been found highly promising due to their biodegradability, availability, and possibility of chemical functionalization. Natural polymers possess inherent adsorption properties that can be further enhanced by cross-linking and surface activation. This review discusses the main properties, adsorption mechanisms, and functional groups such as hydroxyl, carboxyl, and amino groups responsible for pollutant sequestration. The paper also emphasizes the effectiveness of natural polymers in removing heavy metals and dyes from wastewater and discusses recent advances in polymer modifications, including ionic crosslinking and grafting. This study underlines the ecological potential of natural polymer-based adsorbents in the treatment of wastewater and the protection of the environment as a sustainable solution to pollution challenges.
Collapse
Affiliation(s)
- Muhammad Sheraz
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Adeena Siddiqui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Zhengcang Song
- Powerchina Northwest Engineering, Xi’an Port Navigation Shipbuilding Technology Corporation Limited, Xi’an 710065, China;
| |
Collapse
|
2
|
Fu M, Filippov SK, Williams AC, Khutoryanskiy VV. On the mucoadhesive properties of synthetic and natural polyampholytes. J Colloid Interface Sci 2024; 659:849-858. [PMID: 38218088 DOI: 10.1016/j.jcis.2023.12.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
HYPOTHESIS The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pHIEP). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs. Model tablets were designed, coated with these polymers and tested to evaluate their adhesion to porcine gastric mucosa at different pHs. Moreover, a retention study using fluorescein isothiocyanate (FITC)-labelled polyampholytes deposited onto mucosal surfaces was also conducted FINDINGS: All these studies indicated the importance of solution pH and its relative position against pHIEP in the mucoadhesive properties of polyampholytes. Both synthetic and natural polyampholytes exhibited strong interactions with mucin and good mucoadhesive properties at pH < pHIEP.
Collapse
Affiliation(s)
- Manfei Fu
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Sergey K Filippov
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50 52074, Aachen, Germany
| | - Adrian C Williams
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
3
|
García Cambón TA, Lopez CS, Hanheiser N, Bhatia S, Achazi K, Rivas MV, Spagnuolo CC. Benzoxaborole-grafted high molecular weight chitosan from prawn: Synthesis, characterization, target recognition and antibacterial properties. Carbohydr Polym 2023; 316:120925. [PMID: 37321754 DOI: 10.1016/j.carbpol.2023.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Boronated polymers are in the focus of dynamic functional materials due to the versatility of the B-O interactions and accessibility of precursors. Polysaccharides are highly biocompatible, and therefore, an attractive platform for anchoring boronic acid groups for further bioconjugation of cis-diol containing molecules. We report for the first time the introduction of benzoxaborole by amidation of the amino groups of chitosan improving solubility and introducing cis-diol recognition at physiological pH. The chemical structures and physical properties of the novel chitosan-benzoxaborole (CS-Bx) as well as two phenylboronic derivatives synthesized for comparison, were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), rheology and optical spectroscopic methods. The novel benzoxaborole grafted chitosan was perfectly solubilized in an aqueous buffer at physiological pH, extending the possibilities of boronated materials derived from polysaccharides. The dynamic covalent interaction between boronated chitosan and model affinity ligands, was studied by means of spectroscopy methods. A glycopolymer derived from poly(isobutylene-alt-anhydride) was also synthesized to study the formation of dynamic assemblies with benzoxaborole-grafted chitosan. A first approximation to apply fluorescence microscale thermophoresis for the interactions of the modified polysaccharide is also discussed. Additionally, the activity of CSBx against bacterial adhesion was studied.
Collapse
Affiliation(s)
- Tomás A García Cambón
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Cecilia Samaniego Lopez
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Natalie Hanheiser
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - M Verónica Rivas
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; INN - CONICET, Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Buenos Aires B1650KNA, Argentina
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
4
|
Dai L, Wang T, Liu Y, Lan Y, Ji L, Jiang J, Li P. Fluorescence probe technique for determining the hydrophobic interactions and critical aggregation concentrations of Gleditsia microphylla gum, circular Gleditsia sinensis gum, and tara gum. Int J Biol Macromol 2023; 247:125707. [PMID: 37423453 DOI: 10.1016/j.ijbiomac.2023.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Circular Gleditsia sinensis gum, Gleditsia microphylla gum, and tara gum are galactomannans (GMs) with similar mannose/galactose (M/G) molar ratios, which complicates the characterization of physicochemical properties using conventional methods. Herein, the hydrophobic interactions and critical aggregation concentrations (CACs) of the GMs were compared using a fluorescence probe technique, in which the I1/I3 ratio of pyrene indicated polarity changes. With increasing GM concentration, the I1/I3 ratio decreased slightly in dilute solutions below the CAC but decreased sharply in semidilute solutions above the CAC, indicating that the GMs formed hydrophobic domains. However, increases in temperature destroyed the hydrophobic microdomains and increased the CACs. Higher concentrations of salts (SO42-, Cl-, SCN-, and Al3+) promoted hydrophobic microdomain formation, and the CACs in Na2SO4 and NaSCN solutions were lower than those in pure water. Hydrophobic microdomain formation also occurred upon Cu2+ complexation. Although urea addition promoted hydrophobic microdomain formation in dilute solutions, the microdomains were destroyed in semidilute solutions and the CACs increased. The formation or destruction of hydrophobic microdomains depended on the molecular weight, M/G ratio and galactose distribution of GMs. Therefore, the fluorescent probe technique enables the characterization of hydrophobic interactions in GM solutions, which can provide valuable insight into molecular chain conformations.
