1
|
Obenauer ML, Dresel JA, Schweitzer M, Besenius P, Schmid F. Atomistic Molecular Dynamics Simulations of ABA-Type Polymer Peptide Conjugates: Insights into Supramolecular Structures and their Circular Dichroism Spectra. Macromol Rapid Commun 2024; 45:e2400149. [PMID: 38973657 DOI: 10.1002/marc.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Indexed: 07/09/2024]
Abstract
A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.
Collapse
Affiliation(s)
| | | | - Maren Schweitzer
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | | |
Collapse
|
2
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
3
|
Mahri S, Wilms T, Hagedorm P, Guichard MJ, Vanvarenberg K, Dumoulin M, Frijlink H, Vanbever R. Nebulization of PEGylated recombinant human deoxyribonuclease I using vibrating membrane nebulizers: A technical feasibility study. Eur J Pharm Sci 2023; 189:106522. [PMID: 37423579 DOI: 10.1016/j.ejps.2023.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human deoxyribonuclease I (rhDNase, Pulmozyme®) is the most frequently used mucolytic agent for the symptomatic treatment of cystic fibrosis (CF) lung disease. Conjugation of rhDNase to polyethylene glycol (PEG) has been shown to greatly prolong its residence time in the lungs and improve its therapeutic efficacy in mice. To present an added value over current rhDNase treatment, PEGylated rhDNase needs to be efficiently and less frequently administrated by aerosolization and possibly at higher concentrations than existing rhDNase. In this study, the effects of PEGylation on the thermodynamic stability of rhDNase was investigated using linear 20 kDa, linear 30 kDa and 2-armed 40 kDa PEGs. The suitability of PEG30-rhDNase to electrohydrodynamic atomization (electrospraying) as well as the feasibility of using two vibrating mesh nebulizers, the optimized eFlow® Technology nebulizer (eFlow) and Innospire Go, at varying protein concentrations were investigated. PEGylation was shown to destabilize rhDNase upon chemical-induced denaturation and ethanol exposure. Yet, PEG30-rhDNase was stable enough to withstand aerosolization stresses using the eFlow and Innospire Go nebulizers even at higher concentrations (5 mg of protein per ml) than conventional rhDNase formulation (1 mg/ml). High aerosol output (up to 1.5 ml per min) and excellent aerosol characteristics (up to 83% fine particle fraction) were achieved while preserving protein integrity and enzymatic activity. This work demonstrates the technical feasibility of PEG-rhDNase nebulization with advanced vibrating membrane nebulizers, encouraging further pharmaceutical and clinical developments of a long-acting PEGylated alternative to rhDNase for treating patients with CF.
Collapse
Affiliation(s)
- Sohaib Mahri
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Tobias Wilms
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Paul Hagedorm
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Marie-Julie Guichard
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Mireille Dumoulin
- University of Liège, Center for Protein Engineering, InBioS, Nanobodies to Explore Protein Structure and Functions, Liège, Belgium
| | - Henderik Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Rita Vanbever
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|
4
|
Jia Y, Fernandez A, Sampath J. PEGylation of Insulin and Lysozyme To Stabilize against Thermal Denaturation: A Molecular Dynamics Simulation Study. J Phys Chem B 2023; 127:6856-6866. [PMID: 37498538 DOI: 10.1021/acs.jpcb.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biologic drugs or "biologics" (proteins derived from living organisms) are one of the fastest-growing classes of FDA-approved therapeutics. These compounds are often fragile and require conjugation to polymers for stabilization, with many proteins too ephemeral for therapeutic use. During storage or administration, proteins tend to unravel and lose their secondary structure due to changes in solution temperature, pH, and other external stressors. To enhance their lifetime, protein drugs currently in the market are conjugated with polyethylene glycol (PEG), owing to its ability to increase the stability, solubility, and pharmacokinetics of protein drugs. Here, we perform all-atom molecular dynamics simulations to study the unfolding process of egg-white lysozyme and insulin at elevated temperatures. We test the validity of two force fields─CHARMM36 and Amber ff99SB-ILDN─in the unfolding process. By calculating global and local properties, we capture residues that deteriorate first─these are the "weak links" in the proteins. Next, we conjugate both proteins with PEG and find that PEG preserves the native structure of the proteins at elevated temperatures by blocking water molecules from entering the hydrophobic core, thereby causing the secondary structure to stabilize.
