1
|
Iglesias Rando MR, Gorojovsky N, Zylberman V, Goldbaum FA, Craig PO. Improvement of Cellulomonas fimi endoglucanase CenA by multienzymatic display on a decameric structural scaffold. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12581-6. [PMID: 37212884 DOI: 10.1007/s00253-023-12581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.
Collapse
Affiliation(s)
- Matías R Iglesias Rando
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Natalia Gorojovsky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Vanesa Zylberman
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (CP 1405), Buenos Aires, Argentina
- Centro de Rediseño e Ingeniería de Proteínas (CRIP), UNSAM Campus Miguelete, 25 de Mayo y Francia (CP 1650), Gral. San Martín, Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Sosa S, Rossi AH, Szalai AM, Klinke S, Rinaldi J, Farias A, Berguer PM, Nadra AD, Stefani FD, Goldbaum FA, Bonomi HR. Asymmetric bifunctional protein nanoparticles through redesign of self-assembly. NANOSCALE ADVANCES 2019; 1:1833-1846. [PMID: 36134238 PMCID: PMC9419478 DOI: 10.1039/c8na00375k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/14/2019] [Indexed: 05/05/2023]
Abstract
Engineering oligomeric protein self-assembly is an attractive approach to fabricate nanostructures with well-defined geometries, stoichiometry and functions. The homodecamer Brucella Lumazine Synthase (BLS) is a highly stable and immunogenic protein nanoparticle (PNP). Here, we engineered the BLS protein scaffold to display two functions in spatially opposite regions of its structure yielding a Janus-like nanoparticle. An in silico analysis of the BLS head-to-head dimer of homopentamers shows major inter-pentameric interactions located in the equatorial interface. Based on this analysis, two BLS protomer variants were designed to interrupt pentamer self-dimerization and promote heteropentameric dimers. This strategy enabled us to generate a decameric particle with two distinct sides formed by two independent pentamers. The versatility of this new self-assembly nanofabrication strategy is illustrated with two example applications. First, a bifunctional BLS bearing Alexa Fluor 488 fluorophores on one side and sialic acid binding domains on the other side was used for labelling murine and human cells and analyzed by flow cytometry and confocal microscopy. Second, multichromophoric FRET nanoparticles were fabricated and characterized at the single molecule level, showing discrete energy transfer events. The engineered BLS variants constitute a general platform for displaying two functions in a controlled manner within the same PNP with potential applications in various areas such as biomedicine, biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Santiago Sosa
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET Godoy Cruz 2390 (C1425FQD), Ciudad Autónoma de Buenos Aires Argentina
| | - Andrés H Rossi
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET Godoy Cruz 2390 (C1425FQD), Ciudad Autónoma de Buenos Aires Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM Av. Patricias Argentinas 435 (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Ana Farias
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Paula M Berguer
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Alejandro D Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2 (C1428EHA), Ciudad Autónoma de Buenos Aires Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET Godoy Cruz 2390 (C1425FQD), Ciudad Autónoma de Buenos Aires Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1 Ciudad Universitaria (C1428EHA) Ciudad Autónoma de Buenos Aires Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM Av. Patricias Argentinas 435 (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| | - Hernán R Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
3
|
Serer MI, Carrica MDC, Trappe J, López Romero S, Bonomi HR, Klinke S, Cerutti ML, Goldbaum FA. A high-throughput screening for inhibitors of riboflavin synthase identifies novel antimicrobial compounds to treat brucellosis. FEBS J 2019; 286:2522-2535. [PMID: 30927485 DOI: 10.1111/febs.14829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Brucella spp. are pathogenic intracellular Gram-negative bacteria adapted to life within cells of several mammals, including humans. These bacteria are the causative agent of brucellosis, one of the zoonotic infections with the highest incidence in the world and for which a human vaccine is still unavailable. Current therapeutic treatments against brucellosis are based on the combination of two or more antibiotics for prolonged periods, which may lead to antibiotic resistance in the population. Riboflavin (vitamin B2) is biosynthesized by microorganisms and plants but mammals, including humans, must obtain it from dietary sources. Owing to the absence of the riboflavin biosynthetic enzymes in animals, this pathway is nowadays regarded as a rich resource of targets for the development of new antimicrobial agents. In this work, we describe a high-throughput screening approach to identify inhibitors of the enzymatic activity of riboflavin synthase, the last enzyme in this pathway. We also provide evidence for their subsequent validation as potential drug candidates in an in vitro brucellosis infection model. From an initial set of 44 000 highly diverse low molecular weight compounds with drug-like properties, we were able to identify ten molecules with 50% inhibitory concentrations in the low micromolar range. Further Brucella culture and intramacrophagic replication experiments showed that the most effective bactericidal compounds share a 2-Phenylamidazo[2,1-b][1,3]benzothiazole chemical scaffold. Altogether, these findings set up the basis for the subsequent lead optimization process and represent a promising advancement in the pursuit of novel and effective antimicrobial compounds against brucellosis.