Collapse
Affiliation(s)
- Lanxiang Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yantao Liu
- Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| | - Yanjiao Lan
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
5
|
Preparation and Surface Characterization of Chitosan-Based Coatings for PET Materials. Molecules 2023; 28:molecules28052375. [PMID: 36903621 PMCID: PMC10005435 DOI: 10.3390/molecules28052375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(ethylene terephthalate)-PET-is one of the most frequently used polymers in biomedical applications. Due to chemical inertness, PET surface modification is necessary to gain specific properties, making the polymer biocompatible. The aim of this paper is to characterize the multi-component films containing chitosan (Ch), phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), immunosuppressant cyclosporine A (CsA) and/or antioxidant lauryl gallate (LG) which can be utilized as a very attractive material for developing the PET coatings. Chitosan was employed owing to its antibacterial activity and also its ability to promote cell adhesion and proliferation favorable for tissue engineering and regeneration purposes. Moreover, the Ch film can be additionally modified with other substances of biological importance (DOPC, CsA and LG). The layers of varying compositions were prepared using the Langmuir-Blodgett (LB) technique on the air plasma-activated PET support. Then their nanostructure, molecular distribution, surface chemistry and wettability were determined by atomic force microscopy (AFM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements and the surface free energy and its components' determination, respectively. The obtained results show clearly the dependence of the surface properties of the films on the molar ratio of components and allow for a better understanding of the coating organization and mechanisms of interactions at the molecular level both inside the films and between the films and the polar/apolar liquids imitating the environment of different properties. The organized layers of this type can be helpful in gaining control over the surface properties of the biomaterial, thus getting rid of the limitations in favor of increased biocompatibility. This is a good basis for further investigations on the correlation of the immune system response to the presence of biomaterial and its physicochemical properties.
Collapse
|
6
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
7
|
Bezrodnyhk EA, Berezin BB, Antonov YA, Zhuravleva IL, Atamas AA, Tsarenko AA, Rogachev AV, Tikhonov VE. A feasible approach to tune the interaction of chitosan with sodium dodecyl sulfate. Carbohydr Polym 2022; 292:119642. [DOI: 10.1016/j.carbpol.2022.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
8
|
Szafran K, Jurak M, Wiącek AE. Effect of chitosan on the interactions between phospholipid DOPC, cyclosporine A and lauryl gallate in the Langmuir monolayers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jiang Y, Zheng T, Jin W, Shi Y, Huang Q. Enhancing Intestinal Permeability of Theaflavin-3,3'-digallate by Chitosan-Caseinophosphopeptides Nanocomplexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2029-2041. [PMID: 35108002 DOI: 10.1021/acs.jafc.1c07382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low intestinal permeability is an unfavorable feature that limits the bioavailability of many hydrophilic polyphenols. In this study, chitosan (CS) was used to complex with caseinophosphopeptides (CPPs), aiming to improve the intestinal permeability of theaflavin-3,3'-digallate (TF-3), a characteristic polyphenol in black tea with poor intestinal permeability. Complexation between CS and CPPs was systemically investigated by turbidimetric titration under various conditions, revealing that electrostatic interaction was the dominant force. The sizes, PDIs, and ζ potentials of CS-CPP nanocomplexes varied with their compositions. The optimized CS-CPP nanocomplex was subsequently used to encapsulate TF-3, which showed high encapsulation efficiency and low cytotoxicity. Microstructural studies showed strong intermolecular associations between CS, CPPs, and TF-3. Encapsulation of TF-3 maintained the globular unit structure of CS-CPP nanocomplexes, but high concentrations of TF-3 resulted in aggregation. Importantly, as proved using the Caco-2 monolayer model, the intestinal permeability of TF-3 was significantly enhanced by the CS-CPP nanocomplexes.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Ting Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Yuxin Shi
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
10
|
