1
|
Ferrer PR, Sakiyama-Elbert S. Acrylic Acid Modified Poly-ethylene Glycol Microparticles for Affinity-Based release of Insulin-Like Growth Factor-1 in Neural Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614803. [PMID: 39386667 PMCID: PMC11463357 DOI: 10.1101/2024.09.25.614803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sustained release of bioactive molecules via affinity-based interactions presents a promising approach for controlled delivery of growth factors. Insulin-like growth factor-1 (IGF-1) has gained increased attention due to its ability to promote axonal growth in the central nervous system. In this work, we aimed to evaluate the effect of IGF-1 delivery from polyethylene-glycol diacrylate (PEG-DA) microparticles using affinity-based sustained release on neurons. We developed PEG-DA-based microparticles with varying levels of acrylic acid (AA) as a comonomer to tune their overall charge. The particles were synthesized via precipitation polymerization under UV light, yielding microparticles (MPs) with a relatively low polydispersity index. IGF-1 was incubated with the PEG-DA particles overnight, and formulations with a higher AA content resulted in higher loading efficiency and slower release rates over 4 weeks, suggesting the presence of binding interactions between the positively charged IGF-1 and negatively charged particles containing AA. The released IGF-1 was tested in dorsal root ganglion (DRG) neurite outgrowth assay and found to retain its biological activity for up to two weeks after encapsulation. Furthermore, the trophic effect of IGF-1 was tested with stem cell-derived V2a interneurons and found to have a synergistic effect when combined with neurotrophin-3 (NT3). To assess the potential of a combinatorial approach, IGF-1-releasing MPs were encapsulated within a hyaluronic acid (HA) hydrogel and showed promise as a dual delivery system. Overall, the PEG-DA MPs developed herein deliver bioactive IGF-1 for a period of weeks and hold potential to enable axonal growth of injured neurons via sustained release.
Collapse
|
2
|
Chen M, Aluunmani R, Bolognesi G, Vladisavljević GT. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules 2022; 27:molecules27134013. [PMID: 35807255 PMCID: PMC9268728 DOI: 10.3390/molecules27134013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) microgels with tuneable size and porosity find applications as extracellular matrix mimics for tissue-engineering scaffolds, biosensors, and drug carriers. Monodispersed PEGDA microgels were produced by modular droplet microfluidics using the dispersed phase with 49–99 wt% PEGDA, 1 wt% Darocur 2959, and 0–50 wt% water, while the continuous phase was 3.5 wt% silicone-based surfactant dissolved in silicone oil. Pure PEGDA droplets were fully cured within 60 s at the UV light intensity of 75 mW/cm2. The droplets with higher water content required more time for curing. Due to oxygen inhibition, the polymerisation started in the droplet centre and advanced towards the edge, leading to a temporary solid core/liquid shell morphology, confirmed by tracking the Brownian motion of fluorescent latex nanoparticles within a droplet. A volumetric shrinkage during polymerisation was 1–4% for pure PEGDA droplets and 20–32% for the droplets containing 10–40 wt% water. The particle volume increased by 36–50% after swelling in deionised water. The surface smoothness and sphericity of the particles decreased with increasing water content in the dispersed phase. The porosity of swollen particles was controlled from 29.7% to 41.6% by changing the water content in the dispersed phase from 10 wt% to 40 wt%.
Collapse
|
3
|
Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Adv Healthc Mater 2021; 10:e2002221. [PMID: 33951341 PMCID: PMC11469279 DOI: 10.1002/adhm.202002221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.
