1
|
Zhang X, Shen A, Zhang Z, Zhang T, Jiang L, Zhou W, Zhang Y, Sui X. Advancing molecular understanding in high moisture extrusion for plant-based meat analogs: Challenges and perspectives. Food Chem 2024; 460:140458. [PMID: 39029364 DOI: 10.1016/j.foodchem.2024.140458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
In recent years, meat analogs based on plant proteins have received increasing attention. However, the process of high moisture extrusion (HME), the method for their preparation, has not been thoroughly explored, particularly in terms of elucidating the complex interactions that occur during extrusion, which remain challenging. These interactions arise from the various ingredients added during HME, including proteins, starches, edible gums, dietary fibers, lipids, and enzymes. These ingredients undergo intricate conformational changes and interactions under extreme conditions of high temperature, pressure, and shear, ultimately forming the fibrous structure of meat analogs. This review offers a overview of these ingredients and the molecular interaction changes they undergo during the extrusion process. Additionally, it delves into the major molecular interactions such as disulfide bonding, hydrogen bonding, and hydrophobic interactions, providing detailed insights into each.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ao Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaonan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore; Heilongjiang Joint Laboratory of Plant-Based Food Science (International Cooperation), Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Joint Laboratory of Plant-Based Food Science (International Cooperation), Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore; Heilongjiang Joint Laboratory of Plant-Based Food Science (International Cooperation), Harbin 150030, China.
| |
Collapse
|
2
|
Ellwanger F, Fuhrmann M, Karbstein HP, Saavedra Isusi GI. Influence of Lowering the pH Value on the Generation of Fibrous Structures of Protein Gels with Different Network Types. Gels 2024; 10:173. [PMID: 38534591 DOI: 10.3390/gels10030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
High-moisture extrusion of plant proteins to create meat-like structures is a process that has met with increasing attention in the recent past. In the process, the proteins are thermomechanically stressed in the screw section of the extruder, and the resulting protein gel is structured in the attached cooling die. Various protein sources, notably soy protein isolate (SPI) and wheat gluten, are used to form gels with different networks: SPI creates a physical, non-covalent network, while gluten forms a chemical, covalent one. The food industry frequently adds weak acids to modify taste and shelf life. However, it is known that a change in pH affects the gelation behavior of proteins because the repulsive forces within and between the proteins change. The research reported here was carried out to investigate for the two proteins mentioned the influence of pH modification by the addition of citric acid and acetic acid on gel formation and the meat-like structures produced. For this purpose, materials and parameters were screened using a closed cavity rheometer, followed by extrusion trials at pH 7.36-4.14 for SPI and pH 5.83-3.37 for gluten. The resulting extrudates were analyzed optically and mechanically, and protein solubility was tested in a reducing buffer. For both protein systems, the addition of acid results in less pronounced meat-like structures. At decreasing pH, the complex viscosity of SPI increases (from 11,970 Pa·s to 40,480 Pa·s at 100 °C), the generated gel becomes stronger (strain decreased from 0.62 to 0.48 at 4.5 × 105 Pa), and the cross-linking density grows. For gluten, a decreasing pH results in altered reaction kinetics, a more deformable resulting gel (strain increased from 0.7 to 0.95 at 4.5 × 105 Pa), and a decreased cross-linking density. Solubility tests show that no additional covalent bonds are formed with SPI. With gluten, however, the polymerization reaction is inhibited, and fewer disulfide bonds are formed.
Collapse
Affiliation(s)
- Felix Ellwanger
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Food Process Engineering (LVT), Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Melanie Fuhrmann
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Food Process Engineering (LVT), Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Heike P Karbstein
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Food Process Engineering (LVT), Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | | |
Collapse
|
3
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
4
|
Strangis G, Rossi D, Cinelli P, Seggiani M. Seawater Biodegradable Poly(butylene succinate- co-adipate)-Wheat Bran Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2593. [PMID: 37048886 PMCID: PMC10095215 DOI: 10.3390/ma16072593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The present work focused on the development and characterization of biocomposites based on a fully bio-based polyester, poly(butylene succinate-co-butylene adipate) (PBSA), and wheat bran derived by flour milling. PBSA-bran composites containing 5, 10, 15, and 20 wt.% of wheat bran were produced via melt extrusion and processed by injection molding. Their thermal, rheological, morphological, and tensile properties were investigated. In addition, a biodegradation test in a natural marine environment was conducted on composite dog-bones to assess the capacity of the used filler to increase the PBSA biodegradation rate. The composites maintained similar melt processability and mechanical properties to virgin PBSA with up to 15 wt.% bran content. This result was also supported by morphological investigation, which showed good filler dispersion within the polymer matrix at low-mid bran content, whereas poor polymer-filler dispersion occurred at higher concentrations. Furthermore, the biodegradation tests showed bran's capacity to improve the PBSA biodegradation rate, probably due to the hygroscopic bran swelling, which induced the fragmentation of the dog-bone with a consequent increase in the polymeric matrix-seawater interfacial area, accelerating the degradation mechanisms. These results encourage the use of wheat bran, an abundant and low-cost agri-food by-product, as a filler in PBSA-based composites to develop products with good processability, mechanical properties, and controlled biodegradability in marine environments.