Gaafar MS, Yakout SM, Barakat YF, Sharmoukh W. Electrophoretic deposition of hydroxyapatite/chitosan nanocomposites: the effect of dispersing agents on the coating properties. RSC Adv 2022; 12:27564-27581. [PMID: 36276043 PMCID: PMC9516373 DOI: 10.1039/d2ra03622c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, electrophoretic deposition (EPD) was used for the coating on titanium (Ti) substrate with a composite of hydroxyapatite (HA)-chitosan (CS) in the presence of dispersing agents such as polyvinyl butyral (PVB), polyethylene glycol (PEG), and triethanolamine (TEA). The materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential, and Fourier transform infrared (FT-IR) spectroscopy. The addition of PVB, PEG, and TEA agents improved the development of Ti coating during the EPD process. These additives increased the suspension stability and promoted the formation of uniform and compact HA/CS nanocomposite coatings on Ti substrates. The electrochemical polarization tests (e.g., potentiodynamic test) of the substrate with and without coating were investigated. Data analysis showed high corrosion resistance of Ti substrate coated with the HA/CS NP composite. The corrosion potentials displayed a shift toward positive values indicating the increase in the corrosion resistance of Ti after coating. In addition to measuring calcium ion release at various pH values and contact times at a biological pH value of 5.5, the stabilities of Ti substrates coated with HA/CS and different dispersing agents were also evaluated. Ti substrates with high anticorrosion properties may have a new potential application in biomedicine. Electrophoretic deposition was used for coating of titanium substrate with a composite of hydroxyapatite (HA)-chitosan (CS) in the presence of polyvinyl butyral (PVB), polyethylene glycol (PEG), and triethanolamine (TEA).![]()
Collapse
Affiliation(s)
- M. S. Gaafar
- Department of Chemical Engineering, Tabbin Institute for Metallurgical Studies (TIMS), PO Box: 109 Helwan, 11421 Cairo, Egypt
| | - S. M. Yakout
- Inorganic Chemistry Department, National Research Centre, Tahrir St, Dokki, Giza 12622, Egypt
| | - Y. F. Barakat
- Department of Chemical Engineering, Tabbin Institute for Metallurgical Studies (TIMS), PO Box: 109 Helwan, 11421 Cairo, Egypt
| | - W. Sharmoukh
- Inorganic Chemistry Department, National Research Centre, Tahrir St, Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
Robust and high selective chitosan asymmetric Membranes: Relation between microporous structure and pervaporative efficiency in ethanol dehydration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Comparative Analysis of the Functional Properties of Films Based on Carrageenans, Chitosan, and Their Polyelectrolyte Complexes. Mar Drugs 2021; 19:md19120704. [PMID: 34940703 PMCID: PMC8704292 DOI: 10.3390/md19120704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
The influence of the structural features of carrageenan on the functional properties of the films was studied. The carrageenans and chitosan films, as well as three-layer films containing a polyelectrolyte complex (PEC) of the two, were prepared. The X-ray diffractograms of carrageenan films reflected its amorphous structure, whereas chitosan and three-layer films were characterized by strong reflection in the regions of 20° and 15° angles, respectively. The SEM of the cross-sectional morphology showed dense packing of the chitosan film, as well as the layer-by-layer structure of different densities for the PEC. Among the tested samples, κ/β-carrageenan and chitosan films showed the highest tensile strength and maximum elongation. Films containing the drug substance echinochrome were obtained. Mucoadhesive properties were assessed as the ability of the films to swell on the mucous tissue and their erosion after contact with the mucosa. All studied films exhibited mucoadhesive properties. All studied films exhibited mucoadhesive properties which depended on the carrageenans structure. Multilayer films are stronger than single-layer carrageenan films due to PEC formation. The resulting puncture strength of the obtained films was comparable to that of commercial samples described in the literature.
Collapse
|
13
|
Kaur K, Paiva SS, Caffrey D, Cavanagh BL, Murphy CM. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112340. [PMID: 34474890 DOI: 10.1016/j.msec.2021.112340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that β-glycerophosphate (β-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Silvia Sa' Paiva
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - David Caffrey
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN7, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
14
|
Fundamental and Practical Aspects in the Formulation of Colloidal Polyelectrolyte Complexes of Chitosan and siRNA. Methods Mol Biol 2021. [PMID: 33928582 DOI: 10.1007/978-1-0716-1298-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The formation of electrostatic interactions between polyanionic siRNA and polycations gives an easy access to the formation of colloidal particles capable of delivering siRNA in vitro or in vivo. Among the polycations used for siRNA delivery, chitosan occupies a special place due to its unique physicochemical and biological properties. In this chapter we describe the fundamental and practical aspects of the formation of colloidal complexes between chitosan and siRNA. The basis of the electrostatic complexation between oppositely charged polyelectrolytes is first introduced with a focus on the specific conditions to obtain stable colloid complex particles. Subsequent, the properties that make chitosan so special are described. In a third part, the main parameters influencing the colloidal properties and stability of siRNA/chitosan complexes are reviewed with emphasis on some practical aspects to consider in the preparation of complexes.
