1
|
Johnston LJ. Cellulose nanomaterial metrology: microscopy measurements. NANOSCALE 2024; 16:18767-18787. [PMID: 39315456 DOI: 10.1039/d4nr02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cellulose nanomaterials are increasingly used for a wide variety of applications. Adequate characterization of these materials is required for quality control during production, to distinguish between materials synthesized by different methods, by different suppliers or from difference cellulose biomass sources, to facilitate development of applications and for regulatory purposes. Here we review recent microscopy measurements for the three main types of cellulose nanomaterials: cellulose nanocrystals, individual cellulose nanofibrils and cellulose nanofibrils. Atomic force microscopy and both scanning and transmission electron microscopy are covered with a focus on recent studies that have metrological rigor, rather than qualitative investigations. In some cases results are compared to those obtained by other methods that are more likely to see widespread use for routine quality control measurements. Detailed studies that use microscopy to provide insight on fundamental material properties (e.g., chiral properties) are also included. Particle size and morphology are important properties but are challenging to measure for cellulose nanomaterials due to the rod or fibril shaped particles, their propensity to agglomerate and aggregate, their low contrast for electron microscopy and, for cellulose nanofibrils, the complex branched and interconnected structures. Overall, the results show that there are now a number of studies in which attention to metrological detail has resulted in measurements that allow one to compare and distinguish between different materials, although there are still examples for which it is not possible to draw conclusions on size differences. The use of detailed microscopy protocols that yield accurate and reliable results will be beneficial in material production and addressing regulatory requirements and will allow the validation of other methods that are more amenable to routine measurements.
Collapse
Affiliation(s)
- Linda J Johnston
- Metrology Research Center, National Research Council Canada, Ottawa, ON, Canada K1A 0R6.
| |
Collapse
|
2
|
Grigoras AG. Investigation of Cellulose-Based Materials Applied in Life Sciences Using Laser Light Scattering Methods. Polymers (Basel) 2024; 16:1170. [PMID: 38675089 PMCID: PMC11054383 DOI: 10.3390/polym16081170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review emphasizes the practical importance of laser light scattering methods for characterizing cellulose and its derivatives. The physicochemical parameters like molecular weights, the radius of gyration, hydrodynamic radius, and conformation will be considered when the reproducibility of polymer behavior in solution is necessary for the subsequent optimization of the property profile of a designed product. Since there are various sources of cellulose, and the methods of cellulose extraction and chemical modification have variable yields, materials with variable molecular weights, and size polydispersity will often result. Later, the molecular masses will influence other physicochemical properties of cellulosic materials, both in solution and solid state. Consequently, the most rigorous determination of these quantities is imperative. In this regard, the following are presented and discussed in this review: the theoretical foundations of the light scattering phenomenon, the evolution of the specific instrumentation and detectors, the development of the detector-coupling techniques which include a light scattering detector, and finally, the importance of the specific parameters of polymers in solution, resulting from the data analysis of light scattering signals. All these aspects are summarized according to the chemical classification of the materials: celluloses, esters of cellulose, co-esters of cellulose, alkyl esters of cellulose, ethers of cellulose, and other heterogeneous cellulose derivatives with applications in life sciences.
Collapse
Affiliation(s)
- Anca-Giorgiana Grigoras
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
3
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Shakiba S, Astete CE, Cueto R, Rodrigues DF, Sabliov CM, Louie SM. Asymmetric flow field-flow fractionation (AF4) with fluorescence and multi-detector analysis for direct, real-time, size-resolved measurements of drug release from polymeric nanoparticles. J Control Release 2021; 338:410-421. [PMID: 34453956 DOI: 10.1016/j.jconrel.2021.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
5
|
Analysis of celluloses, plant holocelluloses, and wood pulps by size-exclusion chromatography/multi-angle laser-light scattering. Carbohydr Polym 2021; 251:117045. [PMID: 33142603 DOI: 10.1016/j.carbpol.2020.117045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022]
Abstract
Size-exclusion chromatography with multi-angle laser-light scattering and refractive index detection (SEC/MALLS/RI) provides the number- and weight-average molar masses, molar mass distributions, conformations, and linear/branched structures of polymers. In the case of pure celluloses including highly crystalline tunicate and alga celluloses, and hemicellulose-rich plant holocelluloses, soaking in ethylene diamine (EDA) and subsequent solvent exchange to N,N-dimethylacetamide (DMAc) though methanol is effective for complete dissolution in ∼8% (w/w) LiCl/DMAc. SEC/MALLS/RI analysis can, therefore, be applied to pure celluloses, chemical wood pulps, and plant holocelluloses after dissolution in ∼8% (w/w) LiCl/DMAc, dilution to 1% (w/v) LiCl/DMAc and membrane filtration. All pure celluloses and the high-molar-mass cellulose fractions of hardwood and grass holocelluloses have linear and random-coil conformations and various average molar masses and molar mass distributions depending on the cellulose and holocellulose resources. In contrast, Japanese cedar (i.e., softwood) holocellulose and softwood bleached kraft pulp have alkali-stable cellulose/glucomannan branched structures in the high-molar-mass fractions.