Collapse
|
5
|
Ji Y, Wang Z, Deng Q, Chen J, He Z, Zeng M, Qin F, Pan H. Soy Protein Hydrolysates Affect the Structural and Mechanical Properties of Soy Protein-Wheat Gluten Extrudates Using High Moisture Extrusion. Foods 2023; 12:foods12050912. [PMID: 36900429 PMCID: PMC10001190 DOI: 10.3390/foods12050912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to investigate the effect of hydrolyzed soy protein isolate (HSPI) as a plasticizer in the soy protein mixture-wheat gluten (SP-WG) extrudates on its structural and mechanical properties during high moisture extrusion. Those SP were prepared by mixing soy protein isolate (SPI) and HSPI with different ratios. HSPI primarily consisted of small molecular weight peptides measured with size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The elastic modulus of SP-WG blends decreased with increased HSPI contents through the closed cavity rheometer. Adding HSPI at low concentrations (≤30 wt% of SP) enhanced a fibrous appearance and higher mechanical anisotropy while adding more HSPI resulted in a compact and brittle structure and tended to be isotropic. It can be concluded that the partial addition of HSPI as a plasticizer can promote the formation of a fibrous structure with enhanced mechanical anisotropy.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Z.W.); (H.P.)
| | - Qian Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: (Z.W.); (H.P.)
| |
Collapse
|
6
|
Xu J, Li Y. Wheat gluten-based coatings and films: Preparation, properties, and applications. J Food Sci 2023; 88:582-594. [PMID: 36628945 DOI: 10.1111/1750-3841.16454] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Effective food packaging that can protect foodstuffs from physical, chemical, and biological damage and maintain freshness and quality is essential to the food industry. Wheat gluten shows promise as food packaging materials due to its edibility, biodegradability, wide availability, low cost, film-forming potential, and high resistance to oxygen. The low mechanical properties and poor water permeability of wheat gluten coatings and films limit their wide applications; however, some inferior properties can be improved through various solutions. This work presents a comprehensive review about wheat gluten-based coatings and films, including their formulation, processing methods, properties, functions, and applications. The mechanical and water resistance properties of coatings and films can be reinforced through wheat gluten modification, combinations of different processing methods, and the incorporation of reinforcing macromolecules, antioxidants, and nanofillers. Antioxidants and antimicrobial agents added to wheat gluten can inhibit microbial growth on foodstuffs, maintain food quality, and extend shelf life. Performances of wheat gluten-based coatings and films can be further improved to expand their applications in food packaging. Current research gaps are identified. Future research is needed to examine the optimal formulation and processing of wheat gluten-based coatings and films and their performance.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas
| |
Collapse
|
7
|
Selected Biopolymers' Processing and Their Applications: A Review. Polymers (Basel) 2023; 15:polym15030641. [PMID: 36771942 PMCID: PMC9919854 DOI: 10.3390/polym15030641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.