Collapse
|
15
|
Bezrodnykh EA, Antonov YA, Berezin BB, Kulikov SN, Tikhonov VE. Molecular features of the interaction and antimicrobial activity of chitosan in a solution containing sodium dodecyl sulfate. Carbohydr Polym 2021; 270:118352. [PMID: 34364599 DOI: 10.1016/j.carbpol.2021.118352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular interaction of chitosan with sodium dodecyl sulfate (SDS) is a more complicated process than it has been imagined so far. For the first time it has been shown that the shorter chitosan chains are, the more preferably they interact with the SDS and the larger-in-size microparticles they form. The influence of ionic strength, urea and temperature on microparticles formation allows interpreting the mechanism of microparticles formation as a cooperative electrostatic interaction between SDS and chitosan with simultaneous decrease in the surface charge of the complexes initiating the aggregation of microparticles. It is shown that hydrogen bonding is mainly responsible for the aggregation while hydrophobic interaction has a lesser effect. Chitosan demonstrates a high bacteriostatic activity in the presence of SDS in solution and can be promising for preparation of microbiologically stable pharmaceutical hydrocolloids, cosmetic products and chitosan-based Pickering emulsions containing strong anionic surfactants.
Collapse
Affiliation(s)
- Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Yury A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N Kulikov
- Kazan Scientific Research Institute of Epidemiology and Microbiology, Kazan, Russia; Kazan Federal University, Kazan, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Nikitina AA, Milichko VA, Novikov AS, Larin AO, Nandi P, Mirsaidov U, Andreeva DV, Rybin MV, Kivshar YS, Skorb EV. All-Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angew Chem Int Ed Engl 2021; 60:12737-12741. [PMID: 33949056 DOI: 10.1002/anie.202101188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Indexed: 11/05/2022]
Abstract
We suggest a new strategy for creating stimuli-responsive bio-integrated optical nanostructures based on Mie-resonant silicon nanoparticles covered by an ensemble of similarity negatively charged polyelectrolytes (heparin and sodium polystyrene sulfonate). The dynamic tuning of the nanostructures' optical response is due to light-induced heating of the nanoparticles and swelling of the polyelectrolyte shell. The resulting hydrophilic/hydrophobic transitions significantly change the shell thickness and reversible shift of the scattering spectra for individual nanoparticles up to 60 nm. Our findings bring novel opportunities for the application of smart nanomaterials in nanomedicine and bio-integrated nanophotonics.
Collapse
Affiliation(s)
- Anna A Nikitina
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| | - Valentin A Milichko
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, 54011, Nancy, France
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034, St. Petersburg, Russia
| | - Artem O Larin
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| | - Proloy Nandi
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Utkur Mirsaidov
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| | - Daria V Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore
| | - Mikhail V Rybin
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Ioffe Institute, 194021, St Petersburg, Russia
| | - Yuri S Kivshar
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Research School of Physics, Australian National University, Canberra ACT, 2601, Australia
| | - Ekaterina V Skorb
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| |
Collapse
|
17
|
Nikitina AA, Milichko VA, Novikov AS, Larin AO, Nandi P, Mirsaidov U, Andreeva DV, Rybin MV, Kivshar YS, Skorb EV. All‐Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna A. Nikitina
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
| | - Valentin A. Milichko
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Université de Lorraine Institut Jean Lamour, UMR CNRS 7198 54011 Nancy France
| | - Alexander S. Novikov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 199034 St. Petersburg Russia
| | - Artem O. Larin
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
| | - Proloy Nandi
- Centre for BioImaging Sciences Department of Biological Sciences National University of Singapore Singapore
| | - Utkur Mirsaidov
- Centre for BioImaging Sciences Department of Biological Sciences National University of Singapore Singapore
- Department of Materials Science and Engineering National University of Singapore Singapore
| | - Daria V. Andreeva
- Department of Materials Science and Engineering National University of Singapore Singapore
| | - Mikhail V. Rybin
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Ioffe Institute 194021 St Petersburg Russia
| | - Yuri S. Kivshar
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Research School of Physics Australian National University Canberra ACT 2601 Australia
| | | |
Collapse
|
18
|
Shi C, Huang Q, Zhang R, Liang X, Wang F, Liu Z, Liu M, Hu H, Yin Y. Preparation and catalytic behavior of antioxidant cassava starch with selenium active sites and hydrophobic microenvironments. RSC Adv 2021; 11:39758-39767. [PMID: 35494106 PMCID: PMC9044535 DOI: 10.1039/d1ra06832f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The preparation of antioxidant starch with the activity of glutathione peroxidase (GPx) for scavenging free radicals can not only enrich the types of modified starch but also alternate native GPx to overcome its drawbacks.
