1
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
2
|
Tamrakar A, Nigam KK, Maddeshiya T, Pandey MD. Pyrene Functionalized Luminescent Phenylalanine for Selective Detection of Copper (II) Ions in Aqueous Media. J Fluoresc 2023; 33:1175-1182. [PMID: 36622492 DOI: 10.1007/s10895-022-03137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
A novel pyrene-based fluorescent chemosensor 1 (pyren-1-ylmethyl)-L-phenylalanine was designed and synthesized by combining 1-pyrenecarboxyaldehyde and L-phenylalanine. 1 was characterized by several analytical methods and used as a fluorescent chemosensor for the selective and sensitive detection of Cu2+ ions through "turn-off" mechanism with a detection limit of 2 × 10-8 M. 1 can also be used to detect Cu2+ ions in a natural water sample and exhibits gelation properties with high thermal stability.
Collapse
Affiliation(s)
- Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Kamlesh Kumar Nigam
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
3
|
Monajati M, Tamaddon AM, Abolmaali SS, Yousefi G, Borandeh S, Dinarvand R. Enhanced L-asparaginase stability through immobilization in supramolecular nanogels of PEG-grafted poly HPMA with bis(α-cyclodextrin). Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Tang B, Yang X, Zhang A, Wang Q, Fan L, Fang G. Polypseudorotaxane hydrogel based on Tween 80 and α-cyclodextrin for sustained delivery of low molecular weight heparin. Carbohydr Polym 2022; 297:120002. [DOI: 10.1016/j.carbpol.2022.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
|
5
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
6
|
|
7
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Hwang C, Lee SY, Kim HJ, Lee K, Lee J, Kim DD, Cho HJ. Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydr Polym 2021; 266:118104. [PMID: 34044922 DOI: 10.1016/j.carbpol.2021.118104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.
Collapse
Affiliation(s)
- ChaeRim Hwang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
9
|
Domiński A, Konieczny T, Kurcok P. α-Cyclodextrin-Based Polypseudorotaxane Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E133. [PMID: 31905603 PMCID: PMC6982288 DOI: 10.3390/ma13010133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host-guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of "smart" hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain "guest" and α-cyclodextrin "host" are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.
Collapse
Affiliation(s)
| | | | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowskiej St., 41-819 Zabrze, Poland; (A.D.); (T.K.)
| |
Collapse
|
10
|
Singh G, Singh PK. Stimulus-Responsive Supramolecular Host-Guest Assembly of a Cationic Pyrene Derivative with Sulfated β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14628-14638. [PMID: 31609124 DOI: 10.1021/acs.langmuir.9b03083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In general, aggregation-prone organic molecules are prevented from self-aggregation in the presence of macrocyclic hosts like β-cyclodextrin because of their preference for the formation of inclusion complex with guest molecules. On the contrary, sulfate-laced β-cyclodextrin has been recently reported to induce the aggregation of some of the non-aggregation-prone organic dyes, which have been subsequently utilized for biosensing applications. In the present contribution, we report the interaction of a cationic organic probe molecule, 1-pyrene methyl amine (PMA), which belongs to one of the most useful families of organic fluorescent probes, that is, pyrene, with a sulfated β-cyclodextrin derivative (SCD). Interaction of a cationic probe with a β-cyclodextrin derivative was studied using a variety of photophysical methods such as ground-state absorption, steady-state emission, and time-resolved emission techniques. Detailed photophysical investigations have revealed that SCD induces the ground-state association of PMA molecules. This SCD-induced aggregation of PMA molecules has been attributed to the charge neutralization of the cationic probe by negatively charged sulfate groups, which subsequently lead to their association because of the close proximity on the rims of cyclodextrin. This monomer-dimer equilibrium of the PMA-SCD system is found to be extremely responsive to external chemical stimuli like temperature, pH, ionic strength of the medium, and organic solvent (dimethyl sulfoxide), which projects them as potential platforms for various sensing applications including bioanalytes. The supramolecular assembly has been demonstrated to sense arginine.