Collapse
|
8
|
Yu C, Guo XN, Zhu KX. Effects of thermal treatment on the microbial shelf-life and quality stability of wet instant cooked noodles during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Infrared Spectroscopy and Microstructural Assessment of Dough with Varying Wheat Gluten Fractions. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Xu F, Chen J, Ren J, Liu S, Wang L, Wang Y. Effect of sodium carbonate on rheological, structural, and sensory properties of wheat dough and noodle. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Xu
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Jie Chen
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Jia‐Ying Ren
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Shu‐Hang Liu
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Lei Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Yuan‐hui Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
11
|
Mohammed AABA, Omran AAB, Hasan Z, Ilyas RA, Sapuan SM. Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review. Polymers (Basel) 2021; 13:polym13213624. [PMID: 34771181 PMCID: PMC8587943 DOI: 10.3390/polym13213624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Biocomposite materials create a huge opportunity for a healthy and safe environment by replacing artificial plastic and materials with natural ingredients in a variety of applications. Furniture, construction materials, insulation, and packaging, as well as medical devices, can all benefit from biocomposite materials. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch, gluten, and fiber are vital in the biopolymer industry. Glycerol as a plasticizer considerably increased the elongation and water vapor permeability of wheat films. Wheat fiber developed mechanical and thermal properties as a result of various matrices; wheat gluten is water insoluble, elastic, non-toxic, and biodegradable, making it useful in biocomposite materials. This study looked at the feasibility of using wheat plant components such as wheat, gluten, and fiber in the biocomposite material industry.
Collapse
Affiliation(s)
- Abdulrahman A. B. A. Mohammed
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| | - Zaimah Hasan
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| | - S. M. Sapuan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| |
Collapse
|
12
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
13
|
Chen Y, Liu Y, Li Y, Qi H. Highly Sensitive, Flexible, Stable, and Hydrophobic Biofoam Based on Wheat Flour for Multifunctional Sensor and Adjustable EMI Shielding Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30020-30029. [PMID: 34129335 DOI: 10.1021/acsami.1c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biofoam materials are attractive alternatives for petroleum-based foams to be used to solve environmental problems. Inspired by steamed bread, we report herein a novel utilization of wheat flour (WF) with the introduction of carbon nanotubes (CNTs) to form an environmentally friendly WF/CNT composite foam. This foam displayed a high elasticity (nearly 100% shape recovery), recyclable (5000 cycles), fast (100 ms), and superstability pressure-sensing response. It could serve as a new pressure sensor to detect the tiny pressure (1.76 Pa) and acoustic vibrations from piano notes. As an acoustic sensor, WF/CNT foam detected and recognized different volumes and frequencies of piano sounds. As an electromagnetic interference (EMI) shielding switch, the EMI shielding effectiveness (SE) of the foam could be easily regulated under self-fixable compression-recovery cycles. In addition, the WF/CNT foam could be converted into the WF/CNT film by a hot-compress process. This flexible film was applied as a multifunctional sensing device for detecting various motions. Therefore, wheat flour as a renewable resource could be designed into various WF-based biofoams with new functionalities and outstanding mechanical properties through a simple process.
Collapse
Affiliation(s)
- Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
14
|
Extrusion of wheat gluten-peanut oil complexes and their rheological characteristics. Food Chem 2021; 364:130435. [PMID: 34175619 DOI: 10.1016/j.foodchem.2021.130435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
In order to clarify the effects of extrusion treatment on the processing properties of extrudates, providing a theoretical basis for the production of gluten-based extrudates with favorable sensory quality. This study examined the effects of various extrusion temperatures on the rheological properties of wheat gluten-peanut oil complexes (WPE) and wheat gluten (WG). At the extrusion temperature conditions of this study, the dynamic moduli of gluten in WG and WPE reached the maximum, and the creep strain reached a minimum at 160 °C. Extrusion treatment resulted in the decrease in β-sheet and α-helix content and an increase in the amount of β-turns and random coils. The secondary structural changes and increase in the number of disulfide bonds led to gluten aggregation, thus affecting their rheological properties. These results enhance our understanding of the variations in the rheological properties of extrudates and promote the potential application of gluten-based complexes in extrusion.
Collapse
|
15
|
Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021; 10:981. [PMID: 33947093 PMCID: PMC8145534 DOI: 10.3390/foods10050981] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Departamento de Ingeniería Química, Escuela Politécnica Superior, 41011 Sevilla, Spain; (E.Á.-C.); (M.F.); (A.G.)
| | | |
Collapse
|
16
|
Sun F, Xie X, Zhang Y, Ma M, Wang Y, Duan J, Lu X, Yang G, He G. Wheat gliadin in ethanol solutions treated using cold air plasma at atmospheric pressure. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Schopf M, Scherf KA. Water Absorption Capacity Determines the Functionality of Vital Gluten Related to Specific Bread Volume. Foods 2021; 10:foods10020228. [PMID: 33498626 PMCID: PMC7910979 DOI: 10.3390/foods10020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Vital gluten is often used in baking to supplement weak wheat flours and improve their baking quality. Even with the same recipe, variable final bread volumes are common, because the functionality differs between vital gluten samples also from the same manufacturer. To understand why, the protein composition of ten vital gluten samples was investigated as well as their performance in a microbaking test depending on the water content in the dough. The gluten content and composition as well the content of free thiols and disulfide bonds of the samples were similar and not related to the specific bread volumes obtained using two dough systems, one based on a baking mixture and one based on a weak wheat flour. Variations of water addition showed that an optimal specific volume of 1.74–2.38 mL/g (baking mixture) and 4.25–5.49 mL/g (weak wheat flour) was reached for each vital gluten sample depending on its specific water absorption capacity.