Collapse
Affiliation(s)
- Cheng Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiugang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
19
|
|
20
|
Kang Y, Ji X, Bo S, Liu Y, Pasch H. Chromatographic mode transition from size exclusion to slalom chromatography as observed for chitosan. Carbohydr Polym 2020; 235:115950. [DOI: 10.1016/j.carbpol.2020.115950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022]
|
21
|
Preparation of eco-friendly alginate-based Pickering stabilizers using a dual ultrasonic nebulizer spray method. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Akbarian M, Tayebi L, Mohammadi-Samani S, Farjadian F. Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation. J Phys Chem B 2020; 124:1637-1652. [DOI: 10.1021/acs.jpcb.9b10980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233-2186, United States
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| |
Collapse
|
23
|
Bile acid-binding capacity of lobster shell-derived chitin, chitosan and chitooligosaccharides. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Prudkin-Silva C, Pérez OE, Martínez KD, Barroso da Silva FL. Combined Experimental and Molecular Simulation Study of Insulin–Chitosan Complexation Driven by Electrostatic Interactions. J Chem Inf Model 2019; 60:854-865. [DOI: 10.1021/acs.jcim.9b00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cecilia Prudkin-Silva
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Pabellón 2, Buenos Aires CP 1428, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Pabellón 2, Buenos Aires CP 1428, Argentina
| | - Karina D. Martínez
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, ITAPROQ-CONICET, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires CP 1428, Argentina
| | - Fernando L. Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-903 Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
25
|
Hsu SC, Hsu SH, Chang SW. Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomater Sci Eng 2019; 6:298-307. [DOI: 10.1021/acsbiomaterials.9b01101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Harutyunyan L, Harutyunyan R, Gabrielyan G, Lasareva E. Modification of chitosan and chitosan succinate by surfactants and investigation of their properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Piegat A, Goszczyńska A, Idzik T, Niemczyk A. The Importance of Reaction Conditions on the Chemical Structure of N, O-Acylated Chitosan Derivatives. Molecules 2019; 24:molecules24173047. [PMID: 31443405 PMCID: PMC6749269 DOI: 10.3390/molecules24173047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process. As reaction media, two diluted acid solutions-i.e., acetic acid and hydrochloric acid)-and two coupling systems-i.e., 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (EDC/NHS)-were used. The chemical structure of the derivatives was studied in detail by means of two spectroscopic methods, namely infrared and nuclear magnetic resonance spectroscopy, in order to analyze the preference of the systems towards N- or O-acylation reactions, depending on the synthesis conditions used. The results obtained from advanced 1H-13C HMQC spectra emphasized the challenge of achieving a selective acylation reaction path. Additionally, the study of the molecular weight and solution behavior of the derivatives revealed that even slight changes in their chemical structure have an important influence on their final properties. Therefore, an exact knowledge of the obtained structure of derivatives is essential to achieve reaction reproducibility and to target the application.
Collapse
Affiliation(s)
- Agnieszka Piegat
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland.
| | - Agata Goszczyńska
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland
| | - Tomasz Idzik
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, 42 Piastow Ave, 71-065 Szczecin, Poland
| | - Agata Niemczyk
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland
| |
Collapse
|
28
|
Delas T, Mock-Joubert M, Faivre J, Hofmaier M, Sandre O, Dole F, Chapel JP, Crépet A, Trombotto S, Delair T, Schatz C. Effects of Chain Length of Chitosan Oligosaccharides on Solution Properties and Complexation with siRNA. Polymers (Basel) 2019; 11:E1236. [PMID: 31349712 PMCID: PMC6723797 DOI: 10.3390/polym11081236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
In the context of gene delivery, chitosan has been widely used as a safe and effective polycation to complex DNA, RNA and more recently, siRNA. However, much less attention has been paid to chitosan oligosaccharides (COS) despite their biological properties. This study proposed to carry out a physicochemical study of COS varying in degree of polymerization (DP) from 5 to 50, both from the point of view of the solution properties and the complexing behavior with siRNA. The main parameters studied as a function of DP were the apparent pKa, the solubility versus pH, the binding affinity with siRNA and the colloidal properties of complexes. Some parameters, like the pKa or the binding enthalpy with siRNA, showed a marked transition from DP 5 to DP 13, suggesting that electrostatic properties of COS vary considerably in this range of DP. The colloidal properties of siRNA/COS complexes were affected in a different way by the COS chain length. In particular, COS of relatively high DP (≥50) were required to form small complex particles with good stability.
