1
|
Ban E, Kim A. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions. Anal Biochem 2024; 692:115577. [PMID: 38789006 DOI: 10.1016/j.ab.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments. As an alternative, PicoGreen (PG) has emerged as a valuable method for the quantitative analysis of nucleic acids. PG, a fluorescent dye, enables the quantitation of double-stranded DNA (dsDNA) or double-stranded RNA, including miRNA mimic and siRNA, in solution. It is also applicable to DNA and RNA analysis within cells using techniques like FACS and fluorescence microscopy. Despite its advantages, PG's fluorescence intensity is affected by various experimental conditions, such as pH, salts, and chemical reagents. This review explores the recent applications of PG as a rapid, cost-effective, robust, and accurate assay tool for nucleic acid quantification. We also address the limitations of PG and discuss approaches to overcome these challenges, recognizing the expanding range of its applications.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|
2
|
Kolster M, Sonntag A, Weise C, Correa J, Fuchs H, Walther W, Fernandez-Megia E, Weng A. Broadening the Scope of Sapofection: Cationic Peptide-Saponin Conjugates Improve Gene Delivery In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36095-36105. [PMID: 38970470 PMCID: PMC11261559 DOI: 10.1021/acsami.4c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Gene therapies represent promising new therapeutic options for a variety of indications. However, despite several approved drugs, its potential remains untapped. For polymeric gene delivery, endosomal escape represents a bottleneck. SO1861, a naturally occurring triterpene saponin with endosomal escape properties isolated from Saponaria officinalis L., has been described as additive agent to enhance transfection efficiency (sapofection). However, the challenge to synchronize the saponin and gene delivery system in vivo imposes limitations. Herein, we address this issue by conjugating SO1861 to a peptide-based gene vector using a pH-sensitive hydrazone linker programmed to release SO1861 at the acidic pH of the endosome. Nanoplexes formulated with SO1861-equipped peptides were investigated for transfection efficiency and tolerability in vitro and in vivo. In all investigated cell lines, SO1861-conjugated nanoplexes have shown superior transfection efficiency and cell viability over supplementation of transfection medium with free SO1861. Targeted SO1861-equipped nanoplexes incorporating a targeting peptide were tested in vitro and in vivo in an aggressively growing neuroblastoma allograft model in mice. Using a suicide gene vector encoding the cytotoxic protein saporin, a slowed tumor growth and improved survival rate were observed for targeted SO1861-equipped nanoplexes compared to vehicle control.
Collapse
Affiliation(s)
- Meike Kolster
- Institut
für Pharmazie, Freie Universität
Berlin, Königin-Luise-Straße 2-4, Berlin 14195, Germany
| | - Alexander Sonntag
- Institut
für Pharmazie, Freie Universität
Berlin, Königin-Luise-Straße 2-4, Berlin 14195, Germany
| | - Christoph Weise
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, Berlin 14195, Germany
| | - Juan Correa
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Hendrik Fuchs
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité − Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Wolfgang Walther
- Experimental
Pharmacology & Oncology Berlin-Buch GmbH, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Alexander Weng
- Institut
für Pharmazie, Freie Universität
Berlin, Königin-Luise-Straße 2-4, Berlin 14195, Germany
| |
Collapse
|
3
|
Tagalakis AD, Jayarajan V, Maeshima R, Ho KH, Syed F, Wu L, Aldossary AM, Munye MM, Mistry T, Ogunbiyi OK, Sala A, Standing JF, Moghimi SM, Stoker AW, Hart SL. Integrin-Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumor-Specific Delivery Achieve MYCN Silencing with Improved Survival. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104843. [PMID: 35712226 PMCID: PMC9178728 DOI: 10.1002/adfm.202104843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 06/15/2023]
Abstract
The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.