Collapse
Affiliation(s)
- Susan Babu
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
| | - Filippo Albertino
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | | | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)Center for Biohybrid Medical Systems (CMBS)University Hospital RWTH AachenForckenbeckstrasse 55Aachen52074Germany
| |
Collapse
|
4
|
|
5
|
Zhou W, Stukel J, AlNiemi A, Willits RK. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts. ACTA ACUST UNITED AC 2018; 13:055007. [PMID: 29869613 DOI: 10.1088/1748-605x/aaca57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For improved cell integration, tissue engineering scaffolds must be designed to degrade over time. Typically, the chemistry of scaffolds is modified to alter the degradation profile by using different hydrolytic or enzymatic sites within a material. It is more challenging, however, to fabricate self-assembling, injectable scaffolds that provide tunable degradation. Our laboratory has developed microgel-based scaffolds, where individual micron-sized hydrogels are crosslinked to make larger bulk scaffolds. The size of the individual microgels permits injection, and the microgels then self-assemble into a bulk structure and crosslink. We hypothesized that the microgel-based scaffolds can be used to tune degradability by mixing degradable and non-degradable microgels at various ratios within a self-assembling scaffold. Therefore, two types of microgels were fabricated, those composed of polyethylene glycol (PEG) and those composed of a PEG-lactic acid. Importantly, the microgels were similar in size and swelling and had a low polydispersity index due to their method of fabrication. Microgels were then mixed in four ratios to fabricate scaffolds and study how changes in scaffold composition altered the 3D proliferation and morphology of human dermal fibroblasts. Microgel-based scaffolds formed with 100% degradable microgels lost >60% of their mass over the 14 days of the study. Human dermal fibroblasts were mixed within the 3D scaffolds at the time of assembly and all scaffolds had cells with high viability and typical morphology. The scaffolds that had 25%-50% degradable microgels showed statistically increased proliferation of fibroblasts after 1 and 2 weeks over non-degradable scaffolds and those scaffolds with 75% or 100% degradable microgels. Overall, this work demonstrates the development and use of a tunable, self-assembled, microgel-based scaffold to investigate the effects of degradability on cellular response.
Collapse
Affiliation(s)
- Wenda Zhou
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325-0302, United States of America
| | | | | | | |
Collapse
|
6
|
Jiang X, Li X, Zhu X, Kong XZ. Preparation of Highly Uniform Polyurea Microspheres through Precipitation Polymerization and Their Characterization. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xubao Jiang
- College of Chemistry and
Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiumei Li
- College of Chemistry and
Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and
Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and
Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
7
|
Methods for Generating Hydrogel Particles for Protein Delivery. Ann Biomed Eng 2016; 44:1946-58. [PMID: 27160672 DOI: 10.1007/s10439-016-1637-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials.
Collapse
|
8
|
Zhou W, Stukel JM, Cebull HL, Willits RK. Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation. Macromol Biosci 2016; 16:535-44. [PMID: 26726886 DOI: 10.1002/mabi.201500336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/30/2015] [Indexed: 12/14/2022]
Abstract
2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel-based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol-ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS). By varying the concentration of VS, scaffold stiffness ranges from 0.13 to 0.76 kPa. Cell morphology in all groups demonstrates that cells are able to spread and interact with the scaffold through day 5. Although the viability in all groups is high, proliferation of Schwann cells within the scaffold of G* = 0.53 kPa is significantly higher than other groups. This result is ≈ 5× lower than previously reported optimal stiffnesses on 2D surfaces, demonstrating the need for correlation of 3D cell response to mechanical modulus. As proliferation is the first step in Schwann cell integration into peripheral nerve conduits, these scaffolds demonstrate that the stiffness is a critical parameter to optimizing the regenerative process.