Collapse
Affiliation(s)
- Yinhao Jia
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Fernandez
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Moses K, Van Tassel PR. Polyelectrolyte Influence on Beta-Hairpin Peptide Stability: A Simulation Study. J Phys Chem B 2023; 127:359-370. [PMID: 36574611 DOI: 10.1021/acs.jpcb.2c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of proteins and charged macromolecules (polyelectrolytes) find important applications as pharmaceutical formulations, biocatalysts, and cell-contacting substrates. A key question is how the polymer component influences the structure and function of the protein. The present paper addresses the influence of charged polymers on the thermal stability of two model beta-hairpin-forming peptides through an all-atom, replica exchange molecular dynamics simulation. The (negatively charged) peptides consist of the terminal 16 amino acids of the B1 domain of Protein G (GB1) and a variant with three of the GB1 residues substituted with tryptophan (Tryptophan Zipper 4, or TZ4). A (cationic) lysine polymer is seen to thermally stabilize TZ4 and destabilize GB1, while a (also cationic) chitosan polymer slightly stabilizes GB1 but has essentially no effect on TZ4. Free energy profiles reveal folded and unfolded conformations to be separated by kinetic barriers generally acting in the direction of the thermodynamically favored state. Through application of an Ising-like statistical mechanical model, a mechanism is proposed based on competition between (indirect) entropic stabilization of folded versus unfolded states and (direct) competition for hydrogen-bonding and hydrophobic interactions. These findings have important implications to the design of polyelectrolyte-based materials for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Kevin Moses
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Paul R Van Tassel
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
6
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Savin DA, Harris M, Eddy MT. Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3. Angew Chem Int Ed Engl 2022; 61:e202203784. [PMID: 35922375 PMCID: PMC9529833 DOI: 10.1002/anie.202203784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 07/28/2023]
Abstract
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
Collapse
Affiliation(s)
- Amanda Pritzlaff
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ling Lin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Daniel A. Savin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Michael Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Liu X, Kouassi KGW, Vanbever R, Dumoulin M. Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin. Protein Sci 2022; 31:e4392. [PMID: 36040264 PMCID: PMC9375436 DOI: 10.1002/pro.4392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Conjugation to polyethylene glycol (PEG) is a widely used approach to improve the therapeutic value of proteins essentially by prolonging their body residence time. PEGylation may however induce changes in the structure and/or the stability of proteins and thus on their function(s). The effects of PEGylation on the thermodynamic stability can either be positive (stabilization), negative (destabilization), or neutral (no effect). Moreover, various factors such as the PEG length and PEGylation site can influence the consequences of PEGylation on the structure and stability of proteins. In this study, the effects of PEGylation on the structure, stability, and polymerization of alpha1-antitrypsin (AAT) were investigated, using PEGs with different lengths, different structures (linear or 2-armed) and different linking chemistries (via amine or thiol) at two distinct positions of the sequence. The results show that whatever the size, position, and structure of PEG chains, PEGylation (a) does not induce significant changes in AAT structure (either at the secondary or tertiary level); (b) does not alter the stability of the native protein upon both chemical- and heat-induced denaturation; and (c) does not prevent AAT to fully refold and recover its activity following chemical denaturation. However, the propensity of AAT to aggregate upon heat treatment was significantly decreased by PEGylation, although PEGylation did not prevent the irreversible inactivation of the enzyme. Moreover, conjugation to PEG, especially 2-armed 40 kDa PEG, greatly improved the proteolytic resistance of AAT. PEGylation of AAT could be a promising strategy to prolong its half-life after infusion in AAT-deficient patients and thereby decrease the frequency of infusions.
Collapse
Affiliation(s)
- Xiao Liu
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Kobenan G. W. Kouassi
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Rita Vanbever
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Dumoulin
- Department of Life SciencesInBios, Center for Protein Engineering, Nanobodies to Explore Protein Structure and Functions, University of LiègeLiègeBelgium
| |
Collapse
|
8
|
Mao L, Russell AJ, Carmali S. Moving Protein PEGylation from an Art to a Data Science. Bioconjug Chem 2022; 33:1643-1653. [PMID: 35994522 PMCID: PMC9501918 DOI: 10.1021/acs.bioconjchem.2c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
PEGylation is a well-established and clinically proven
half-life
extension strategy for protein delivery. Protein modification with
amine-reactive poly(ethylene glycol) (PEG) generates heterogeneous
and complex bioconjugate mixtures, often composed of several PEG positional
isomers with varied therapeutic efficacy. Laborious and costly experiments
for reaction optimization and purification are needed to generate
a therapeutically useful PEG conjugate. Kinetic models which accurately
predict the outcome of so-called “random” PEGylation
reactions provide an opportunity to bypass extensive wet lab experimentation
and streamline the bioconjugation process. In this study, we propose
a protein tertiary structure-dependent reactivity model that describes
the rate of protein-amine PEGylation and introduces “PEG chain
coverage” as a tangible metric to assess the shielding effect
of PEG chains. This structure-dependent reactivity model was implemented
into three models (linear, structure-based, and machine-learned) to
gain insight into how protein-specific molecular descriptors (exposed
surface areas, pKa, and surface charge)
impacted amine reactivity at each site. Linear and machine-learned
models demonstrated over 75% prediction accuracy with butylcholinesterase.
Model validation with Somavert, PEGASYS, and phenylalanine ammonia
lyase showed good correlation between predicted and experimentally
determined degrees of modification. Our structure-dependent reactivity
model was also able to simulate PEGylation progress curves and estimate
“PEGmer” distribution with accurate predictions across
different proteins, PEG linker chemistry, and PEG molecular weights.