Collapse
Affiliation(s)
- Tim Delas
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Maxime Mock-Joubert
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Jimmy Faivre
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Mirjam Hofmaier
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - François Dole
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Univ. Bordeaux, 33600 Pessac, France
| | - Jean Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Univ. Bordeaux, 33600 Pessac, France
| | - Agnès Crépet
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Thierry Delair
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France.
| |
Collapse
|
29
|
Khan MIH, An X, Dai L, Li H, Khan A, Ni Y. Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Curr Med Chem 2019; 26:2502-2513. [DOI: 10.2174/0929867325666180927100817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 12/27/2022]
Abstract
The development of innovative drug delivery systems, versatile to different drug characteristics
with better effectiveness and safety, has always been in high demand. Chitosan, an
aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of
the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives
can be used for direct compression tablets, as disintegrant for controlled release or for improving
dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with
enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and
ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere
technology in hydrogel formulation is particularly relevant to pharmaceutical product development.
This review highlights the suitability and future of chitosan in drug delivery with special
attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable
non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation
have made this polymer an attractive candidate for developing novel drug delivery systems
including various advanced therapeutic applications such as gene delivery, DNA based drugs,
organ specific drug carrier, cancer drug carrier, etc.
Collapse
Affiliation(s)
- Md. Iqbal Hassan Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Xingye An
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Lei Dai
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Hailong Li
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Avik Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
30
|
High strength graphene oxide/chitosan composite screws with a steel-concrete structure. Carbohydr Polym 2019; 214:167-173. [DOI: 10.1016/j.carbpol.2019.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022]
|
31
|
Mizuno Y, Taguchi T. Promotion of Cell Migration into a Hydrophobically modified Alaska Pollock Gelatin‐Based Hydrogel. Macromol Biosci 2019; 19:e1900083. [DOI: 10.1002/mabi.201900083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Pure and Applied SciencesUniversity of Tsukuba 1–1–1 Tennodai Tsukuba Ibaraki 305–8577 Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied SciencesUniversity of Tsukuba 1–1–1 Tennodai Tsukuba Ibaraki 305–8577 Japan
- Biomaterials FieldResearch Center for Functional MaterialsNational Institute for Materials Science 1–1 Namiki Tsukuba Ibaraki 305–0044 Japan
| |
Collapse
|
32
|
Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int J Biol Macromol 2019; 121:1101-1108. [DOI: 10.1016/j.ijbiomac.2018.10.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022]
|
33
|
Yao Y, Wang G, Chu G, An X, Guo Y, Sun X. The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj02556a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel acetylcholinesterase biosensor, namely, gold nanocages/graphene oxide–chitosan nanocomposite modified screen-printed carbon electrode was prepared for chlorpyrifos detection.
Collapse
Affiliation(s)
- Yao Yao
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guangxian Wang
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guanglei Chu
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xingshuang An
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yemin Guo
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
34
|
Lu H, Yuan L, Yu X, Wu C, He D, Deng J. Recent advances of on-demand dissolution of hydrogel dressings. BURNS & TRAUMA 2018; 6:35. [PMID: 30619904 PMCID: PMC6310937 DOI: 10.1186/s41038-018-0138-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Wound management is a major global challenge and a big financial burden to the healthcare system due to the rapid growth of chronic diseases including the diabetes, obesity, and aging population. Modern solutions to wound management include hydrogels that dissolve on demand, and the development of such hydrogels is of keen research interest. The formation and subsequent on-demand dissolution of hydrogels is of keen interest to scientists and clinicians. These hydrogels have excellent properties such as tissue adhesion, swelling, and water absorption. In addition, these hydrogels have a distinctive capacity to form in situ and dissolve on-demand via physical or chemical reactions. Some of these hydrogels have been successfully used as a dressing to reduce bleeding in hepatic and aortal models, and the hydrogels remove easily afterwards. However, there is an extremely wide array of different ways to synthesize these hydrogels. Therefore, we summarize here the recent advances of hydrogels that dissolve on demand, covering both chemical cross-linking cases and physical cross-linking cases. We believe that continuous exploration of dissolution strategies will uncover new mechanisms of dissolution and extend the range of applications for hydrogel dressings.
Collapse
Affiliation(s)
- Hao Lu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medial University), Chongqing, 400038 China
| | - Xunzhou Yu
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People’s Hospital, Chongqing, 405800 China
| | - Danfeng He
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Jun Deng
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
35
|
Kampf N, Wachtel EJ, Zilman A, Ben-Shalom N, Klein J. Anomalous viscosity-time behavior of polysaccharide dispersions. J Chem Phys 2018; 149:163320. [PMID: 30384755 DOI: 10.1063/1.5027720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using viscosity and dynamic light scattering (DLS) measurements, we monitored the changes in the properties of dispersions of chitosan (a cationic polysaccharide) in acidic solution over a period of up to 700 h. Different polymer concentrations, weight average molecular weights, and degrees of deacetylation were examined. We found that the solution rheology and chitosan aggregates continue to change even up to 700 h. It was observed, remarkably, using both capillary and cone and plate viscometry that the viscosity decreased significantly during the storage period of the chitosan dispersions, with a rapid initial decrease and a slow approach to the steady state value. DLS measurements over this period could be interpreted in terms of a gradual decrease in the size of the chitosan aggregates in the dispersion. This behavior is puzzling, insofar as one expects the dissolution of compact polymer aggregates with time into individual polymer chains to increase the viscosity rather than decrease it as observed: We attribute this apparently anomalous behavior to the fact that the chitosan aggregates are rigid crystalline rod-like entities, which dissolved with time from dispersion of overlapping rods (with high viscosity) into solution of individual random coils (with lower viscosity). A detailed model comparing the hydrodynamic behavior of the initial overlapping rod-like aggregates with the subsequent free coils in solution is in semi-quantitative agreement with our observation.