Collapse
Affiliation(s)
- Gaurav Singh
- UM-DAE Centre for Excellence in Basic Sciences , University of Mumbai , Kalina, Santacruz (E), Mumbai 400 098 , India
| | - Prabhat K Singh
- Radiation & Photochemistry Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
- Homi Bhabha National Institute , Training School Complex, Anushaktinagar, Mumbai 400 094 , India
| |
Collapse
|
11
|
Cytotoxicity and in vitro evaluation of whey protein-based hydrogels for diabetes mellitus treatment. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-0185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The size-effect, fabrication methods and biomedical applications of heparin-based and heparin-inspired hydrogels are reviewed.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haifeng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yihui Qian
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaoling Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
13
|
Amine-functionalized, porous silica-coated NaYF 4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:86-95. [PMID: 30606601 DOI: 10.1016/j.msec.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/24/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Upconversion nanoparticles (UCNP) with unique multi-photon excitation photo-luminescence properties have been extensively explored as novel contrast agents for low-background biomedical imaging. There is an increasing interest in employing UCNPs as carrier for drug delivery as these offers a unique opportunity to combine therapy and diagnostics in one platform (theranostics). In the present work, we report microwave-assisted synthesis of hexagonal NaYF4:Yb/Er UCNPs coated with porous silica and functionalized with amine (UCNP@mSiO2). The UCNP@mSiO2 were investigated for controlled delivery of a chemotherapeutic agent, doxorubicin (DOX, hydrophilic), and a chemosensitizing agent, curcumin (CCM, hydrophobic). The drug loading was relatively higher for DOX (17.4%), in comparison to CCM (8.1%). The cumulative drug release from DOX-loaded UCNP@mSiO2 were 30 and 41% at physiological (7.4) and tumoral (6.4) pH, following a pseudo Fickian release pattern, whereas the release from CCM-loaded UCNP@mSiO2 were 27 and 50% at pH 7.4 and 6.4, following a non-Fickian and pseudo-Fickian release patterns, respectively. Both DOX and CCM-loaded UCNP@mSiO2 exhibited pH-dependent controlled drug delivery but the effect was more pronounced for CCM, the hydrophobic chemosensitizer. Cell viability assay using HeLa cells showed that DOX-loaded UCNP@mSiO2 inhibit cell growth in a dose-dependent manner, similar to free DOX, but the cell inhibition activity of free CCM was lower than CCM passively entrapped in UCNP@mSiO2. Confocal microscopy studies revealed cell uptake of both the drug by HeLa cells. Thus, UCNP@mSiO2 exhibited the unique capability to deliver hydrophilic and hydrophobic drugs, individually. UCNP@mSiO2 carrier, equipped with theranostic capabilities, may potentially be used for pH-responsive release of chemotherapeutic agents in cancer environment.
Collapse
|
14
|
Wu T, Liao W, Wang W, Zhou J, Tan W, Xiang W, Zhang J, Guo L, Chen T, Ma D, Yu W, Cai X. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr Polym 2018; 197:403-413. [DOI: 10.1016/j.carbpol.2018.06.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
|
15
|
Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 2018; 127:185-207. [PMID: 29128515 DOI: 10.1016/j.addr.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Michael A VandenBerg
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
16
|
Liu T, Wu X, Wang Y, Zhang T, Wu T, Liu F, Wang W, Jiang G, Xie M. Folate-targeted star-shaped cationic copolymer co-delivering docetaxel and MMP-9 siRNA for nasopharyngeal carcinoma therapy. Oncotarget 2018; 7:42017-42030. [PMID: 27259274 PMCID: PMC5173113 DOI: 10.18632/oncotarget.9771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/16/2016] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of drug and gene has become the primary strategy in cancer therapy. Based on our previous work, to co-deliver docetaxel (DOC) and MMP-9 siRNA more efficiently for HNE-1 nasopharyngeal carcinoma therapy, a folate-modified star-shaped copolymer (FA-CD-PLLD) consisting of β-cyclodextrin (CD) and poly(L-lysine) dendron (PLLD) was synthesized, and then used for DOC and MMP-9 co-delivery. Different from commonly used amphiphilic copolymers micelles, the obtained CD derivative could be used directly for the combinatorial delivery of nucleic acid and hydrophobic DOC without a complicated micellization process. In vitro and in vivo assays are carried out to confirm the effectiveness of the target strategy and combined treatment. It was found that the conjugation of CD-PLLD with FA could enhance the DOC/MMP-9 delivery effect obviously, inducing a more significant apoptosis and decreasing invasive capacity of HEN-1 cells. In vivo assays showed that FA-CD-PLLD/DOC/MMP-9 could inhibit HNE-1 tumor growth and decrease PCNA expression effectively, indicating a promising strategy for nasopharyngeal carcinoma therapy. Moreover, the in vivo distribution of DOC and MMP-9, blood compatibility and toxicity are also explored.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xidong Wu
- Department of Pharmacology, Jiangxi Institute of Materia Medica, Nanchang, 330029, China
| | - Yigang Wang
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Zhang
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, China
| | - Fang Liu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wansong Wang
- Medical College of Nanchang University, Nanchang, 330038, China
| | - Gang Jiang
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Minqiang Xie
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
17
|
El-Sherbiny IM, Khalil IA, Ali IH. Updates on Stimuli-Responsive Polymers: Synthesis Approaches and Features. POLYMER GELS 2018. [DOI: 10.1007/978-981-10-6086-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Liu G, Yuan Q, Hollett G, Zhao W, Kang Y, Wu J. Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym Chem 2018. [DOI: 10.1039/c8py00730f] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD-based host–guest supramolecular hydrogels and their potential biomedical application.