Moreover, in-depth analysis of these simulated reaction curves highlighted
possible PEG conformational transitions (from dumbbell to brush) on the surface of lysozyme, as a function
of PEG molecular weight.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Amgen Inc., Thousand Oaks, California 91320, United States
| | - Sheiliza Carmali
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL United Kingdom
| |
Collapse
|
9
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Eddy M, Savin DA, Harris M. Atomic‐Scale View of Protein–PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin‐3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Emma Mulry
- University of Florida Department of Chemistry UNITED STATES
| | - Ling Lin
- University of Florida Department of Chemistry UNITED STATES
| | | | - Matthew Eddy
- University of Florida Chemistry 126 Sisler Hall 32611 Gainesville UNITED STATES
| | | | - Michael Harris
- University of Florida Department of Chemistry UNITED STATES
| |
Collapse
|
10
|
Wang X, Bowman J, Tu S, Nykypanchuk D, Kuksenok O, Minko S. Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8474-8485. [PMID: 34236863 DOI: 10.1021/acs.langmuir.1c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein stability and performance in various natural and artificial systems incorporating many other macromolecules for therapeutic, diagnostic, sensor, and biotechnological applications attract increasing interest with the expansion of these technologies. Here we address the catalytic activity of lysozyme protein (LYZ) in the presence of a polyethylene glycol (PEG) crowder in a broad range of concentrations and temperatures in aqueous solutions of two different molecular mass PEG samples (Mw = 3350 and 10000 g/mol). The phase behavior of PEG-protein solutions is examined by using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), while the enzyme denaturing is monitored by using an activity assay (AS) and circular dichroism (CD) spectroscopy. Molecular dynamic (MD) simulations are used to illustrate the effect of PEG concentration on protein stability at high temperatures. The results demonstrate that LYZ residual activity after 1 h incubation at 80 °C is improved from 15% up to 55% with the addition of PEG. The improvement is attributed to two underlying mechanisms. (i) Primarily, the stabilizing effect is due to the suppression of the enzyme aggregation because of the stronger PEG-protein interactions caused by the increased hydrophobicity of PEG and lysozyme at elevated temperatures. (ii) The MD simulations showed that the addition of PEG to some degree stabilizes the secondary structures of the enzyme by delaying unfolding at elevated temperatures. The more pronounced effect is observed with an increase in PEG concentration. This trend is consistent with CD and AS experimental results, where the thermal stability is strengthened with increasing of PEG concentration and molecular mass. The results show that the highest stabilizing effect is approached at the critical overlap concentration of PEG.
Collapse
Affiliation(s)
- Xue Wang
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Jeremy Bowman
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
12
|
Taylor PA, Jayaraman A. Molecular Modeling and Simulations of Peptide–Polymer Conjugates. Annu Rev Chem Biomol Eng 2020; 11:257-276. [DOI: 10.1146/annurev-chembioeng-092319-083243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide–polymer conjugates are a class of soft materials composed of covalently linked blocks of protein/polypeptides and synthetic/natural polymers. These materials are practically useful in biological applications, such as drug delivery, DNA/gene delivery, and antimicrobial coatings, as well as nonbiological applications, such as electronics, separations, optics, and sensing. Given their broad applicability, there is motivation to understand the molecular and macroscale structure, dynamics, and thermodynamic behavior exhibited by such materials. We focus on the past and ongoing molecular simulation studies aimed at obtaining such fundamental understanding and predicting molecular design rules for the target function. We describe briefly the experimental work in this field that validates or motivates these computational studies. We also describe the various models (e.g., atomistic, coarse-grained, or hybrid) and simulation methods (e.g., stochastic versus deterministic, enhanced sampling) that have been used and the types of questions that have been answered using these computational approaches.
Collapse
Affiliation(s)
- Phillip A. Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
13
|
Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, Olsen BD. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kai Sheng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jialing Sun
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Shupeng Yan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yingqin Hou
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Hua Lu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
14
|
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. Molecular Insight into the Protein–Polymer Interactions in N-Terminal PEGylated Bovine Serum Albumin. J Phys Chem B 2019; 123:5196-5205. [DOI: 10.1021/acs.jpcb.8b12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Jafari M, Doustdar F, Mehrnejad F. Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. J Chem Inf Model 2018; 59:550-563. [PMID: 30475620 DOI: 10.1021/acs.jcim.8b00641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Encapsulation of peptide and protein-based drugs in polymeric nanoparticles is one of the fundamental fields in controlled-release drug delivery systems. The molecular mechanisms of absorption of peptides to the polymeric nanoparticles are still unknown, and there is no precise molecular data on the encapsulation process of peptide and protein-based drugs. Herein, the self-assembly of different polymers and block copolymers with combinations of the various molecular weight of blocks and the effects of resultant polymer and copolymer nanomicelles on the stability of magainin2, an α-helical antimicrobial peptide, were investigated by means of all-atom molecular dynamics (MD) simulation. The micelle forming, morphology of micellar aggregations and changes in the first hydration shell of the micelles during micelles formation were explored as well. The results showed that the peptide binds to the polymer and copolymer micelles and never detaches during the MD simulation time. In general, all polymers and copolymers simultaneously encapsulated the peptide during micelles formation and had the ability to maintain the helical structure of the peptide, whereas the first hydration shell of the peptide remained unchanged. Among the micelles, the polyethylene glycol (PEG) micelles completely encapsulated magainin2 and, surprisingly, the NMR structure of the peptide was perfectly kept during the encapsulation process. The MD results also indicated that the aromatic and basic residues of the peptide strongly interact with polymers/copolymers and play important roles in the encapsulation mechanism. This research will provide a good opportunity in the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
Affiliation(s)
- Majid Jafari
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| | - Farahnoosh Doustdar
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Microbiology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , P.O. Box 19839-63113 Tehran , Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| |
Collapse
|
16
|
Sousa SF, Peres J, Coelho M, Vieira TF. Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect 2018. [DOI: 10.1002/slct.201800855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE; BioSIM; Departamento de Biomedicina; Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro; 4200-319, Porto Portugal
| | - Joana Peres
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Manuel Coelho
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Tatiana F. Vieira
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| |
Collapse
|
17
|
Kim M, Vala M, Ertsgaard CT, Oh SH, Lodge TP, Bates FS, Hackel BJ. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6703-6712. [PMID: 29787676 PMCID: PMC6055929 DOI: 10.1021/acs.langmuir.8b00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.