Collapse
Affiliation(s)
- María Inés Serer
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Jörg Trappe
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - María Laura Cerutti
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| |
Collapse
|
4
|
Wei Y, Kumar P, Wahome N, Mantis NJ, Middaugh CR. Biomedical Applications of Lumazine Synthase. J Pharm Sci 2018; 107:2283-2296. [DOI: 10.1016/j.xphs.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
|
5
|
Xu X, Xiao X, Wang Y, Xu S, Liu H. Modulation of phase transition of thermosensitive liposomes with leucine zipper-structured lipopeptides. Phys Chem Chem Phys 2018; 20:15916-15925. [PMID: 29850685 DOI: 10.1039/c8cp01464g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.
Collapse
Affiliation(s)
- Xiejun Xu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | | | | | |
Collapse
|
6
|
Hiriart Y, Rossi AH, Biedma ME, Errea AJ, Moreno G, Cayet D, Rinaldi J, Blancá B, Sirard JC, Goldbaum F, Berguer P, Rumbo M. Characterization of structural and immunological properties of a fusion protein between flagellin from Salmonella and lumazine synthase from Brucella. Protein Sci 2017; 26:1049-1059. [PMID: 28257593 DOI: 10.1002/pro.3151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/09/2016] [Accepted: 02/23/2017] [Indexed: 01/09/2023]
Abstract
Aiming to combine the flexibility of Brucella lumazine synthase (BLS) to adapt different protein domains in a decameric structure and the capacity of BLS and flagellin to enhance the immunogenicity of peptides that are linked to their structure, we generated a chimeric protein (BLS-FliC131) by fusing flagellin from Salmonella in the N-termini of BLS. The obtained protein was recognized by anti-flagellin and anti-BLS antibodies, keeping the oligomerization capacity of BLS, without affecting the folding of the monomeric protein components determined by circular dichroism. Furthermore, the thermal stability of each fusion partner is conserved, indicating that the interactions that participate in its folding are not affected by the genetic fusion. Besides, either in vitro or in vivo using TLR5-deficient animals we could determine that BLS-FliC131 retains the capacity of triggering TLR5. The humoral response against BLS elicited by BLS-FliC131 was stronger than the one elicited by equimolar amounts of BLS + FliC. Since BLS scaffold allows the generation of hetero-decameric structures, we expect that flagellin oligomerization on this protein scaffold will generate a new vaccine platform with enhanced capacity to activate immune responses.
Collapse
Affiliation(s)
- Y Hiriart
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| | - A H Rossi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M E Biedma
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| | - A J Errea
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| | - G Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| | - D Cayet
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France. Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France. Centre National de la Recherche Scientifique, UMR 8204, Lille, France Université de Lille, Lille, France
| | - J Rinaldi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - B Blancá
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| | - J C Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France. Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France. Centre National de la Recherche Scientifique, UMR 8204, Lille, France Université de Lille, Lille, France
| | - F Goldbaum
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - P Berguer
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP), La Plata, Argentina
| |
Collapse
|
7
|
Bai Y, Nguyen L, Song Z, Peng S, Lee J, Zheng N, Kapoor I, Hagler LD, Cai K, Cheng J, Chan HYE, Zimmerman SC. Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting. J Am Chem Soc 2016; 138:9498-507. [DOI: 10.1021/jacs.6b03697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Shaohong Peng
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | - H. Y. Edwin Chan
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
8
|
Gabryelczyk B, Szilvay GR, Singh VK, Mikkilä J, Kostiainen MA, Koskinen J, Linder MB. Engineering of the function of diamond-like carbon binding peptides through structural design. Biomacromolecules 2015; 16:476-82. [PMID: 25522202 DOI: 10.1021/bm501522j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.