Collapse
Affiliation(s)
- Guiting Liu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Qijuan Yuan
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Geoffrey Hollett
- Materials Science and Engineering Program
- University of California San Diego
- La Jolla
- USA
| | - Wei Zhao
- Laboratory for Stem Cells and Tissue Engineering
- Ministry of Education
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
19
|
Rather AM, Shome A, Bhunia BK, Panuganti A, Mandal BB, Manna U. Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material. J Mater Chem B 2018; 6:7692-7702. [DOI: 10.1039/c8tb02406e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Simultaneous and extended (over 6 months) release of two different bioactive small molecules from single polymeric material was successfully achieved through strategic use of metastable trapped air for the first time.
Collapse
Affiliation(s)
- Adil M. Rather
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| | - Arpita Shome
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| | - Bibhas K. Bhunia
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| | - Aparna Panuganti
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| | - Biman B. Mandal
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| | - Uttam Manna
- Department of Chemistry
- Indian Institute of Technology-Guwahati
- Kamrup
- India
| |
Collapse
|
20
|
Awasthi AA, Singh PK. Stimulus-Responsive Supramolecular Aggregate Assembly of Auramine O Templated by Sulfated Cyclodextrin. J Phys Chem B 2017; 121:6208-6219. [DOI: 10.1021/acs.jpcb.7b03592] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankur A. Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
21
|
Higashi T, Ohshita N, Hirotsu T, Yamashita Y, Motoyama K, Koyama S, Iibuchi R, Uchida T, Mieda S, Handa K, Kimoto T, Arima H. Stabilizing Effects for Antibody Formulations and Safety Profiles of Cyclodextrin Polypseudorotaxane Hydrogels. J Pharm Sci 2017; 106:1266-1274. [DOI: 10.1016/j.xphs.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
|
22
|
Wang J, He H, Cooper R, Yang H. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10494-10503. [PMID: 28263553 PMCID: PMC5818279 DOI: 10.1021/acsami.7b00221] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, β-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Remy Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
23
|
Sang YL, Xin JF, Gao RM. Syntheses, crystal structures, and properties of two supramolecules based on methoxyphenyl imidazole dicarboxylates. RUSS J COORD CHEM+ 2016. [DOI: 10.1134/s1070328416050079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhang Y, Cai J, Li C, Wei J, Liu Z, Xue W. Effects of thermosensitive poly(N-isopropylacrylamide) on blood coagulation. J Mater Chem B 2016; 4:3733-3749. [PMID: 32263312 DOI: 10.1039/c6tb00823b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermosensitive poly(N-isopropylacrylamide) (PNIPAM), hydrophilic below its lower critical solution temperature (LCST) of 32 °C and hydrophobic above it, has been widely used as a drug and gene delivery system with intelligent temperature-responsivity. In this work, we studied the in vitro and in vivo effects of PNIPAM on blood coagulation function, and further investigated the interactions of PNIPAM with coagulation-related blood components at cellular and molecular levels. Overall, PNIPAM demonstrated anti-coagulant activity in vitro and in vivo. Specifically, PNIPAM displayed cell membrane activity and caused red blood cell (RBC) aggregation at higher concentrations, but did not impair the membrane integrity of RBCs. PNIPAM inhibited platelet aggregation selectively through the arachidonic acid pathway. PNIPAM also disturbed the structure and conformation of fibrinogen. By contrast, PNIPAM did not affect the activity of the clotting factors in vitro but inhibited the activity of the clotting factors in vivo. The interaction of PNIPAM with plasma proteins was confirmed by a plasma protein absorption study with proteomics analysis. These findings provide key information on the hemocompatibility evaluation and antithrombotic applications of PNIPAM.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | | | | | | | | | | |
Collapse
|
25
|
Zhou X, Lin A, Yuan X, Li H, Ma D, Xue W. Glucose-sensitive and blood-compatible nanogels for insulin controlled release. J Appl Polym Sci 2016. [DOI: 10.1002/app.43504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes; Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Anhua Lin
- Department of Endocrinology; Jiangxi Provincial People's Hospital; Nanchang 330006 China
| | - Xinxin Yuan
- Department of Endocrinology; Jiangxi Provincial People's Hospital; Nanchang 330006 China