Collapse
Affiliation(s)
- Nir Kampf
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ellen J Wachtel
- Chemical Research Infrastructure Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | | | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
36
|
Davydova VN, Yermak IM. The Conformation of Chitosan Molecules in Aqueous Solutions. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091804005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Ali AA, Elmahdy MM, Sarhan A, Abdel Hamid MI, Ahmed MT. Structure and dynamics of polypyrrole/chitosan nanocomposites. POLYM INT 2018. [DOI: 10.1002/pi.5685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Mahdy M Elmahdy
- Biological Advanced Materials Laboratory, Physics Department, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Maysa I Abdel Hamid
- Polymer Laboratory, Physics Department, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Moustafa T Ahmed
- Polymer Laboratory, Physics Department, Faculty of Science; Mansoura University; Mansoura Egypt
| |
Collapse
|
38
|
Roy JC, Ferri A, Giraud S, Jinping G, Salaün F. Chitosan⁻Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. Int J Mol Sci 2018; 19:ijms19092521. [PMID: 30149641 PMCID: PMC6163483 DOI: 10.3390/ijms19092521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chitosan (CH)–carboxymethyl cellulose sodium salt (NaCMC) microcapsules containing paraffin oil were synthesized by complex formation, and crosslinked with glutaraldehyde (GTA). The electrostatic deposition of NaCMC onto the CH-coated paraffin oil emulsion droplets was demonstrated by zeta potential and optical microscopy. The optimal process conditions were identified in terms of pH of the aqueous solution (5.5) and CH/NaCMC mass ratio (1:1). Encapsulation of paraffin oil and microcapsule morphology were analyzed by ATR-FTIR and SEM, respectively. The effect of GTA crosslinking on paraffin oil latent heat was investigated by DSC and combined with the values of encapsulation efficiency and core content, supporting the compact shell formation.
Collapse
Affiliation(s)
- Jagadish Chandra Roy
- Departments of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
- Department of Mechanical, Energy and Material Engineering, University of Lille Nord de France, F-5900 Lille, France.
- Department of Textile Material Engineering, École Nationale Supérieure des Arts et Industries Textiles, 59056 Roubaix, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215000, China.
| | - Ada Ferri
- Departments of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Stéphane Giraud
- Department of Mechanical, Energy and Material Engineering, University of Lille Nord de France, F-5900 Lille, France.
- Department of Textile Material Engineering, École Nationale Supérieure des Arts et Industries Textiles, 59056 Roubaix, France.
| | - Guan Jinping
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215000, China.
| | - Fabien Salaün
- Department of Mechanical, Energy and Material Engineering, University of Lille Nord de France, F-5900 Lille, France.
- Department of Textile Material Engineering, École Nationale Supérieure des Arts et Industries Textiles, 59056 Roubaix, France.
| |
Collapse
|
39
|
Tayyem MT, Zughul MB, Almatarneh MH. Molecular dynamics simulation of N-octyl-N-quaternized chitosan derivatives as a drug carrier. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamic amphiphilic behavior of N-octyl-N-quaternized chitosan derivatives in aqueous solution is investigated using molecular dynamics (MD) simulations. It is found that quaternization decreases the intra-chain hydrogen bond formation which leads to reduced rigidity of the chitosan backbone. The effect of octyl substitution is much less pronounced. Analysis of hydrogen bonding reveals the presence of a hydrogen bond within the quaternized glucosamine unit, which causes the distortion of the usual chair conformation. Also, H-bond formation with the solvent water molecules was found to stabilize the intra-chain HO3-O5 hydrogen bond. Additionally, an aqueous solution containing the 10%-N-octyl-50%-N-quaternized chitosan derivative (1O5QCS) and the anti-cancer drug 10-hydroxycamptothecin (10-HCPT) was also investigated using MD simulations. It was found that van der Waals and electrostatic forces have virtually equal contributions to the nonbonded interactions responsible for complexation. Furthermore, H-bond formation between drug and drug carrier contributes to lactone ring stability and subsequent bioavailability.