Collapse
Affiliation(s)
- Bartosz Gabryelczyk
- Department of Biotechnology and Chemical Technology, Aalto University , P.O. Box 16100, 00076 Aalto, Finland
| | | | | | | | | | | | | |
Collapse
|
9
|
Varner CT, Rosen T, Martin JT, Kane RS. Recent advances in engineering polyvalent biological interactions. Biomacromolecules 2015; 16:43-55. [PMID: 25426695 PMCID: PMC4294584 DOI: 10.1021/bm5014469] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.
Collapse
Affiliation(s)
- Chad T. Varner
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tania Rosen
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jacob T. Martin
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ravi S. Kane
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
10
|
Colombo CV, Ceccarelli EA, Rosano GL. Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones. BMC PLANT BIOLOGY 2014; 14:228. [PMID: 25149061 PMCID: PMC4243950 DOI: 10.1186/s12870-014-0228-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/18/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND The caseinolytic protease (Clp) is crucial for chloroplast biogenesis and proteostasis. The Arabidopsis Clp consists of two heptameric rings (P and R rings) assembled from nine distinct subunits. Hsp100 chaperones (ClpC1/2 and ClpD) are believed to dock to the axial pores of Clp and then transfer unfolded polypeptides destined to degradation. The adaptor proteins ClpT1 and 2 attach to the protease, apparently blocking the chaperone binding sites. This competition was suggested to regulate Clp activity. Also, monomerization of ClpT1 from dimers in the stroma triggers P and R rings association. So, oligomerization status of ClpT1 seems to control the assembly of the Clp protease. RESULTS In this work, ClpT1 was obtained in a recombinant form and purified. In solution, it mostly consists of monomers while dimers represent a small fraction of the population. Enrichment of the dimer fraction could only be achieved by stabilization with a crosslinker reagent. We demonstrate that ClpT1 specifically interacts with the Hsp100 chaperones ClpC2 and ClpD. In addition, ClpT1 stimulates the ATPase activity of ClpD by more than 50% when both are present in a 1:1 molar ratio. Outside this optimal proportion, the stimulatory effect of ClpT1 on the ATPase activity of ClpD declines. CONCLUSIONS The accessory protein ClpT1 behaves as a monomer in solution. It interacts with the chloroplastic Hsp100 chaperones ClpC2 and ClpD and tightly modulates the ATPase activity of the latter. Our results provide new experimental evidence that may contribute to revise and expand the existing models that were proposed to explain the roles of this poorly understood regulatory protein.
Collapse
Affiliation(s)
- Clara V Colombo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| |
Collapse
|
11
|
Serer MI, Bonomi HR, Guimarães BG, Rossi RC, Goldbaum FA, Klinke S. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1419-34. [PMID: 24816110 PMCID: PMC4014124 DOI: 10.1107/s1399004714005161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/06/2014] [Indexed: 11/11/2022]
Abstract
Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C3 symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.
Collapse
Affiliation(s)
- María I. Serer
- Fundación Instituto Leloir, IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Beatriz G. Guimarães
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette CEDEX, France
| | - Rolando C. Rossi
- Instituto de Química y Fisicoquímica Biológicas y Departamento de Química Biológica, IQUIFIB–UBA–CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| |
Collapse
|
12
|
Lilie H, Richter S, Bergelt S, Frost S, Gehle F. Polyionic and cysteine-containing fusion peptides as versatile protein tags. Biol Chem 2014; 394:995-1004. [PMID: 23629522 DOI: 10.1515/hsz-2013-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/24/2013] [Indexed: 11/15/2022]
Abstract
In response to advances in proteomics research and the use of proteins in medical and biotechnological applications, recombinant protein production and the design of specific protein characteristics and functions has become a widely used technology. In this context, protein fusion tags have been developed as indispensable tools for protein expression, purification, and the design of functionalized surfaces or artificially bifunctional proteins. Here we summarize how positively or negatively charged polyionic fusion peptides with or without an additional cysteine can be used as protein tags for protein expression and purification, for matrix-assisted refolding of aggregated protein, and for coupling of proteins either to technologically relevant matrices or to other proteins. In this context we used cysteine-containing polyionic fusion peptides for the design of immunotoxins. In general, polyionic fusion tags can be considered as a multifunctional module in protein technology.