Collapse
|
6
|
Irvin CW, Satam CC, Liao J, Russo PS, Breedveld V, Meredith JC, Shofner ML. Synergistic Reinforcement of Composite Hydrogels with Nanofiber Mixtures of Cellulose Nanocrystals and Chitin Nanofibers. Biomacromolecules 2020; 22:340-352. [PMID: 33275405 DOI: 10.1021/acs.biomac.0c01198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Simultaneous incorporation of cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs) into a polyvinyl alcohol (PVA) matrix opens possibilities for customization of more environmentally friendly composite materials. When used in tricomponent composite hydrogels, the opposite surface charges on CNCs and ChNFs lead to the construction of beneficial nanofiber structures. In this work, composite hydrogels containing CNCs, ChNFs, or their mixtures are produced using cyclic freeze-thaw (FT) treatments. When considering different compositions and FT cycling, tricomponent composite hydrogels containing a specific ratio of CNCs/ChNFs are shown to have promising mechanical performance in comparison to other samples. These results together with results from water absorption, rheological, and light scattering studies suggest that the CNC/ChNF structures produced property improvement by concurrently accessing the stronger interfacial interactions between CNCs and PVA and the longer lengths of the ChNFs for load transfer. Overall, these results provide insight into using electrostatically driven nanofiber structures in nanocomposites.
Collapse
Affiliation(s)
- Cameron W Irvin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chinmay C Satam
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jianshan Liao
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul S Russo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - J Carson Meredith
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Meisha L Shofner
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Chen M, Parot J, Mukherjee A, Couillard M, Zou S, Hackley VA, Johnston LJ. Characterization of Size and Aggregation for Cellulose Nanocrystal Dispersions Separated by Asymmetrical-Flow Field-Flow Fractionation. CELLULOSE (LONDON, ENGLAND) 2019; 27:https://doi.org/10.1007/s10570-019-02909-9. [PMID: 33223627 DOI: 10.1007/s10570-019-02909-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals (CNCs) derived from various types of cellulose biomass have significant potential for applications that take advantage of their availability from renewable natural resources and their high mechanical strength, biocompatibility and ease of modification. However, their high polydispersity and irregular rod-like shape present challenges for the quantitative dimensional determinations that are required for quality control of CNC production processes. Here we have fractionated a CNC certified reference material using a previously reported asymmetrical-flow field-flow fractionation (AF4) method and characterized selected fractions by atomic force microscopy (AFM) and transmission electron microscopy. This work was aimed at addressing discrepancies in length between fractionated and unfractionated CNC and obtaining less polydisperse samples with fewer aggregates to facilitate microscopy dimensional measurements. The results demonstrate that early fractions obtained from an analytical scale AF4 separation contain predominantly individual CNCs. The number of laterally aggregated "dimers" and clusters containing 3 or more particles increases with increasing fraction number. Size analysis of individual particles by AFM for the early fractions demonstrates that the measured CNC length increases with increasing fraction number, in good agreement with the rod length calculated from the AF4 multi-angle light scattering data. The ability to minimize aggregation and polydispersity for CNC samples has important implications for correlating data from different sizing methods.