Collapse
Affiliation(s)
- Muna T. Tayyem
- Department of Chemistry, Yarmouk University, Irbid, Jordan
- Department of Chemistry, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
40
|
Oxidative stability of DHA in β-lactoglobulin/oleic acid-modified chitosan oligosaccharide nanoparticles during storage in skim milk. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Martins DB, Nasário FD, Silva-Gonçalves LC, de Oliveira Tiera VA, Arcisio-Miranda M, Tiera MJ, dos Santos Cabrera MP. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes. Carbohydr Polym 2018; 181:1213-1223. [DOI: 10.1016/j.carbpol.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/21/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
42
|
Silva CP, Martínez JH, Martínez KD, Farías ME, Leskow FC, Pérez OE. Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Abstract
This review places an emphasis on chitosan intelligent hydrogels. The fabrication methods and mechanisms are introduced in this review and the interactions of the formation of hydrogels with both physical and chemical bonds are also introduced. The relationship between the structural characteristics and the corresponding functions of stimuli-responsive characteristics, self-healing functions and high mechanical strength properties of the chitosan hydrogels are discussed in detail.
Collapse
Affiliation(s)
- Jing Fu
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- P. R. China
- School of Chemistry and Environment Engineering
| | - Fuchao Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- P. R. China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- P. R. China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
44
|
Rizzi V, Longo A, Placido T, Fini P, Gubitosa J, Sibillano T, Giannini C, Semeraro P, Franco E, Ferrandiz M, Cosma P. A comprehensive investigation of dye-chitosan blended films for green chemistry applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vito Rizzi
- Università degli Studi “Aldo Moro” di Bari, Dip. Chimica, Via Orabona; 4-70126 Bari Italy
| | - Alessandra Longo
- Università degli Studi “Aldo Moro” di Bari, Dip. Chimica, Via Orabona; 4-70126 Bari Italy
| | - Tiziana Placido
- Università degli Studi “Aldo Moro” di Bari, Dip. Chimica, Via Orabona; 4-70126 Bari Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona; 4-70126 Bari Italy
| | - Jennifer Gubitosa
- Dipartimento di Farmacia-Scienze del Farmaco; Unità di Tecnologia Farmaceutica, Università degli Studi di Bari “A. Moro,” via Orabona 4; 70125 Bari Italy
| | - Teresa Sibillano
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola,122/O; 70126 Bari Italy
| | - Cinzia Giannini
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola,122/O; 70126 Bari Italy
| | - Paola Semeraro
- Università degli Studi “Aldo Moro” di Bari, Dip. Chimica, Via Orabona; 4-70126 Bari Italy
| | - Esther Franco
- Biotechnology Department; Textile Industry Research Association (AITEX), Plaza Emilio Sala; 1-03801 Alcoy Spain
| | - Marcela Ferrandiz
- Biotechnology Department; Textile Industry Research Association (AITEX), Plaza Emilio Sala; 1-03801 Alcoy Spain
| | - Pinalysa Cosma
- Università degli Studi “Aldo Moro” di Bari, Dip. Chimica, Via Orabona; 4-70126 Bari Italy
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona; 4-70126 Bari Italy
| |
Collapse
|
45
|
Jurak M, Wiącek AE, Mroczka R, Łopucki R. Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging. Carbohydr Polym 2017; 173:100-106. [DOI: 10.1016/j.carbpol.2017.05.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/10/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
|
47
|
Xin C, Chen J, Liang H, Wan J, Li J, Li B. Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohydr Polym 2017; 174:337-342. [DOI: 10.1016/j.carbpol.2017.06.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/04/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
48
|
Affiliation(s)
| | - Eric Guibal
- Ecole des Mines d'Alès; Centre des Matériaux des Mines d'Alès; Alès France
| |
Collapse
|
49
|
Michalicová P, Mravec F, Pekař M. Fluorescence study of freeze-drying as a method for support the interactions between hyaluronan and hydrophobic species. PLoS One 2017; 12:e0184558. [PMID: 28886150 PMCID: PMC5590968 DOI: 10.1371/journal.pone.0184558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022] Open
Abstract
A freeze-drying method enabling solubilization of hydrophobic species in aqueous solutions of native hyaluronan is described. The method is based on opening the access to supposed hydrophobic patches on hyaluronan by disturbing its massive hydration shell. Hydrophobic and/or polarity-sensitive fluorescence probes were used as hydrophobic models or indicators of interactions with hydrophobic patches. Fluorescence parameters specific to individual probes confirmed the efficiency of the freeze-drying method. This work is the first step in developing biocompatible and biodegradable carriers for hydrophobic drugs with targeted distribution of the active compound from native, chemically non-modified hyaluronan.
Collapse
Affiliation(s)
- Petra Michalicová
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
| | - Filip Mravec
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
| | - Miloslav Pekař
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
50
|
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703461. [PMID: 28782856 DOI: 10.1002/adma.201703461] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/22/2023]
Abstract
To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|