Collapse
|
18
|
Choudhury CK, Tu S, Luzinov I, Minko S, Kuksenok O. Designing Highly Thermostable Lysozyme–Copolymer Conjugates: Focus on Effect of Polymer Concentration. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chandan Kumar Choudhury
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
19
|
Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, Tirrell M. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 2017; 110-111:65-79. [PMID: 27535485 PMCID: PMC5922461 DOI: 10.1016/j.addr.2016.08.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA.
| | - John C Barrett
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA.
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
20
|
Peng S, Lin JY, Cheng MH, Wu CW, Chu IM. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:421-8. [DOI: 10.1016/j.msec.2016.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
|
21
|
Ang J, Ma D, Lund R, Keten S, Xu T. Internal Structure of 15 nm 3-Helix Micelle Revealed by Small-Angle Neutron Scattering and Coarse-Grained MD Simulation. Biomacromolecules 2016; 17:3262-3267. [DOI: 10.1021/acs.biomac.6b00986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dan Ma
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Sinan Keten
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ting Xu
- Material
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Ghobadi AF, Jayaraman A. Effects of Polymer Conjugation on Hybridization Thermodynamics of Oligonucleic Acids. J Phys Chem B 2016; 120:9788-99. [DOI: 10.1021/acs.jpcb.6b06970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19711, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19711, United States
- Department
of Material Science and Engineering, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
23
|
Lawrence PB, Price JL. How PEGylation influences protein conformational stability. Curr Opin Chem Biol 2016; 34:88-94. [PMID: 27580482 DOI: 10.1016/j.cbpa.2016.08.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein therapeutics. The development of chemoselective side-chain modification reactions has enabled researchers to PEGylate proteins with high selectivity at defined locations. However, aside from avoiding active sites and binding interfaces, there are few guidelines for the selection of optimal PEGylation sites. Because conformational stability is intimately related to the ability of a protein to avoid proteolysis, aggregation, and immune responses, it is possible that PEGylating a protein at sites where PEG enhances conformational stability will result in PEG-protein conjugates with enhanced pharmacokinetic properties. However, the impact of PEGylation on protein conformational stability is incompletely understood. This review describes recent advances toward understanding the impact of PEGylation on protein conformational stability, along with the development of structure-based guidelines for selecting stabilizing PEGylation sites.
Collapse
Affiliation(s)
- Paul B Lawrence
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| |
Collapse
|
24
|
DeBenedictis EP, Hamed E, Keten S. Mechanical Reinforcement of Proteins with Polymer Conjugation. ACS NANO 2016; 10:2259-2267. [PMID: 26687555 DOI: 10.1021/acsnano.5b06917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conjugating poly(ethylene glycol) (PEG) to peptides, also known as PEGylation, is proven to increase the thermodynamical stability of peptides, and has been successfully applied to prolong the lifetime of peptide-based vaccines and therapeutic agents. While it is known that protein structure and function can be altered by mechanical stress, whether PEGylation can reinforce proteins against mechanical unfolding remains to be ascertained. Here, we illustrate that PEGylation prolongs the lifetime of α-helices subject to constant stress. PEGylation is found to increase the unfolding time through two mechanisms. We see that (1) the unfolding rate of a helical segment is decreased through prolonged plateau regimes where the peptide helical content remains constant, and (2) the proportion of refolding to unfolding is increased, primarily by shielding water molecules from replacing forcibly exposed backbone hydrogen bonds near the conjugation site. Our findings demonstrate the feasibility of improving peptide mechanical stability with polymer conjugation. This provides a basis for future studies on optimizing conjugation location and chemistry to build custom biomolecules with unforeseen mechanical functions and stability.