| | - Hui Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes; Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes; Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes; Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Institute of Life and Health Engineering Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes; Jinan University; Guangzhou 510632 China
| |
Collapse
|
26
|
Choudhury P, Mandal D, Brahmachari S, Das PK. Hydrophobic End-Modulated Amino-Acid-Based Neutral Hydrogelators: Structure-Specific Inclusion of Carbon Nanomaterials. Chemistry 2016; 22:5160-72. [DOI: 10.1002/chem.201504888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Pritam Choudhury
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Deep Mandal
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Sayanti Brahmachari
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Prasanta Kumar Das
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| |
Collapse
|
27
|
Feng W, Zhou W, Dai Z, Yasin A, Yang H. Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J Mater Chem B 2016; 4:1924-1931. [DOI: 10.1039/c5tb02737c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a highly compressible polypseudorotaxane supramolecular hydrogel with antifatigue properties that can bear 80% compressive strain without rupture.
Collapse
Affiliation(s)
- Wei Feng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wanfu Zhou
- Oilfield Production Technology Institute
- Daqing Oilfield Co. Ltd
- Daqing
- P. R. China
| | - Zhaohe Dai
- Institute of Mechanics
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Akram Yasin
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
28
|
Hu J, Zhang M, He J, Ni P. Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-)3 and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra07420k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel acid-cleavable and injectable supramolecular hydrogels based on inclusion complexes between the acid-cleavable star copolymer (mPEG-a-PCL-a-)3 and α-CD were prepared, and used as controlled drug delivery depots.
Collapse
Affiliation(s)
- Jian Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| |
Collapse
|
29
|
Ghorbani-Choghamarani A, Taherinia Z. Synthesis of peptide nanofibers decorated with palladium nanoparticles and its application as an efficient catalyst for the synthesis of sulfides via reaction of aryl halides with thiourea or 2-mercaptobenzothiazole. RSC Adv 2016. [DOI: 10.1039/c6ra02264b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work supported Pd nanoparticles on a peptide nanofiber (PdNP–PNF) have been preparedviafabrication of self-assembled woven nanofiber from peptide, subsequently immobilization of palladium nanoparticles on this nanostructural compound.
Collapse
|
30
|
Peng Z, Yang Y, Luo J, Nie C, Ma L, Cheng C, Zhao C. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomater Sci 2016; 4:1392-401. [DOI: 10.1039/c6bm00328a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients.
Collapse
Affiliation(s)
- Zihang Peng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ye Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiyue Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
31
|
Higashi T, Tajima A, Ohshita N, Hirotsu T, Hashim IIA, Motoyama K, Koyama S, Iibuchi R, Mieda S, Handa K, Kimoto T, Arima H. Design and Evaluation of the Highly Concentrated Human IgG Formulation Using Cyclodextrin Polypseudorotaxane Hydrogels. AAPS PharmSciTech 2015; 16:1290-8. [PMID: 25776984 DOI: 10.1208/s12249-015-0309-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
To achieve the potent therapeutic effects of human immunoglobulin G (IgG), highly concentrated formulations are required. However, the stabilization for highly concentrated human IgG is laborious work. In the present study, to investigate the potentials of polypseudorotaxane (PPRX) hydrogels consisting of polyethylene glycol (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as pharmaceutical materials for highly concentrated human IgG, we designed the PPRX hydrogels including human IgG and evaluated their pharmaceutical properties. The α- and γ-CyDs formed PPRX hydrogels with PEG (M.W. 20,000) even in the presence of highly concentrated human IgG (>100 mg/mL). According to the results of (1)H-NMR, powder X-ray diffraction, and Raman microscopy, the formation of human IgG/CyD PPRX hydrogels was based on physical cross-linking arising from their columnar structures. The release profiles of human IgG from the hydrogels were in accordance with the non-Fickian diffusion model. Importantly, the stabilities of human IgG included into the hydrogels against thermal and shaking stresses were markedly improved. These findings suggest that PEG/CyD PPRX hydrogels are useful to prepare the formulation for highly concentrated human IgG.