Collapse
Affiliation(s)
- Marina Schopf
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany;
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany;
- Department of Bioactive and Functional Food Chemistry, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
- Correspondence: ; Tel.: +49-721-608-44176
| |
Collapse
|
18
|
Coating and Film-Forming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Roye C, Chanvrier H, Henrion M, De Roeck K, De Bondt Y, Liberloo I, King R, Courtin CM. Single-pass, double-pass and acid twin-screw extrusion-cooking impact physicochemical and nutrition-related properties of wheat bran. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Influence of mold temperature on the properties of wastewater-grown microalgae-based plastics processed by injection molding. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Girard AL, Awika JM. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf 2020; 19:2164-2199. [PMID: 33337093 DOI: 10.1111/1541-4337.12572] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Expanding plant-based protein applications is increasingly popular. Polyphenol interactions with wheat gluten proteins can be exploited to create novel functional foods and food ingredients. Polyphenols are antioxidants, thus generally decrease gluten strength by reducing disulfide cross-linking. Monomeric polyphenols can be used to reduce dough mix time and improve flexibility of the gluten network, including to plasticize gluten films. However, high-molecular-weight polyphenols (tannins) cross-link gluten proteins, thereby increasing protein network density and strength. Tannin-gluten interactions can greatly increase gluten tensile strength in dough matrices, as well as batter viscosity and stability. This could be leveraged to reduce detrimental effects of healthful inclusions, like bran and fiber, to loaf breads and other wheat-based products. Further, the dual functions of tannins as an antioxidant and gluten cross-linker could help restructure gluten proteins and improve the texture of plant-based meat alternatives. Tannin-gluten interactions may also be used to reduce inflammatory effects of gluten experienced by those with gluten allergies and celiac disease. Other potential applications of tannin-gluten interactions include formation of food matrices to reduce starch digestibility; creation of novel biomaterials for edible films or medical second skin type bandages; or targeted distribution of micronutrients in the digestive tract. This review focuses on the effects of polyphenols on wheat gluten functionality and discusses emerging opportunities to employ polyphenol-gluten interactions.
Collapse
Affiliation(s)
- Audrey L Girard
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas
| | - Joseph M Awika
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Effect of different treatment methods on protein aggregation characteristics in wheat flour maturation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Impact of aqualysin 1 peptidase from Thermus aquaticus on molecular scale changes in the wheat gluten network during bread baking. Food Chem 2019; 295:599-606. [DOI: 10.1016/j.foodchem.2019.05.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022]
|
24
|
Verbauwhede AE, Lambrecht MA, Jekle M, Lucas I, Fierens E, Shegay O, Brijs K, Delcour JA. Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Annelien E. Verbauwhede
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Marlies A. Lambrecht
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Mario Jekle
- Institute of Brewing and Beverage Technology Research Group Cereal Technology and Process Engineering Technical University of Munich Weihenstephaner Steig 20 85354 Freising Germany
| | - Isabelle Lucas
- Institute of Brewing and Beverage Technology Research Group Cereal Technology and Process Engineering Technical University of Munich Weihenstephaner Steig 20 85354 Freising Germany
| | - Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Oksana Shegay
- Competence Center for Fermentation Puratos Group Rue Bourrie 12 B‐5300 Andenne Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| |
Collapse
|
25
|
Cao Y, Zhang F, Guo P, Dong S, Li H. Effect of wheat flour substitution with potato pulp on dough rheology, the quality of steamed bread and in vitro starch digestibility. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Ma M, Han CW, Li M, Song XQ, Sun QJ, Zhu KX. Inhibiting effect of low-molecular weight polyols on the physico-chemical and structural deteriorations of gluten protein during storage of fresh noodles. Food Chem 2019; 287:11-19. [DOI: 10.1016/j.foodchem.2019.02.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 11/13/2022]
|
27
|
Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chem 2019; 283:111-122. [DOI: 10.1016/j.foodchem.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
|
28
|
Alipour N, Vinnerås B, Gouanvé F, Espuche E, Hedenqvist MS. A Protein-Based Material from a New Approach Using Whole Defatted Larvae, and Its Interaction with Moisture. Polymers (Basel) 2019; 11:polym11020287. [PMID: 30960271 PMCID: PMC6419081 DOI: 10.3390/polym11020287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
A protein-based material created from a new approach using whole defatted larvae of the Black Soldier fly is presented. The larvae turn organic waste into their own biomass with high content of protein and lipids, which can be used as animal feed or for material production. After removing the larva lipid and adding a plasticizer, the ground material was compression molded into plates/films. The lipid, rich in saturated fatty acids, can be used in applications such as lubricants. The amino acids present in the greatest amounts were the essential amino acids aspartic acid/asparagine and glutamic acid/glutamine. Infrared spectroscopy revealed that the protein material had a high amount of strongly hydrogen-bonded β-sheets, indicative of a highly aggregated protein. To assess the moisture⁻protein material interactions, the moisture uptake was investigated. The moisture uptake followed a BET type III moisture sorption isotherm, which could be fitted to the Guggenheim, Anderson and de Boer (GAB) equation. GAB, in combination with cluster size analysis, revealed that the water clustered in the material already at a low moisture content and the cluster increased in size with increasing relative humidity. The clustering also led to a peak in moisture diffusivity at an intermediate moisture uptake.
Collapse
Affiliation(s)
- Nazanin Alipour
- KTH Royal Institute of Technology, School of Engineering Sciences of Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
| | - Björn Vinnerås
- SLU Swedish University of Agricultural Sciences Department for Energy and Technology, PO Box 7032, SE-750 07 UPPSALA, Sweden.
| | - Fabrice Gouanvé
- UMR CNRS 5223, Ingénierie des Matériaux Polymères, 15, Bd. André Latarjet, Univ Lyon, Université Lyon 1, 69622 Villeurbanne Cedex, France.
| | - Eliane Espuche
- UMR CNRS 5223, Ingénierie des Matériaux Polymères, 15, Bd. André Latarjet, Univ Lyon, Université Lyon 1, 69622 Villeurbanne Cedex, France.
| | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Engineering Sciences of Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
29
|
Zubair M, Ullah A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2019; 60:406-434. [DOI: 10.1080/10408398.2018.1534800] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Adeyeye OA, Sadiku ER, Babu Reddy A, Ndamase AS, Makgatho G, Sellamuthu PS, Perumal AB, Nambiar RB, Fasiku VO, Ibrahim ID, Agboola O, Kupolati WK, Daramola OO, Machane MJ, Jamiru T. The Use of Biopolymers in Food Packaging. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019. [DOI: 10.1007/978-981-13-8063-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Muneer F, Johansson E, Hedenqvist MS, Plivelic TS, Kuktaite R. Impact of pH Modification on Protein Polymerization and Structure⁻Function Relationships in Potato Protein and Wheat Gluten Composites. Int J Mol Sci 2018; 20:ijms20010058. [PMID: 30586846 PMCID: PMC6337652 DOI: 10.3390/ijms20010058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Wheat gluten (WG) and potato protein (PP) were modified to a basic pH by NaOH to impact macromolecular and structural properties. Films were processed by compression molding (at 130 and 150 °C) of WG, PP, their chemically modified versions (MWG, MPP) and of their blends in different ratios to study the impact of chemical modification on structure, processing and tensile properties. The modification changed the molecular and secondary structure of both protein powders, through unfolding and re-polymerization, resulting in less cross-linked proteins. The β-sheet formation due to NaOH modification increased for WG and decreased for PP. Processing resulted in cross-linking of the proteins, shown by a decrease in extractability; to a higher degree for WG than for PP, despite higher β-sheet content in PP. Compression molding of MPP resulted in an increase in protein cross-linking and improved maximum stress and extensibility as compared to PP at 130 °C. The highest degree of cross-linking with improved maximum stress and extensibility was found for WG/MPP blends compared to WG/PP and MWG/MPP at 130 °C. To conclude, chemical modification of PP changed the protein structures produced under harsh industrial conditions and made the protein more reactive and attractive for use in bio-based materials processing, no such positive gains were seen for WG.