Collapse
Affiliation(s)
- Elizabeth P DeBenedictis
- Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Elham Hamed
- Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Carmichael SP, Shell MS. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. J Chem Phys 2015; 143:243103. [DOI: 10.1063/1.4929592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Scott P. Carmichael
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - M. Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
26
|
Jin J, Han Y, Zhang C, Liu J, Jiang W, Yin J, Liang H. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: A combined study using QCM-D and DPI. Colloids Surf B Biointerfaces 2015; 136:838-44. [PMID: 26546889 DOI: 10.1016/j.colsurfb.2015.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
In this study, elucidation of protein adsorption mechanism is performed using dual polarization interferometry (DPI) and quartz crystal microbalance with dissipation (QCM-D) to study adsorption behaviors of bovine serum albumin (BSA) and lysozyme (LYZ) on poly (ethylene glycol) (PEG) layers. From the analysis of DPI, PEG2000 and PEG5000 show tight and loose mushroom conformations, respectively. Small amount of LYZ could displace the interfacial water surrounding the tight mushroomed PEG2000 chains by hydrogen bond attraction, leading to protein adsorption. The loose mushroomed PEG5000 chains exhibit a more flexible conformation and high elastic repulsion energy that could prevent protein adsorption of all BSA and most of LYZ. From the analysis of QCM, PEG2000 and PEG5000 show tight and extended brush conformations. The LYZ adsorbed mass has critical regions of PEG2000 (0.19 chain/nm(2)) and PEG5000 (0.16 chain/nm(2)) graft density. When graft density of PEG is higher than the critical region (brush conformations), the attraction of hydrogen bonds between PEG and LYZ is the dominant factor. When graft density of PEG is lower than the critical region (mushroom conformations), elastic repulsion between PEG and proteins is driven by the high conformation entropy of PEG chains, which is the dominant force of steric repulsion in PEG-protein systems. Therefore, the adsorption of BSA is suppressed by the high elastic repulsion energy of PEG chains, whereas the adsorption of LYZ is balanced by the interactions between the repulsion of entropy elasticity and the attraction of hydrogen bonds.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Chang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
27
|
Hamed E, Ma D, Keten S. Effect of Polymer Conjugation Site on Stability and Self-Assembly of Coiled Coils. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0172-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Taylor W, Ebbens S, Skoda MWA, Webster JRP, Jones RAL. Mode of lysozyme protein adsorption at end-tethered polyethylene oxide brushes on gold surfaces determined by neutron reflectivity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:14. [PMID: 25743024 DOI: 10.1140/epje/i2015-15014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/20/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The mode of lysozyme protein adsorption at end-tethered thiol-terminated polyethylene oxide brushes grafted upon gold was determined in situ by neutron reflectivity using the INTER instrument at target station 2, ISIS, RAL, UK. It was found that the most probable position of protein adsorption at these weakly protein resistive brushes was at the gold-brush interface in the so-called primary protein position.
Collapse
Affiliation(s)
- Warren Taylor
- Physics and Astronomy Department, University of Sheffield, Sheffield, UK,
| | | | | | | | | |
Collapse
|
29
|
Hamed E, Ma D, Keten S. Multiple PEG Chains Attached onto the Surface of a Helix Bundle: Conformations and Implications. ACS Biomater Sci Eng 2015. [DOI: 10.1021/ab500088b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elham Hamed
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dan Ma
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Fu IW, Markegard CB, Nguyen HD. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:315-24. [PMID: 25488898 DOI: 10.1021/la503399x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peptide amphiphiles are known to form a variety of distinctive self-assembled nanostructures (including cylindrical nanofibers in hydrogels) dependent upon the solvent conditions. Using a novel coarse-grained model, large-scale molecular dynamics simulations are performed on a system of 800 peptide amphiphiles (sequence, palmitoyl-Val3Ala3Glu3) to elucidate kinetic mechanisms of molecular assembly as a function of the solvent conditions. The assembly process is found to occur via a multistep process with transient intermediates that ultimately leads to the stabilized nanostructures including open networks of β-sheets, cylindrical nanofibers, and elongated micelles. Different kinetic mechanisms are compared in terms of peptide secondary structures, solvent-accessible surface area, radius of gyration, relative shape anisotropy, intra/intermolecular interactions, and aggregate size dynamics to provide insightful information for the design of functional biomaterials.
Collapse
Affiliation(s)
- Iris W Fu
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | | | | |
Collapse
|
31
|
Lawrence PB, Gavrilov Y, Matthews SS, Langlois MI, Shental-Bechor D, Greenblatt HM, Pandey BK, Smith MS, Paxman R, Torgerson CD, Merrell JP, Ritz CC, Prigozhin MB, Levy Y, Price JL. Criteria for Selecting PEGylation Sites on Proteins for Higher Thermodynamic and Proteolytic Stability. J Am Chem Soc 2014; 136:17547-60. [DOI: 10.1021/ja5095183] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paul B. Lawrence
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yulian Gavrilov
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sam S. Matthews
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Minnie I. Langlois
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dalit Shental-Bechor
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M. Greenblatt
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Brijesh K. Pandey
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mason S. Smith
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan Paxman
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Chad D. Torgerson
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob P. Merrell
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Cameron C. Ritz
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Maxim B. Prigozhin
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yaakov Levy
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joshua L. Price
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
32
|
Pandey BK, Smith MS, Price JL. Cys(i)-Lys(i+3)-Lys(i+4) triad: a general approach for PEG-based stabilization of α-helical proteins. Biomacromolecules 2014; 15:4643-7. [PMID: 25387132 DOI: 10.1021/bm501546k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein drugs. Modern chemoselective reactions now enable specific placement of a single PEG at any site on a protein surface. However, few rational structure-based guidelines exist for selecting optimal PEGylation sites. Here, we explore the impact of PEGylation on the conformational stability of α-helices using an α-helical coiled coil as a model system. We find that maleimide-based PEGylation of a solvent-exposed i position Cys can stabilize coiled-coil quaternary structure when Lys residues occupy both the i + 3 and i + 4 positions, due to favorable interactions between the PEG-maleimide and the Lys residues. Applying this Cys(i)-Lys(i+3)-Lys(i+4) triad to a solvent-exposed position within the C-terminal helix of the villin headpiece domain leads to similar PEG-based increases in conformational stability, highlighting the possibility of using the Cys(i)-Lys(i+3)-Lys(i+4) triad as a general strategy for PEG-based stabilization of helical proteins.