Collapse
Affiliation(s)
- Wenda Zhou
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | - Jessica M Stukel
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | - Hannah L Cebull
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | | |
Collapse
|
9
|
Chen J, Zhao C, Huang H, Wang M, Ge X. Highly crosslinked poly(ethyleneglycol dimethacrylate)-based microspheres via solvothermal precipitation polymerization in alcohol–water system. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
|
11
|
Secret E, Kelly SJ, Crannell KE, Andrew JS. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10313-21. [PMID: 24926532 DOI: 10.1021/am501754s] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Poly(ethylene glycol) based hydrogel microparticles were developed for pulmonary drug delivery. Hydrogels are particularly attractive for pulmonary delivery because they can be size engineered for delivery into the bronchi, yet also swell upon reaching their destination to avoid uptake and clearance by alveolar macrophages. To develop enzyme-responsive hydrogel microparticles for pulmonary delivery a new synthesis method based on a solution polymerization was developed. This method produces spherical poly(ethylene glycol) (PEG) microparticles from high molecular weight poly(ethylene glycol) diacrylate (PEGDA)-based precursors that incorporate peptides in the polymer chain. Specifically, we have synthesized hydrogel microparticles that degrade in response to matrix metalloproteinases that are overexpressed in pulmonary diseases. Small hydrogel microparticles with sizes suitable for lung delivery by inhalation were obtained from solid precursors when PEGDA was dissolved in water at a high concentration. The average diameter of the particles was between 2.8 and 4 μm, depending on the molecular weight of the precursor polymer used and its concentration in water. The relation between the physical properties of the particles and their enzymatic degradation is also reported, where an increased mesh size corresponds to increased degradation.
Collapse
Affiliation(s)
- Emilie Secret
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | | | | | | |
Collapse
|
12
|
Stukel J, Thompson S, Simon L, Willits R. Polyethlyene glycol microgels to deliver bioactive nerve growth factor. J Biomed Mater Res A 2014; 103:604-13. [DOI: 10.1002/jbm.a.35209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/31/2014] [Accepted: 04/22/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Jessica Stukel
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325-0302
| | - Susan Thompson
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325-0302
| | - Laurent Simon
- Department of Chemical; Biological; and Pharmaceutical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102
| | - Rebecca Willits
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325-0302
| |
Collapse
|
13
|
João CFC, Vasconcelos JM, Silva JC, Borges JP. An overview of inverted colloidal crystal systems for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:437-54. [PMID: 24328724 DOI: 10.1089/ten.teb.2013.0402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos Filipe C João
- 1 CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa , Caparica, Portugal
| | | | | | | |
Collapse
|
14
|
Thompson S, Stukel J, AlNiemi A, Willits RK. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants. J Vis Exp 2013:e51002. [PMID: 24378988 DOI: 10.3791/51002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Susan Thompson
- Department of Biomedical Engineering, The University of Akron
| | | | | | | |
Collapse
|
15
|
Sultana S, Talegaonkar S, Singh D, Ahmad R, Manukonda V, Bhatnagar A, Ahmad FJ. An approach for lacidipine loaded gastroretentive formulation prepared by different methods for gastroparesis in diabetic patients. Saudi Pharm J 2013; 21:293-304. [PMID: 23960846 DOI: 10.1016/j.jsps.2013.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
The present work deals with various attempts to prepare a gastroretentive formulation of lacidipine for treating gastroparesis. High density sucrose beads were modified by coating with certain polymers, but unfortunately sustained release could not be achieved. Granules were prepared by wet granulation technology using different combinations of polymers and a release of the drug was observed. The method failed to release the drug as per desired specifications. Polymeric coating followed by wet granulation was thought to be a better process to sustain the dissolution rate. The release rate can be modified by the incorporation of different polymeric coatings, but the mucoadhesive potential of granules was only 4.23% which might be due to its large size and the presence of other ingredients. Further, the lacidipine loaded microparticles were prepared by different methods such as compression, ionic gelation with TPP, ionic gelation with TPP and glutaraldehyde, spray drying and coacervation techniques. The formulations were evaluated for average particle size, surface morphology, entrapment efficiency, % yield and mucoadhesive potential. The microparticles prepared by compression method using HPMC K4M and SCMC as mucoadhesive polymers and BaSO4 as high density diluent showed poor bioadhesion (8.3%) and poor release characteristics (100% in 120 min). Ionic gelation with tripolyphosphate yielded microspheres with poor mechanical strength. In order to improve its mechanical strength, TPP ionic gelation was combined with step-wise cross-linking with glutaraldehyde. The additional solidification step to improve mechanical strength left this procedure tedious, time consuming and cytotoxic. Spray drying method gave a very low yield with 46.67% bioadhesion. The method using CaCl2 for ionotropic gelation showed the best results with regard to physical characteristics (well formed discrete, spherical surface microcapsule), particle size (88.57 ± 0.51), in vitro bioadhesion (67.33%), yield (>85%) and loading (>70%).