Collapse
Affiliation(s)
- Aristides D. Tagalakis
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Vignesh Jayarajan
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Ruhina Maeshima
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Kin H. Ho
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Farhatullah Syed
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Lin‐Ping Wu
- Centre for Pharmaceutical Nanotechnology and NanotoxicologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2Copenhagen2100Denmark
- Present address:
Guangzhou institute of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530People's Republic of China
| | - Ahmad M. Aldossary
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
National Center for BiotechnologyKing Abdulaziz City for Science and TechnologyRiyadh11442Saudi Arabia
| | - Mustafa M. Munye
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
Cell and Gene Therapy Catapult12th Floor Tower Wing, Guy's Hospital, Great Maze PondLondonSE1 9RTUK
| | - Talisa Mistry
- Department of HistopathologyGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonWC1N 3JHUK
| | - Olumide Kayode Ogunbiyi
- Department of HistopathologyGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonWC1N 3JHUK
| | - Arturo Sala
- Department of Life SciencesBrunel University LondonKingston LaneMiddlesexUB8 3PHUK
| | - Joseph F. Standing
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Seyed M. Moghimi
- Centre for Pharmaceutical Nanotechnology and NanotoxicologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2Copenhagen2100Denmark
- Present address:
School of Pharmacy, and Translational and Clinical Research Institute, the Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
- Present address:
Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Andrew W. Stoker
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Stephen L. Hart
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
4
|
Zarei H, Malaekeh-Nikouei B, Ramezani M, Soltani F. Multifunctional peptides based on low molecular weight protamine (LMWP) in the structure of polyplexes and lipopolyplexes: Design, preparation and gene delivery characterization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
7
|
Christopher Boyd A, Guo S, Huang L, Kerem B, Oren YS, Walker AJ, Hart SL. New approaches to genetic therapies for cystic fibrosis. J Cyst Fibros 2020; 19 Suppl 1:S54-S59. [PMID: 31948871 DOI: 10.1016/j.jcf.2019.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
Abstract
Gene therapy offers great promise for cystic fibrosis which has never been quite fulfilled due to the challenges of delivering sufficient amounts of the CFTR gene and expression persistence for a sufficient period of time in the lungs to have any effect. Initial trials explored both viral and non-viral vectors but failed to achieve a significant breakthrough. However, in recent years, new opportunities have emerged that exploit our increased knowledge and understanding of the biology of CF and the airway epithelium. New technologies include new viral and non-viral vector approaches to delivery, but also alternative nucleic acid technologies including oligonucleotides and siRNA approaches for gene silencing and gene splicing, described in this review, as presented at the 2019 annual European CF Society Basic Science meeting (Dubrovnik, Croatia). We also briefly discuss other emerging technologies including mRNA and CRISPR gene editing that are advancing rapidly. The future prospects for genetic therapies for CF are now diverse and more promising probably than any time since the discovery of the CF gene.
Collapse
Affiliation(s)
- A Christopher Boyd
- University of Edinburgh, Centre for Genomic and Experimental Medicine, University of Edinburgh and Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh UK; UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Shuling Guo
- Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Lulu Huang
- Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem Israel; SpliSenseTherapeutics, Givat Ram Campus, Hebrew University, Jerusalem, Israel
| | - Yifat S Oren
- SpliSenseTherapeutics, Givat Ram Campus, Hebrew University, Jerusalem, Israel
| | - Amy J Walker
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London UK
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London UK.