Collapse
Affiliation(s)
- Brijesh K Pandey
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | | | | |
Collapse
|
33
|
Liu CY, Li X, Chen WY, Chang LC, Chen YF, Chen HL, Sun YS, Lai HY, Huang EW. PEGylation site-dependent structural heterogeneity study of monoPEGylated human parathyroid hormone fragment hPTH(1-34). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11421-11427. [PMID: 25168862 DOI: 10.1021/la501689d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structures of C- and N-terminally monoPEGylated human parathyroid hormone fragment hPTH(1-34) as well as their unmodified counterparts, poly(ethylene glycol) (PEG) and hPTH(1-34), have been studied by small-angle neutron scattering (SANS). The scattering results show that free hPTH(1-34) in 100 mM phosphate buffer (pH 7.4) aggregates into clusters. After conjugation with PEG, the PEG-peptide conjugates self-assemble into a supramolecular core-shell structure with a cylindrical shape. The PEG chains form a shell around the hPTH(1-34) core to shield hPTH(1-34) from the solvent. The detailed structural information on the self-assembled structures is extracted from SANS using a model of the cylindrical core with a shell of Gaussian chains attached to the core surface. On the basis of the data, because of the charge-dipole interactions between the conjugated PEG chain and the peptide, the conjugated PEG chain forms a more collapsed conformation compared to free PEG. Moreover, the size of the self-assembled structures formed by the C-terminally monoPEGylated hPTH(1-34) is about 3 times larger than that of the N-terminally monoPEGylated hPTH(1-34). The different aggregation numbers of the self-assembled structures, triggered by different PEGylation sites, are reported. These size discrepancies because of different PEGylation sites could potentially affect the pharmacokinetics of the hPTH(1-34) drug.
Collapse
Affiliation(s)
- Chih-Ying Liu
- Department of Materials Science & Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chu BK, Fu IW, Markegard CB, Choi SE, Nguyen HD. A Tail of Two Peptide Amphiphiles: Effect of Conjugation with Hydrophobic Polymer on Folding of Peptide Sequences. Biomacromolecules 2014; 15:3313-20. [DOI: 10.1021/bm500733h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian K. Chu
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Iris W. Fu
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Cade B. Markegard
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Seong E. Choi
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Hung D. Nguyen
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
35
|
Woo SY, Lee H. Molecular dynamics studies of PEGylated α-helical coiled coils and their self-assembled micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8848-8855. [PMID: 25000284 DOI: 10.1021/la501973w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We performed coarse-grained (CG) molecular dynamics simulations of trimeric α-helical coiled coils grafted with poly(ethylene glycol) (PEG) of different sizes and conjugate positions and the self-assembled micelle of amphiphilic trimers. The CG model for the trimeric coiled coil is verified by comparing the α-helical structure and interhelical distance with those calculated from all-atom simulations. In CG simulations of PEGylated trimers, the end-to-end distances and radii of gyration of PEGs grafted to the sides of peptides become shorter than those of free PEGs in water, which agrees with experiments. This shorter size of the grafted PEGs is also confirmed by calculating the thickness of the PEG layer, which is less than the size of the mushroom. These indicate the adsorption of PEG chains onto coiled coils since hydrophobic residues in the exterior sites of coiled coils tend to be less exposed to water and thus interact with PEGs, leading to the compact conformation of adsorbed PEGs. Simulations of the self-assembly of amphiphilic trimers show that the randomly distributed trimers self-assemble to micelles. The outer radius and hydrodynamic radius of the micelle, which were calculated respectively from radial densities and diffusion coefficients, are ∼7 nm, in agreement with the experimental value of ∼7.5 nm, while the aggregation number of amphiphilic molecules per micelle is lower than the experimentally proposed value. These simulations predict the experimentally measured size of PEGs grafted to the trimeric coiled coils and their self-assembled amphiphilic micelles and suggest that the aggregation number of the micelle may be lower, which needs to be confirmed by experiments.
Collapse
Affiliation(s)
- Sun Young Woo
- Department of Chemical Engineering, Dankook University , Yongin 448-701, South Korea
| | | |
Collapse
|
36
|
Fu IW, Markegard CB, Chu BK, Nguyen HD. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7745-7754. [PMID: 24915982 DOI: 10.1021/la5012988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using a novel coarse-grained model, large-scale molecular dynamics simulations were performed to examine self-assembly of 800 peptide amphiphiles (sequence palmitoyl-V3A3E3). Under suitable physiological conditions, these molecules readily assemble into nanofibers leading to hydrogel construction as observed in experiments. Our simulations capture this spontaneous self-assembly process, including formation of secondary structure, to identify morphological transitions of distinctive nanostructures. As the hydrophobic interaction is increased, progression from open networks of secondary structures toward closed cylindrical nanostructures containing either β-sheets or random coils are observed. Moreover, temperature effects are also determined to play an important role in regulating formation of secondary structures within those nanostructures. These understandings of the molecular interactions involved and the role of environmental factors on hydrogel formation provide useful insight for development of innovative smart biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Iris W Fu
- Department of Chemical Engineering and Materials Science, University of California-Irvine , Irvine, California 92697, United States
| | | | | | | |
Collapse
|
37
|
Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications. Polymers (Basel) 2014. [DOI: 10.3390/polym6030776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
38
|
Bonache MA, Alaimo A, Malo C, Millet O, Villarroel A, González-Muñiz R. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding. Org Biomol Chem 2014; 12:8877-87. [DOI: 10.1039/c4ob01338g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small bis-conjugates helix A329–350-PEG-triazole-PEG-helix B508–526 (41 residues), prepared through click chemistry of PEGylated peptide derivatives, bind to CaM with nanomolar affinity, behaving as mimics of the Kv7.2 native fragment (239 residues).