Collapse
Affiliation(s)
- Maohui Chen
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Jeremie Parot
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | - Arnab Mukherjee
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | | | - Shan Zou
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Vincent A Hackley
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | | |
Collapse
|
8
|
Mukherjee A, Hackley VA. Separation and characterization of cellulose nanocrystals by multi-detector asymmetrical-flow field-flow fractionation. Analyst 2018; 143:731-740. [PMID: 29322138 PMCID: PMC6057617 DOI: 10.1039/c7an01739a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellulose nanocrystals (CNCs) are renewable, naturally derived polymeric nanomaterials receiving substantial attention for a wide range of potential applications. The recent availability of high quality reference materials will facilitate the development and validation of measurement methods needed to advance the scientific and commercial use of CNCs. In the present study, we demonstrate an optimized method to fractionate CNCs with narrow size dispersion based on asymmetrical-flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering (MALS), dynamic light scattering (DLS), and differential refractometry (dRI). A stable suspension of CNC (Certified Reference Material CNCD-1, National Research Council-Canada) in deionized water was prepared using a dispersion method provided by NRC and adopted from a protocol originally developed at the National Institute of Standards and Technology. The as-prepared material was initially characterized in batch mode to validate the NRC dispersion method. AF4 was then optimized for channel and cross flow, mobile phase composition, and injection volume, among other parameters. Additionally, suspensions containing (1.25-10) mg mL-1 CNC were injected directly into the dRI detector (off-line), yielding a dn/dc value of 0.148 ± 0.003 mL g-1. dRI was then used as an on-line mass sensitive detector to quantify recovery. Results show that maximum recovery (≈ 99%) was achieved under optimized conditions. The weight-averaged molar mass (Mw) was estimated at roughly 107 Da from a partial Zimm analysis. The optical radius of gyration, Rg, and the hydrodynamic radius, Rh, were measured during elution. The shape factor (Rg/Rh) ranged from 1.5 to 1.9 for the fractionated material, supporting an elongated or rod-like structure. To our knowledge, this is the first time that both the morphology and molar mass of CNCs have been directly measured for the full distribution of species. Finally, we developed and demonstrated a semi-preparatory fractionation method to separate CNCs at the milligram scale for off-line research and analysis.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive Stop 8520, Gaithersburg, Maryland 20899-8520, USA.
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive Stop 8520, Gaithersburg, Maryland 20899-8520, USA.
| |
Collapse
|
9
|
Detection of nanocellulose in commercial products and its size characterization using asymmetric flow field-flow fractionation. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2106-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
|
11
|
|
12
|
Hu Y, Abidi N. Distinct Chiral Nematic Self-Assembling Behavior Caused by Different Size-Unified Cellulose Nanocrystals via a Multistage Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9863-9872. [PMID: 27584872 DOI: 10.1021/acs.langmuir.6b02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellulose nanocrystals (CNCs) are perfect rodlike nanofibers that can self-assemble and form a chiral nematic phase. We found that different self-assembling morphologies could be formed by different size-unified CNCs. This study reported a facile and new approach of fractionating raw (unseparated) CNCs in a wide particle size distribution (9-1700 nm) into a series of narrower size ranges to obtain size-unified CNCs via a well-designed multistage separation process composed of layered filter membranes with different pore size cutoffs followed by a fast pressurized filtration. The smaller size-unified CNCs readily self-assembled into polish chiral nematic phases with larger pitch value as compared to larger size-unified CNCs. Such a distinction among different chiral nematic phases and pitch values as functions of size was addressed by a mathematical evaluation, which suggested that the reduced volume fraction of the anisotropic phase as a function of both increased ionic strength and reduced crystallinity of rigid-rod-like CNCs is a critical factor. In addition, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction results revealed that different size-unified CNCs exhibited particular thermal stabilities and crystallinities even though their chemical and crystalline structures remained unchanged. The discrepancies in physicochemical characteristics and self-assembling chiral nematic behavior among different size-unified CNCs may benefit the specific functionalization of cellulose materials using size-unified fibers instead of raw CNCs containing mixed small and large fibers.
Collapse
Affiliation(s)
- Yang Hu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas 79409, United States
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
13
|
Wyatt PJ. Measurement of Special Nanoparticle Structures by Light Scattering. Anal Chem 2014; 86:7171-83. [DOI: 10.1021/ac500185w] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip J. Wyatt
- Wyatt Technology Corporation, Santa Barbara, California 93117, United States
| |
Collapse
|
14
|
Affiliation(s)
- Joseph B. Miller
- Department of Physics and Department of Coatings and Polymeric Materials; North Dakota State University; Fargo North Dakota 58108
| | - Erik K. Hobbie
- Department of Physics and Department of Coatings and Polymeric Materials; North Dakota State University; Fargo North Dakota 58108
| |
Collapse
|