Collapse
Affiliation(s)
- Faraz Muneer
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden.
| | - Tomás S Plivelic
- MAX-IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden.
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| |
Collapse
|
32
|
Wang P, Zou M, Tian M, Gu Z, Yang R. The impact of heating on the unfolding and polymerization process of frozen-stored gluten. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Microparticles from Wheat-Gluten Proteins Soluble in Ethanol by Nanoprecipitation: Preparation, Characterization, and Their Study as a Prolonged-Release Fertilizer. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1042798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
At present, the development of natural polymeric microparticles is carried out to obtain release systems. Prolonged-release systems are a potential solution to avoid nitrogen (N) losses in agricultural fields. The aim of this study was to develop microspheres from wheat-gluten proteins soluble in ethanol 70% (v/v), to ascertain their characterization, and to study their potential application in agricultural fields. Soluble-protein extraction was performed with 1600 mL of ethanol 70% (v/v). Likewise, ethanolic solutions with protein concentrations of 0.5%, 1%, and 2% (w/v) are classified as non-Newtonian fluids with pseudoplastic behavior. Using the nanoprecipitation method, it was possible to develop urea-loaded microspheres with a diameter ranging from 900 nm–1.7 μm. The Fourier transform infrared spectroscopy (FTIR) test exhibited interaction through hydrogen bonds between carbonyls and amino groups from the urea and proteins. Also, the thermogravimetric analysis (TGA) test demonstrated thermal stability at 130°C. The release experiment showed that the microspheres achieved equilibrium when 88% of the urea was released. Finally, according to the empirical model of Ritger and Peppas, urea release is carried out through Fickian diffusion. We conclude that the microspheres could be applied in the fields and with this improve agricultural practices. Also, they could reduce the potential environmental pollution and developing a sustainable agriculture.
Collapse
|
34
|
Wu M, Huang X, Gao F, Sun Y, Duan H, Li D. Dynamic mechanical properties and fractal analysis of texturized soybean protein/wheat gluten composite produced by high moisture extrusion. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Wu
- College of Engineering; China Agricultural University; P. O. Box 50 No. 17 QinghuaEast Road Haidian District Beijing 100083 China
- Engineering Research Center for Modern Agricultural Equipment & Facilities; the Ministry of Education; Beijing China
| | - Xin Huang
- Institute of Environment and Sustainable Development in Agriculture; Chinese Academy of Agricultural Sciences; No. 12 Zhongguancun South Street Haidian District Beijing 100081 China
| | - Fei Gao
- College of Engineering; China Agricultural University; P. O. Box 50 No. 17 QinghuaEast Road Haidian District Beijing 100083 China
| | - Yang Sun
- College of Engineering; China Agricultural University; P. O. Box 50 No. 17 QinghuaEast Road Haidian District Beijing 100083 China
| | - Hao Duan
- College of Engineering; China Agricultural University; P. O. Box 50 No. 17 QinghuaEast Road Haidian District Beijing 100083 China
| | - Dong Li
- College of Engineering; China Agricultural University; P. O. Box 50 No. 17 QinghuaEast Road Haidian District Beijing 100083 China
| |
Collapse
|
35
|
Lucas I, Becker T, Jekle M. Gluten Polymer Networks-A Microstructural Classification in Complex Systems. Polymers (Basel) 2018; 10:polym10060617. [PMID: 30966651 PMCID: PMC6403851 DOI: 10.3390/polym10060617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 11/21/2022] Open
Abstract
A classification of gluten polymer networks would support a better understanding of structure-function relationships of any gluten polymer material and thus, the control of processing properties. However, quantification and interpretation of the gluten network structures is challenging due to their complexity. Thus, the network formation was altered by specific gluten-modifying agents (glutathione, ascorbic acid, potassium bromate, glucose oxidase, transglutaminase, bromelain) in this study in order to clarify if structural alterations can be detected on a microstructural level and to specify different polymer arrangements in general. Microstructure analysis was performed by confocal laser scanning microscopy followed by quantification with protein network analysis. It was shown that alterations in gluten microstructure could be elucidated according to the kind of modification in cross-linking (disulphide, (iso) peptide, dityrosyl). Linear correlations of structural network attributes among each other were found, leading to an assertion in general: the higher the branching rate, the thinner the protein threads and the larger the interconnected protein aggregate. Considering the morphological attribute lacunarity, a quantitative classification of different gluten arrangements was established. These assertions were extended by using unspecific gluten-modifying agents in addition to the specific ones. Ultimately, five network types were proposed based on diverse polymer arrangements.