Collapse
|
32
|
Nguyen QV, Huynh DP, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Chen T, Li Q, Guo L, Yu L, Li Z, Guo H, Li H, Zhao M, Chen L, Chen X, Zhong Q, Zhou L, Wu T. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:659-65. [PMID: 26478357 DOI: 10.1016/j.msec.2015.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field.
Collapse
Affiliation(s)
- Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Qiang Li
- Department of General Surgery of the First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Lina Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong 510120, PR China
| | - Li Yu
- Light Industry and Food Science, South China University of Technology, Guangzhou 510641, PR China
| | - Zhenyan Li
- Department of Microbiology and Immunology, Medical College of Jinan University, Guangzhou 510632, PR China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Haicheng Li
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Meigui Zhao
- Bao'an Chronic Diseases Prevention and Cure Hospital, Shenzhen 518102, PR China
| | - Liang Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Qiu Zhong
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, PR China; Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China.
| | - Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, PR China.
| |
Collapse
|
34
|
|
35
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
36
|
Cai X, Zhang B, Liang Y, Zhang J, Yan Y, Chen X, Wu Z, Liu H, Wen S, Tan S, Wu T. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloids Surf B Biointerfaces 2015; 132:281-9. [DOI: 10.1016/j.colsurfb.2015.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022]
|
37
|
Injectable supramolecular hydrogels via inclusion complexation of mPEG-grafted copolyglutamate with α-cyclodextrin. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1640-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Rasale DB, Das AK. Chemical reactions directed Peptide self-assembly. Int J Mol Sci 2015; 16:10797-820. [PMID: 25984603 PMCID: PMC4463676 DOI: 10.3390/ijms160510797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/12/2023] Open
Abstract
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Collapse
Affiliation(s)
- Dnyaneshwar B Rasale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India.
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India.
| |
Collapse
|
39
|
MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:294-9. [DOI: 10.1016/j.msec.2015.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
|
40
|
Li F, He J, Zhang M, Tam KC, Ni P. Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra06156c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fabrication of in situ forming and acid-labile prodrug-based supramolecular hydrogels with adjustable gelation time for injectable drug delivery carriers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Kam Chiu Tam
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
41
|
He C, Shi ZQ, Ma L, Cheng C, Nie CX, Zhou M, Zhao CS. Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. J Mater Chem B 2015; 3:592-602. [DOI: 10.1039/c4tb01806k] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired from the chemical and biological benefits of heparinized hydrogels, this study presented the substituted hemocompatible design of graphene oxide based heparin-mimicking polymeric hydrogels for versatile biomedical applications.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
42
|
Zhang W, Zhou X, Liu T, Ma D, Xue W. Supramolecular hydrogels co-loaded with camptothecin and doxorubicin for sustainedly synergistic tumor therapy. J Mater Chem B 2015; 3:2127-2136. [DOI: 10.1039/c4tb01971g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A supramolecular hydrogel was prepared to encapsulate and release both camptothecin and doxorubicin in a controlled manner for sustainedly synergistic tumor therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoyan Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Tao Liu
- Department of Otolaryngology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
43
|
Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16103c] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review describes hydrogels and their classifications along with the synthesis and properties of biopolymer-dextrin based crosslinked hydrogels towards potential application in controlled drug delivery.
Collapse
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|
44
|
Rossow T, Seiffert S. Supramolecular Polymer Networks: Preparation, Properties, and Potential. SUPRAMOLECULAR POLYMER NETWORKS AND GELS 2015. [DOI: 10.1007/978-3-319-15404-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Wu T, Zhang B, Liang Y, Liu T, Bu J, Lin L, Wu Z, Liu H, Wen S, Tan S, Cai X. Heparin-modified graphene oxide loading anti-cancer drug and growth factor with heat stability, long-term release property and lower cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c5ra14203b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heparin-modified graphene oxide was prepared as the carrier of anti-cancer drugs and growth factor with long-term release property, reduced cytotoxicity and improved heat stability.
Collapse
|
46
|
Rasale DB, Biswas S, Konda M, Das AK. Exploring thermodynamically downhill nanostructured peptide libraries: from structural to morphological insight. RSC Adv 2015. [DOI: 10.1039/c4ra09490e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocatalytic evolution of thermodynamically downhill nanostructured peptide libraries in hydrogel states are envisaged.