Collapse
Affiliation(s)
- Hauke Lilie
- Institut fur Biochemie und Biotechnologie, Martin-Luther-Universit at Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.
| | | | | | | | | |
Collapse
|
13
|
Selection and characterization of peptides binding to diamond-like carbon. Colloids Surf B Biointerfaces 2013; 110:66-73. [DOI: 10.1016/j.colsurfb.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022]
|
14
|
Mejias MP, Ghersi G, Craig PO, Panek CA, Bentancor LV, Baschkier A, Goldbaum FA, Zylberman V, Palermo MS. Immunization with a chimera consisting of the B subunit of Shiga toxin type 2 and brucella lumazine synthase confers total protection against Shiga toxins in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2403-11. [PMID: 23918978 DOI: 10.4049/jimmunol.1300999] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The striking feature of enterohemorrhagic Escherichia coli (EHEC) infections is the production of Shiga toxins (Stx) implicated in the development of the life-threatening hemolytic uremic syndrome. Despite the magnitude of the social impact of EHEC infections, no licensed vaccine or effective therapy is available for human use. One of the biggest challenges is to develop an effective and safe immunogen to ensure nontoxicity, as well as a strong input to the immune system to induce long-lasting, high-affinity Abs with anti-Stx-neutralizing capacity. The enzyme lumazine synthase from Brucella spp. (BLS) is a highly stable dimer of pentamers and a scaffold with enormous plasticity on which to display foreign Ags. Taking into account the advantages of BLS and the potential capacity of the B subunit of Stx2 to induce Abs that prevent Stx2 toxicity by blocking its entrance into the host cells, we engineered a new immunogen by inserting the B subunit of Stx2 at the amino termini of BLS. The resulting chimera demonstrated a strong capacity to induce a long-lasting humoral immune response in mice. The chimera induced Abs with high neutralizing capacity for Stx2 and its variants. Moreover, immunized mice were completely protected against i.v. Stx2 challenge, and weaned mice receiving an oral challenge with EHEC were completely protected by the transference of immune sera. We conclude that this novel immunogen represents a promising candidate for vaccine or Ab development with preventive or therapeutic ends, for use in hemolytic uremic syndrome-endemic areas or during future outbreaks caused by pathogenic strains of Stx-producing E. coli.
Collapse
Affiliation(s)
- María P Mejias
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Academia Nacional de Medicina, Buenos Aires C1425AUM, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alvarez P, Zylberman V, Ghersi G, Boado L, Palacios C, Goldbaum F, Mattion N. Tandem repeats of the extracellular domain of Matrix 2 influenza protein exposed in Brucella lumazine synthase decameric carrier molecule induce protection in mice. Vaccine 2012; 31:806-12. [PMID: 23246552 DOI: 10.1016/j.vaccine.2012.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/25/2012] [Accepted: 11/25/2012] [Indexed: 01/29/2023]
Abstract
The antigenic variation of influenza virus represents a major prevention problem. However, the ectodomain of the protein Matrix 2 (M2e) is nearly invariant in all human influenza A strains and has been considered as a promising candidate for a broadly protective vaccine because antibodies to M2e are protective in animal models. In this work we evaluated the possible use of Brucella abortus lumazine synthase protein (BLS), a highly immunogenic decameric protein, as a carrier of the M2e peptide. Chimeric proteins generated by the fusion of one or four in tandem copies of M2e to BLS were efficiently expressed in Escherichia coli and assembled in decameric subunits similarly to the wild type BLS enzyme, as demonstrated by the comparative circular dichroism spectra and size exclusion chromatography and static light scattering analysis. The M2e peptides were stably exposed at the ten N-terminal ends of each BLS molecule. Immunization of mice with purified chimeras carrying only one M2e (BLS-M2e) copy elicited a significant humoral immune response with the addition of different adjuvants. The fusion of four in tandem copies of the M2e peptide (BLS-4M2e) resulted in similar levels of humoral immune response but in the absence of adjuvant. Survival of mice challenged with live influenza virus was 100% after vaccination with BLS-4M2e adjuvanted with Iscomatrix(®) (P<0.001) and 80% when adjuvanted with alum (P<0.01), while the chimera alone protected 60% of the animals (P<0.05). The approach described in this study is intended as a contribution to the generation of universal influenza immunogens, through a simple production and purification process and using safe carriers that might eventually avoid the use of strong adjuvants.
Collapse
Affiliation(s)
- Paula Alvarez
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468 (1440), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|