| |
Collapse
|
8
|
Fernando O, Tagalakis AD, Awwad S, Brocchini S, Khaw PT, Hart SL, Yu-Wai-Man C. Development of Targeted siRNA Nanocomplexes to Prevent Fibrosis in Experimental Glaucoma Filtration Surgery. Mol Ther 2018; 26:2812-2822. [PMID: 30301666 PMCID: PMC6277485 DOI: 10.1016/j.ymthe.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/28/2022] Open
Abstract
RNAi induced by double-stranded small interfering RNA (siRNA) molecules has attracted great attention as a naturally occurring approach to silence gene expression with high specificity. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a master regulator of cytoskeletal gene expression and, thus, represents a promising target to prevent fibrosis. A major hurdle to implementing siRNA therapies is the method of delivery, and we have, thus, optimized lipid-peptide-siRNA (LPR) nanoparticles containing MRTF-B siRNAs as a targeted approach to prevent conjunctival fibrosis. We tested 15 LPR nanoparticle formulations with different lipid compositions, surface charges, and targeting or non-targeting peptides in human conjunctival fibroblasts. In vitro, the LPR formulation of the DOTMA/DOPE lipid with the targeting peptide Y (LYR) was the most efficient in MRTF-B gene silencing and non-cytotoxic compared to the non-targeting formulation. In vivo, subconjunctival administration of LYR nanoparticles containing MRTF-B siRNAs doubled bleb survival in a pre-clinical rabbit model of glaucoma filtration surgery. Furthermore, MRTF-B LYR nanoparticles reduced the MRTF-B mRNA by 29.6% in rabbit conjunctival tissues, which led to significantly decreased conjunctival scarring with no adverse side effects. LYR-mediated delivery of siRNA shows promising results to increase bleb survival and to prevent conjunctival fibrosis after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Owen Fernando
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Aristides D Tagalakis
- Experimental and Personalised Medicine Section, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK
| | - Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK; UCL School of Pharmacy, London WC1N 1AX, UK
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK; UCL School of Pharmacy, London WC1N 1AX, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Cynthia Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK; King's College London, London SE1 7EH, UK.
| |
Collapse
|
9
|
Tagalakis AD, Munye MM, Ivanova R, Chen H, Smith CM, Aldossary AM, Rosa LZ, Moulding D, Barnes JL, Kafetzis KN, Jones SA, Baines DL, Moss GWJ, O'Callaghan C, McAnulty RJ, Hart SL. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax 2018; 73:847-856. [PMID: 29748250 PMCID: PMC6109249 DOI: 10.1136/thoraxjnl-2017-210670] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mustafa M Munye
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rositsa Ivanova
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Hanpeng Chen
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Claire M Smith
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ahmad M Aldossary
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Luca Z Rosa
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Konstantinos N Kafetzis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Deborah L Baines
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Guy W J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, London, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
10
|
Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Sci Rep 2017; 7:700. [PMID: 28386087 PMCID: PMC5428798 DOI: 10.1038/s41598-017-00662-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
The inhibition of ENaC may have therapeutic potential in CF airways by reducing sodium hyperabsorption, restoring lung epithelial surface fluid levels, airway hydration and mucociliary function. The challenge has been to deliver siRNA to the lung with sufficient efficacy for a sustained therapeutic effect. We have developed a self-assembling nanocomplex formulation for siRNA delivery to the airways that consists of a liposome (DOTMA/DOPE; L), an epithelial targeting peptide (P) and siRNA (R). LPR formulations were assessed for their ability to silence expression of the transcript of the gene encoding the α-subunit of the sodium channel ENaC in cell lines and primary epithelial cells, in submerged cultures or grown in air-liquid interface conditions. LPRs, containing 50 nM or 100 nM siRNA, showed high levels of silencing, particularly in primary airway epithelial cells. When nebulised these nanocomplexes still retained their biophysical properties and transfection efficiencies. The silencing ability was determined at protein level by confocal microscopy and western blotting. In vivo data demonstrated that these nanoparticles had the ability to silence expression of the α-ENaC subunit gene. In conclusion, these findings show that LPRs can modulate the activity of ENaC and this approach might be promising as co-adjuvant therapy for cystic fibrosis.
Collapse
|
11
|
Tagalakis AD, Maeshima R, Yu-Wai-Man C, Meng J, Syed F, Wu LP, Aldossary AM, McCarthy D, Moghimi SM, Hart SL. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomater 2017; 51:351-362. [PMID: 28110069 DOI: 10.1016/j.actbio.2017.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
One of the greatest challenges for the development of genetic therapies is the efficient targeted delivery of therapeutic nucleic acids. Towards this goal, we have introduced a new engineering initiative in self-assembly of biologically safe and stable nanovesicle complexes (∼90 to 140nm) derived from giant unilamellar vesicle (GUV) precursors and comprising plasmid DNA or siRNA and targeting peptide ligands. The biological performance of the engineered nanovesicle complexes were studied both in vitro and in vivo and compared with cationic liposome-based lipopolyplexes. Compared with cationic lipopolyplexes, nanovesicle complexes did not show advantages in transfection and cell uptake. However, nanovesicle complexes neither displayed significant cytotoxicity nor activated the complement system, which are advantageous for intravenous injection and tumour therapy. On intravenous administration into a neuroblastoma xenograft mouse model, nanovesicle complexes were found to distribute throughout the tumour interstitium, thus providing an alternative safer approach for future development of tumour-specific therapeutic nucleic acid interventions. On oropharyngeal instillation, nanovesicle complexes displayed better transfection efficiency than cationic lipopolyplexes. The technological advantages of nanovesicle complexes, originating from GUVs, over traditional cationic liposome-based lipopolyplexes are discussed. STATEMENT OF SIGNIFICANCE The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders.