Collapse
Affiliation(s)
| | - Sagar Biswas
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Maruthi Konda
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
47
|
Li J, Li H, Yang X, Luo P, Wu Z, Zhang X. The supramolecular hydrogel based on hyperbranched polyglycerol and dextran as a scaffold for living cells and drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra14959b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel supramolecular hydrogel AD-g-HPG/CD-g-Dex based on host–guest interaction as a scaffold for cell proliferation and drug delivery.
Collapse
Affiliation(s)
- Jing Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
- The Key Laboratory of Hormones and Development (Ministry of Health)
- Metabolic Diseases Hospital & Tianjin Institute of Endocrinology
- Tianjin Medical University
- Tianjin 300070
| | - Huimin Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
- The Key Laboratory of Hormones and Development (Ministry of Health)
- Metabolic Diseases Hospital & Tianjin Institute of Endocrinology
- Tianjin Medical University
- Tianjin 300070
| | - Xiaoyuan Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
- The Key Laboratory of Hormones and Development (Ministry of Health)
- Metabolic Diseases Hospital & Tianjin Institute of Endocrinology
- Tianjin Medical University
- Tianjin 300070
| | - Pingyan Luo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
- The Key Laboratory of Hormones and Development (Ministry of Health)
- Metabolic Diseases Hospital & Tianjin Institute of Endocrinology
- Tianjin Medical University
- Tianjin 300070
| | - Zhongming Wu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
- The Key Laboratory of Hormones and Development (Ministry of Health)
- Metabolic Diseases Hospital & Tianjin Institute of Endocrinology
- Tianjin Medical University
- Tianjin 300070
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
48
|
Yu M, Pan L, Sun L, Li J, Shang J, Zhang S, Liu D, Li W. Supramolecular assemblies constructed from β-cyclodextrin-modified montmorillonite nanosheets as carriers for 5-fluorouracil. J Mater Chem B 2015; 3:9043-9052. [DOI: 10.1039/c5tb01513h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Fluorouracil-loaded supramolecular assemblies formed from self-assembling β-cyclodextrin modified montmorillonite nanosheets exhibit better antitumor activity and lower cytotoxicity in vitro.
Collapse
Affiliation(s)
- Mingan Yu
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lijun Pan
- Pharmaceutical Teaching Laboratory
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lili Sun
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Jing Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Jingchuan Shang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Shurong Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Duqiang Liu
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Wei Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| |
Collapse
|
49
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [DOI: 10.1021/cr500392w] [Citation(s) in RCA: 792] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
50
|
Li W, Sun L, Pan L, Lan Z, Jiang T, Yang X, Luo J, Li R, Tan L, Zhang S, Yu M. Dendrimer-like assemblies based on organoclays as multi-host system for sustained drug delivery. Eur J Pharm Biopharm 2014; 88:706-17. [PMID: 25308929 DOI: 10.1016/j.ejpb.2014.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022]
Abstract
Chemical modification of nanoclay will ensure further progress on these materials. In this work, we show that montmorillonite (MTM) nanosheets can be modified with β-cyclodextrin (CD) via a nucleophilic substitution reaction between mono-6-(p-toluenesulfonyl)-6-deoxy-β-CD and an amino group of 3-aminopropyltriethoxysilane (APTES)-functionalized MTM. The resulting MTM-APTES-CD can be further self-assembled into dendrimer-like assemblies, exhibit a well-dispersed property even in Dulbecco's phosphate-buffered saline and do not aggregate for a period of at least 20days. The structure, morphology and assembly mechanism are systematically studied by (29)Si MAS NMR, FT-IR, (1)H NMR, SEM, FE-TEM, DLS and AFM, and the change in assemblies during the drug release is monitored using FE-TEM images. MTT assays indicate that the assemblies only have low cytotoxicity, while CLSM and TEM observations reveal that the assemblies can easily penetrate cultured human endothelial cells. When clopidogrel is used as a guest molecule, the assemblies show not only much higher loading capacities compared to MTM and other containing β-CD assemblies or nanoparticles, but also a sustained release of clopidogrel up to 30days. This is attributed to the fact that the guest molecule is both supramolecularly complexed within the dendritic scaffold and intercalated into CD and MTM hosts. Host-guest systems between assemblies and various guests hold promising applications in drug delivery system and in the biomedical fields.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, PR China
| | - Lili Sun
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Lijun Pan
- Pharmaceutical Teaching Laboratory, Chongqing Medical University, Chongqing, PR China
| | - Zuopin Lan
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Tao Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xiaolan Yang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jianchun Luo
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ronghua Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Liqing Tan
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mingan Yu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|