Collapse
Affiliation(s)
- Shaheen Sultana
- Jamia Hamdard, Faculty of Pharmacy, Department of Pharmaceutics, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Nguyen PK, Snyder CG, Shields JD, Smith AW, Elbert DL. Clickable Poly(ethylene glycol)-Microsphere-Based Cell Scaffolds. MACROMOL CHEM PHYS 2013; 214:948-956. [PMID: 24052690 DOI: 10.1002/macp.201300023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clickable poly(ethylene glycol) (PEG) derivatives are used with two sequential aqueous two-phase systems to produce microsphere-based scaffolds for cell encapsulation. In the first step, sodium sulfate causes phase separation of the clickable PEG precursors and is followed by rapid geleation to form microspheres in the absence of organic solvent or surfactant. The microspheres are washed and then deswollen in dextran solutions in the presence of cells, producing tightly packed scaffolds that can be easily handled while also maintaining porosity. Endothelial cells included during microsphere scaffold formation show high viability. The clickable PEG-microsphere-based cell scaffolds open up new avenues for manipulating scaffold architecture as compared with simple bulk hydrogels.
Collapse
Affiliation(s)
- Peter K Nguyen
- Department of Biomedical Engineering, Campus Box 1907, One Brookings Dr., Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
17
|
Yixue S, Bin C, Yuan G, Chaoxi W, Lingmin Z, Peng C, Xiaoying W, Shunqing T. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness. Carbohydr Polym 2013; 92:2245-51. [DOI: 10.1016/j.carbpol.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
18
|
Xiao Q, Ji Y, Xiao Z, Zhang Y, Lin H, Wang Q. Novel multifunctional NaYF4:Er3+,Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem Commun (Camb) 2013; 49:1527-9. [DOI: 10.1039/c2cc37620b] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Scott RA, Elbert DL, Willits RK. Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells. Acta Biomater 2011; 7:3841-9. [PMID: 21787889 DOI: 10.1016/j.actbio.2011.06.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 02/03/2023]
Abstract
This research focused on developing a modular poly(ethylene glycol) (PEG) scaffold, assembled from PEG microgels and collagen I, to provide an environment to decouple the chemical and mechanical cues within a three-dimensional scaffold. We first characterized the microgel fabrication process, examining the size, polydispersity, swelling ratio, mesh size and storage modulus of the polymer particles. The resulting microgels had a low polydispersity index, PDI=1.08, and a diameter of ~1.6 μm. The mesh size of the microgels, calculated from the swelling ratio, was 47.53 Å. Modular hydrogels (modugels) were then formed by compacting N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl group-activated microgels with PEG-4arm-amine and 0, 1, 10, or 100 μg ml(-1) collagen. The stiffness (G(∗)) of the modugels was not significantly altered with the addition of collagen, allowing for modification of the chemical environment independent from the mechanical properties of the scaffold. PC12 cell aggregation increased in modugels as collagen concentrations increased and cell viability in modugels was improved over bulk PEG hydrogels. Overall, these results indicate that further exploration of modular scaffolds formed from microgels could allow for a better understanding of the relationship between the chemical and mechanical properties and cellular behavior.
Collapse
|
20
|
Abstract
Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed.
Collapse
|
21
|
An Z, Qiu Q, Liu G. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem Commun (Camb) 2011; 47:12424-40. [DOI: 10.1039/c1cc13955j] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|