Collapse
Affiliation(s)
- A D Tagalakis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | - R Maeshima
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - C Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - J Meng
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - F Syed
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - L-P Wu
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - A M Aldossary
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - D McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - S M Moghimi
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
12
|
Ahmed M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater Sci 2017; 5:2188-2211. [DOI: 10.1039/c7bm00584a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide, polypeptide and polymer–peptide hybrid based nucleic acid therapeutics (NAT).
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Chemistry & School of Sustainable Design and Engineering
- University of Prince Edward Island
- Charlottetown
- Canada
| |
Collapse
|
13
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
14
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
15
|
Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep 2016; 6:21881. [PMID: 26905457 PMCID: PMC4764806 DOI: 10.1038/srep21881] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022] Open
Abstract
There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.
Collapse
Affiliation(s)
- Cynthia Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Maria D Manunta
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
16
|
Lee YK, Lee TS, Song IH, Jeong HY, Kang SJ, Kim MW, Ryu SH, Jung IH, Kim JS, Park YS. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther 2015; 22:335-43. [DOI: 10.1038/cgt.2015.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/20/2023]
|
17
|
Tagalakis AD, Castellaro S, Zhou H, Bienemann A, Munye MM, McCarthy D, White EA, Hart SL. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. Int J Nanomedicine 2015; 10:2673-83. [PMID: 25878500 PMCID: PMC4388080 DOI: 10.2147/ijn.s78935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Sara Castellaro
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK ; Department of Pharmacy, University of Genova, Genova, Italy
| | - Haiyan Zhou
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Alison Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Mustafa M Munye
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | | | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| |
Collapse
|
18
|
Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep 2015; 5:9292. [PMID: 25786833 PMCID: PMC4365389 DOI: 10.1038/srep09292] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/26/2015] [Indexed: 01/22/2023] Open
Abstract
Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency.
Collapse
|
19
|
Tagalakis AD, Lee DHD, Bienemann AS, Zhou H, Munye MM, Saraiva L, McCarthy D, Du Z, Vink CA, Maeshima R, White EA, Gustafsson K, Hart SL. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 2014; 35:8406-15. [PMID: 24985735 DOI: 10.1016/j.biomaterials.2014.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5' RACE-PCR and Western blot analysis of protein.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Do Hyang D Lee
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Haiyan Zhou
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Mustafa M Munye
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Luisa Saraiva
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - David McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zixiu Du
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Conrad A Vink
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ruhina Maeshima
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Kenth Gustafsson
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stephen L Hart
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
20
|
Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, Fenton OS, Zhang Y, Olejnik KT, Yesilyurt V, Chen D, Barros S, Klebanov B, Novobrantseva T, Langer R, Anderson DG. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 2014; 5:4277. [PMID: 24969323 PMCID: PMC4111939 DOI: 10.1038/ncomms5277] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/02/2014] [Indexed: 12/16/2022] Open
Abstract
One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg(-1)). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.