Collapse
Affiliation(s)
- Isabelle Lucas
- Research Group Cereal Technology and Process Engineering, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany.
| | - Thomas Becker
- Research Group Cereal Technology and Process Engineering, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany.
| | - Mario Jekle
- Research Group Cereal Technology and Process Engineering, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
36
|
Lambrecht MA, Deleu LJ, Rombouts I, Delcour JA. Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Taylor J, Taylor JRN. Making Kafirin, the Sorghum Prolamin, into a Viable Alternative Protein Source. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Janet Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science; University of Pretoria, Private Bag X20; Hatfield 0028 South Africa
| | - John R. N. Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science; University of Pretoria, Private Bag X20; Hatfield 0028 South Africa
| |
Collapse
|
38
|
Galvão AM, Zambelli RA, Araújo AW, Bastos MS. Edible coating based on modified corn starch/tomato powder: Effect on the quality of dough bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhu YQ, Chen X, McClements DJ, Zou L, Liu W. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1398660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Qing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Emin M, Quevedo M, Wilhelm M, Karbstein H. Analysis of the reaction behavior of highly concentrated plant proteins in extrusion-like conditions. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Janssens W, Goderis B, Van Puyvelde P. The effect of shear history on urea containing gliadin solutions. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Currently, a substantial amount of research is devoted to gluten bioplastics. A promising processing route towards composites and films uses solutions of reduced gliadin. The addition of sufficient urea allows the preparation of highly concentrated gliadin solutions without an anomalous rheology. This is investigated in this paper by thixotropy experiments on gliadin solutions. These solutions show a balance between structural build-up due to molecular interactions and structural break-down induced by shear flow. Because of this, such protein solutions should be prepared with great caution. To assure a rheology suitable for processing, a shear history and a sufficient amount of added urea to disrupt molecular interactions are crucial.
Collapse
|
42
|
Langstraat T, Van Puyvelde P, Delcour J, Verpoest I, Goderis B. Effect of adding a reactive plasticizer on the mechanical, thermal, and morphology properties of nylon toughened wheat gluten materials. J Appl Polym Sci 2017. [DOI: 10.1002/app.45931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Jan Delcour
- Laboratory of Food Chemistry and Biochemistry; KU Leuven; Leuven 3001 Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe); Leuven 3001 Belgium
| | - Ignaas Verpoest
- Department of Materials Engineering; KU Leuven; Leuven 3001 Belgium
- Leuven Material Research Centre (Leuven-MRC); KU Leuven Belgium
| | - Bart Goderis
- Department of Chemistry; KU Leuven; Leuven 3001 Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe); Leuven 3001 Belgium
- Leuven Material Research Centre (Leuven-MRC); KU Leuven Belgium
| |
Collapse
|
43
|
Muhiwa PJ, Taylor J, Taylor JRN. Extraction and Film Properties of Kafirin from Coarse Sorghum and Sorghum DDGS by Percolation. Cereal Chem 2017. [DOI: 10.1094/cchem-01-17-0003-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Peter J. Muhiwa
- Institute for Food, Nutrition and Well-being and Department of Food Science, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
- Current address: Ministry of Agriculture, Irrigation and Water Development, Chikwawa District Agriculture Office, Post Office Box 39, Chikwawa, Malawi
| | - Janet Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - John R. N. Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
44
|
Lambrecht MA, Rombouts I, Nivelle MA, Delcour JA. The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Comparative study on the freeze stability of yeast and chemical leavened steamed bread dough. Food Chem 2017; 221:482-488. [DOI: 10.1016/j.foodchem.2016.10.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
|
46
|
Jansens KJ, Telen L, Bruyninckx K, Vo Hong N, Gebremeskel AF, Brijs K, Verpoest I, Smet M, Delcour JA, Goderis B. Concepts and experimental protocols towards a molecular level understanding of the mechanical properties of glassy, cross-linked proteins: Application to wheat gluten bioplastics. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Towards gliadin nanofoams. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-016-3995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Liao L, Han XY, Zhao MM, Ni L, Liu ZB, Zhang W. Effect of native aggregation state of soluble wheat gluten on deamidation behavior in a carboxylic acid/heat water solution. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Extractability and characteristics of proteins deriving from wheat DDGS. Food Chem 2016; 198:12-9. [DOI: 10.1016/j.foodchem.2015.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
50
|
|