Collapse
Affiliation(s)
| | - Alessandro Alaimo
- Unidad de Biofísica
- CSIC-UPV/EHU
- Universidad de País Vasco
- 48940 Leioa, Spain
| | - Covadonga Malo
- Unidad de Biofísica
- CSIC-UPV/EHU
- Universidad de País Vasco
- 48940 Leioa, Spain
| | - Oscar Millet
- Structural Biology Unit
- CICbioGUNE
- 48160 Derio, Spain
| | - Alvaro Villarroel
- Unidad de Biofísica
- CSIC-UPV/EHU
- Universidad de País Vasco
- 48940 Leioa, Spain
| | | |
Collapse
|
39
|
Sun TY, Liang LJ, Wang Q, Laaksonen A, Wu T. A molecular dynamics study on pH response of protein adsorbed on peptide-modified polyvinyl alcohol hydrogel. Biomater Sci 2014; 2:419-426. [DOI: 10.1039/c3bm60213c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular dynamics simulation of the protein adsorption on peptide modified PVA hydrogel and the response of hydrogel chains to different pHs.
Collapse
Affiliation(s)
- Tian-Yang Sun
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
| | - Li-Jun Liang
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| | - Qi Wang
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- Stockholm, Sweden
| | - Tao Wu
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| |
Collapse
|
40
|
Hamed E, Xu T, Keten S. Poly(ethylene glycol) Conjugation Stabilizes the Secondary Structure of α-Helices by Reducing Peptide Solvent Accessible Surface Area. Biomacromolecules 2013; 14:4053-60. [DOI: 10.1021/bm401164t] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elham Hamed
- Department of Civil
and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ting Xu
- Department of Materials
Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Sinan Keten
- Department of Civil
and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Taylor W, Jones RAL. Protein adsorption on well-characterized polyethylene oxide brushes on gold: dependence on molecular weight and grafting density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6116-6122. [PMID: 23617308 DOI: 10.1021/la4005483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The adsorption of lysozyme protein was measured ex situ on well-characterized gold surfaces coated by end-tethered polyethylene oxide brushes of various molecular weights and controlled grafting densities. The adsorbed amount of protein for different molecular weight brushes was found to collapse onto one master curve when plotted against brush coverage. We interpret this relationship in terms of a model involving site-blocking of the adsorption of proteins at the substrate and discuss the role of the physical attraction of PEO segments to gold. We account for our observation of a simple exponential relationship between protein adsorption and normalized brush coverage with a simple protein adsorption model. In contrast to other studies in similar systems, we do not observe protein adsorption on brushes at high grafting density, and we suggest that this discrepancy may be due to the solubility effects of salt upon the brushes, influencing their protein binding affinity, in the limit of high grafting density and high brush volume fraction.
Collapse
Affiliation(s)
- Warren Taylor
- Materials Research Laboratory, University of California, Santa Barbara, California 93106-5121, United States.
| | | |
Collapse
|
42
|
Pandey BK, Smith MS, Torgerson C, Lawrence PB, Matthews SS, Watkins E, Groves ML, Prigozhin MB, Price JL. Impact of site-specific PEGylation on the conformational stability and folding rate of the Pin WW domain depends strongly on PEG oligomer length. Bioconjug Chem 2013; 24:796-802. [PMID: 23578107 DOI: 10.1021/bc3006122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein PEGylation is an effective method for reducing the proteolytic susceptibility, aggregation propensity, and immunogenicity of protein drugs. These pharmacokinetic challenges are fundamentally related to protein conformational stability, and become much worse for proteins that populate the unfolded state under ambient conditions. If PEGylation consistently led to increased conformational stability, its beneficial pharmacokinetic effects could be extended and enhanced. However, the impact of PEGylation on protein conformational stability is currently unpredictable. Here we show that appending a short PEG oligomer to a single Asn side chain within a reverse turn in the WW domain of the human protein Pin 1 increases WW conformational stability in a manner that depends strongly on the length of the PEG oligomer: shorter oligomers increase folding rate, whereas longer oligomers increase folding rate and reduce unfolding rate. This strong length dependence is consistent with the possibility that the PEG oligomer stabilizes the transition and folded states of WW relative to the unfolded state by interacting favorably with side-chain or backbone groups on the WW surface.