Collapse
Affiliation(s)
- Kathryn A. Whitehead
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - J. Robert Dorkin
- Department of Biology, Massachusetts Institute of Technology, 77
Massachusetts Ave., Cambridge, MA 02139 USA
| | - Arturo J. Vegas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Philip H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Omid Veiseh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Jonathan Matthews
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Owen S. Fenton
- Department of Chemistry, Massachusetts Institute of Technology, 77
Massachusetts Ave., Cambridge, MA 02139 USA
| | - Yunlong Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Karsten T. Olejnik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Volkan Yesilyurt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Delai Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Scott Barros
- Alnylam Pharmaceuticals, 300 Third St., Cambridge, MA 02142
| | - Boris Klebanov
- Alnylam Pharmaceuticals, 300 Third St., Cambridge, MA 02142
| | | | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 USA
- The Institute for Medical Engineering and Science, Massachusetts Institute
of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 USA
- The Institute for Medical Engineering and Science, Massachusetts Institute
of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| |
Collapse
|
21
|
Falsini S, Ristori S, Ciani L, Di Cola E, Supuran CT, Arcangeli A, In M. Time resolved SAXS to study the complexation of siRNA with cationic micelles of divalent surfactants. SOFT MATTER 2014; 10:2226-2233. [PMID: 24651873 DOI: 10.1039/c3sm52429a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The complexation of siRNA (small interfering RNA) with cationic micelles was studied using time dependent synchrotron SAXS. Micelles were formed by two types of divalent cationic surfactants, i.e. Gemini bis(quaternary ammonium) bromide with variable spacer length (12-3-12, 12-6-12, 12-12-12) and a weak electrolyte surfactant (SH14) with triazine head. Immediately after mixing (t < 50 ms), new large aggregates appeared in solution and the scattering intensity at low q increased. Concomitantly, the presence of a quasi-Bragg peak at q ∼ 1.5 nm(-1) indicated core structuring within the complexes. We hypothesize that siRNA and micelles are alternately arranged into "sandwiches", forming domains with internal structural coherence. The process of complex reorganization followed a first-order kinetics and was completed in less than about 5 minutes, after which a steady state was reached. Aggregates containing Geminis were compact globular structures whose gyration radii Rg depended on the spacer length and were in the order of 7-27 nm. Complexes containing SH14 (Rg = 14-16 nm) were less ordered and possessed a looser internal arrangement. The obtained data, joint with previous structural investigation using Dynamic Light Scattering, Zeta Potential and Small Angle Neutron Scattering, are encouraging evidence for using these systems in biological trials. In fact we showed that transfection agents can be obtained by simply mixing a micelle solution of the cationic surfactant and a siRNA solution, both of which are easily prepared and stable.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Chemistry "Ugo Shiff" & CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Tagalakis AD, Kenny GD, Bienemann AS, McCarthy D, Munye MM, Taylor H, Wyatt MJ, Lythgoe MF, White EA, Hart SL. PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. J Control Release 2013; 174:177-87. [PMID: 24269968 DOI: 10.1016/j.jconrel.2013.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023]
Abstract
Non-viral vector formulations comprise typically complexes of nucleic acids with cationic polymers or lipids. However, for in vivo applications cationic formulations suffer from problems of poor tissue penetration, non-specific binding to cells, interaction with serum proteins and cell adhesion molecules and can lead to inflammatory responses. Anionic formulations may provide a solution to these problems but they have not been developed to the same extent as cationic formulations due to difficulties of nucleic acid packaging and poor transfection efficiency. We have developed novel PEGylated, anionic nanocomplexes containing cationic targeting peptides that act as a bridge between PEGylated anionic liposomes and plasmid DNA. At optimized ratios, the components self-assemble into anionic nanocomplexes with a high packaging efficiency of plasmid DNA. Anionic PEGylated nanocomplexes were resistant to aggregation in serum and transfected cells with a far higher degree of receptor-targeted specificity than their homologous non-PEGylated anionic and cationic counterparts. Gadolinium-labeled, anionic nanoparticles, administered directly to the brain by convection-enhanced delivery displayed improved tissue penetration and dispersal as well as more widespread cellular transfection than cationic formulations. Anionic PEGylated nanocomplexes have widespread potential for in vivo gene therapy due to their targeted transfection efficiency and ability to penetrate tissues.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Gavin D Kenny
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - David McCarthy
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mustafa M Munye
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Hannah Taylor
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Marcella J Wyatt
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biological Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Stephen L Hart
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|