Collapse
Affiliation(s)
- Brijesh K Pandey
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shu JY, Panganiban B, Xu T. Peptide-Polymer Conjugates: From Fundamental Science to Application. Annu Rev Phys Chem 2013; 64:631-57. [DOI: 10.1146/annurev-physchem-040412-110108] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Ting Xu
- Department of Materials Science and Engineering and
- Department of Chemistry, University of California, Berkeley, California 94720-1760;
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
44
|
Lund R, Shu J, Xu T. A Small-Angle X-ray Scattering Study of α-helical Bundle-Forming Peptide–Polymer Conjugates in Solution: Chain Conformations. Macromolecules 2013. [DOI: 10.1021/ma301310h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Reidar Lund
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
- Material Science Division, Lawrence Berkeley
National Lab (LBNL), Berkeley, California 94720, United States
| | - Jessica Shu
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
| | - Ting Xu
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
- Material Science Division, Lawrence Berkeley
National Lab (LBNL), Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1760,
United States
| |
Collapse
|
45
|
Bertran O, Curcó D, Zanuy D, Alemán C. Atomistic organization and characterization of tube-like assemblies comprising peptide–polymer conjugates: computer simulation studies. Faraday Discuss 2013; 166:59-82. [DOI: 10.1039/c3fd00079f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Dong H, Dube N, Shu JY, Seo JW, Mahakian LM, Ferrara KW, Xu T. Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. ACS NANO 2012; 6:5320-9. [PMID: 22545944 PMCID: PMC3531550 DOI: 10.1021/nn301142r] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Generating stable, multifunctional organic nanocarriers will have a significant impact on drug formulation. However, it remains a significant challenge to generate organic nanocarriers with a long circulation half-life, effective tumor penetration, and efficient clearance of metabolites. We have advanced this goal by designing a new family of amphiphiles based on coiled-coil 3-helix bundle forming peptide-poly(ethylene glycol) conjugates. The amphiphiles self-assemble into monodisperse micellar nanoparticles, 15 nm in diameter. Using the 3-helix micelles, a drug loading of ∼8 wt % was obtained using doxorubicin and the micelles showed minimal cargo leakage after 12 h of incubation with serum proteins at 37 °C. In vivo pharmacokinetics studies using positron emission tomography showed a circulation half-life of 29.5 h and minimal accumulation in the liver and spleen. The demonstrated strategy, by incorporating unique protein tertiary structure in the headgroup of an amphiphile, opens new avenues to generate organic nanoparticles with tunable stability, ligand clustering, and controlled disassembly to meet current demands in nanomedicine.
Collapse
Affiliation(s)
- He Dong
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Nikhil Dube
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Jessica Y. Shu
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Jai W. Seo
- Department of Bioengineering, University of California, Davis
| | | | | | - Ting Xu
- Department of Materials Science & Engineering, University of California, Berkeley
- Department of Bioengineering, University of California, Berkeley
- Department of Chemistry, University of California, Berkeley
- Corresponding author:
| |
Collapse
|
47
|
Li W, Zhang X, Wang J, Qiao X, Liu K, Zhang A. Peptidic molecular brushes with enhanced chirality. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Shu JY, Lund R, Xu T. Solution Structural Characterization of Coiled-Coil Peptide–Polymer Side-Conjugates. Biomacromolecules 2012; 13:1945-55. [DOI: 10.1021/bm300561y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Reidar Lund
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California,
United States
| | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California,
United States
| |
Collapse
|
49
|
Grieshaber SE, Farran AJE, Bai S, Kiick KL, Jia X. Tuning the properties of elastin mimetic hybrid copolymers via a modular polymerization method. Biomacromolecules 2012; 13:1774-86. [PMID: 22533503 DOI: 10.1021/bm3002705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have synthesized elastin mimetic hybrid polymers (EMHPs) via the step-growth polymerization of azide-functionalized poly(ethylene glycol) (PEG) and alkyne-terminated peptide (AKAAAKA)(2) (AK2) that is abundant in the cross-linking domains of the natural elastin. The modular nature of our synthesis allows facile adjustment of the peptide sequence to modulate the structural and biological properties of EMHPs. Therefore, EMHPs containing cell-binding domains (CBDs) were constructed from α,ω-azido-PEG and two types of alkyne-terminated AK2 peptides with sequences of DGRGX(AKAAAKA)(2)X (AK2-CBD1) and X(AKAAAKA)(2)XGGRGDSPG (AK2-CBD2, X = propargylglycine) via a step-growth, click coupling reaction. The resultant hybrid copolymers contain an estimated five to seven repeats of PEG and AK2 peptides. The secondary structure of EMHPs is sensitive to the specific sequence of the peptidic building blocks, with CBD-containing EMHPs exhibiting a significant enhancement in the α-helical content as compared with the peptide alone. Elastomeric hydrogels formed by covalent cross-linking of the EMHPs had a compressive modulus of 1.06 ± 0.1 MPa. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h and to spread and develop F-actin filaments 24 h postseeding. NHDF proliferation was only observed on hydrogels containing RGDSP domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. These cell-instructive, hybrid polymers are promising candidates as elastomeric scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Sarah E Grieshaber
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, United States
| | | | | | | | | |
Collapse
|
50
|
Platt RJ, Han TS, Green BR, Smith MD, Skalicky J, Gruszczynski P, White HS, Olivera B, Bulaj G, Gajewiak J. Stapling mimics noncovalent interactions of γ-carboxyglutamates in conantokins, peptidic antagonists of N-methyl-D-aspartic acid receptors. J Biol Chem 2012; 287:20727-36. [PMID: 22518838 DOI: 10.1074/jbc.m112.350462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.
Collapse
Affiliation(s)
- Randall J Platt
- Departments of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|