1
|
Sun H, Zhong Z. Bioresponsive Polymeric Nanoparticles: From Design, Targeted Therapy to Cancer Immunotherapy. Biomacromolecules 2025; 26:33-42. [PMID: 39667037 DOI: 10.1021/acs.biomac.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns. In the past 17 years, we have devoted ourselves to exploring elegant strategies to address the above basic and translational problems by introducing diverse functional groups and/or targeting ligands to safe biomedical materials, such as biodegradable polymers and water-soluble polymers. This minimal modification is critical for further clinical translation. We have tailor-made various bioresponsive NPs including shell-sheddable and/or acid-sensitive biodegradable NPs, disulfide-cross-linked biodegradable micelles and polymersomes, and blood-brain barrier (BBB)-permeable NPs, to target different tumors. This perspective provides an overview of our work path toward targeted nanomedicines and personalized vaccines, which might inspire clinical translation and future research on cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, PR China
| |
Collapse
|
2
|
Hu Y, Lan T, Li J, Li L, Song J. Glycyrrhetinic acid-modified redox-sensitive polymeric mixed micelles for tumor-specific intracellular delivery of cantharidin. RSC Adv 2024; 14:28753-28767. [PMID: 39257662 PMCID: PMC11386168 DOI: 10.1039/d4ra03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Cantharidin (CTD) has been widely used to treat hepatocellular carcinoma (HCC) in clinical practice. However, the current CTD preparations may induce hepatic and renal damage due to their non-specific distribution. Therefore, redox-sensitive polymer Pluronic F127-disulfide bond-poly(d,l-lactide) (F127-SS-PDLA) and active targeting polymer F127-glycyrrhetinic acid (F127-GA) were synthesized to prepare mixed micelles (GA/F127-SS-PDLA/CTD) for effective delivery of CTD. Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy were used to verify the successful synthesis of F127-SS-PDLA and F127-GA. During the preparation, this study was the first to screen the density of GA by cellular uptake assay. The results indicated that mixed micelles with 10% and 15% F127-GA (weight fraction) exhibited superior cellular uptake in comparison to micelles with 5% and 20% F127-GA. GA/F127-SS-PDLA/CTD micelles prepared by thin film hydration method demonstrated excellent drug loading capacity for CTD (16.12 ± 0.11%). The particle size and zeta potential of GA/F127-SS-PDLA/CTD micelles were 85.17 ± 1.24 nm and -11.71 ± 0.86 mV, respectively. Hemolysis and stability assay showed that the mixed micelles had good blood compatibility and could remain stable for 30 days at 4 °C. The redox-sensitivity of GA/F127-SS-PDLA/CTD micelles in vitro was verified under reducing conditions through dynamic light scattering (DLS) and an in vitro drug release experiment, which showed obvious particle size variation and rapid drug release ability. In cellular experiments, GA/F127-SS-PDLA/CTD micelles could induce superior cytotoxicity, apoptosis and intracellular reactive oxygen species (ROS) levels compared with free CTD, non-sensitive F127-PDLA/CTD micelles and redox-sensitive F127-SS-PDLA/CTD micelles. The cellular uptake ability of nile red-labeled GA/F127-SS-PDLA micelles, which was evaluated via fluorescent microscope and flow cytometry, indicated that the modification of GA significantly increased micelle uptake in HepG-2 cells. Consequently, GA/F127-SS-PDLA/CTD micelles could be considered as a satisfactory drug administration strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Tian Lan
- Innovative Institute of Chinese Medicine, Shandong University of TCM 250355 Jinan Shandong China
| | - Ji Li
- Affiliated Hospital of Shandong University of TCM 250011 Jinan Shandong China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| |
Collapse
|
3
|
Ali MU, Chaudhary BN, Panja S, Gendelman HE. Theranostic Diagnostics. Results Probl Cell Differ 2024; 73:551-578. [PMID: 39242393 DOI: 10.1007/978-3-031-62036-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Diagnosing and then treating disease defines theranostics. The approach holds promise by facilitating targeted disease outcomes. The simultaneous analysis of finding the presence of disease pathophysiology while providing a parallel in treatment is a novel and effective strategy for seeking improved medical care. We discuss how theranostics improves disease outcomes is discussed. The chapter reviews the delivery of targeted therapies. Bioimaging techniques are highlighted as early detection and tracking systems for microbial infections, degenerative diseases, and cancers.
Collapse
Affiliation(s)
- Mohammad Uzair Ali
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharat N Chaudhary
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Mishra AK, Pandey M, Dewangan HK, Sl N, Sahoo PK. A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches. Curr Drug Targets 2022; 23:1381-1405. [PMID: 36065923 DOI: 10.2174/1389450123666220906091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis of hepatic diseases involves several cells, which complicates the delivery of pharmaceutical agents. Many severe liver diseases affecting the worldwide population cannot be effectively treated. Major hindrances or challenges are natural physiological barriers and non-specific targeting of drugs administered, leading to inefficient treatment. Hence, there is an earnest need to look for novel therapeutic strategies to overcome these hindrances. A kind of literature has reported that drug safety and efficacy are incredibly raised when a drug is incorporated inside or attached to a polymeric material of either hydrophilic or lipophilic nature. This has driven the dynamic investigation for developing novel biodegradable materials, drug delivery carriers, target-specific drug delivery systems, and many other novel approaches. OBJECTIVE Present review is devoted to summarizing receptor-based liver cell targeting using different modified novel synthetic drug delivery carriers. It also highlights recent progress in drug targeting to diseased liver mediated by various receptors, including asialoglycoprotein, mannose and galactose receptor, Fc receptor, low-density lipoprotein, glycyrrhetinic, and bile acid receptor. The essential consideration is given to treating liver cancer targeting using nanoparticulate systems, proteins, viral and non-viral vectors, homing peptides and gene delivery. CONCLUSION Receptors based targeting approach is one such approach that was explored by researchers to develop novel formulations which can ensure site-specific drug delivery. Several receptors are on the surfaces of liver cells, which are highly overexpressed in various disease conditions. They all are helpful for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101, India
| | - Neha Sl
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| |
Collapse
|
5
|
Lai X, Liu XL, Pan H, Zhu MH, Long M, Yuan Y, Zhang Z, Dong X, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C. Light-Triggered Efficient Sequential Drug Delivery of Biomimetic Nanosystem for Multimodal Chemo-, Antiangiogenic, and Anti-MDSC Therapy in Melanoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106682. [PMID: 34989039 DOI: 10.1002/adma.202106682] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In view of the multiple pathological hallmarks of tumors, nanosystems for the sequential delivery of various drugs whose targets are separately located inside and outside tumor cells are desired for improved cancer therapy. However, current sequential delivery is mainly achieved through enzyme- or acid-dependent degradation of the nanocarrier, which would be influenced by the heterogeneous tumor microenvironment, and unloading efficiency of the drug acting on the target outside tumor cells is usually unsatisfactory. Here, a light-triggered sequential delivery strategy based on a liposomal formulation of doxorubicin (DOX)-loaded small-sized polymeric nanoparticles (DOX-NP) and free sunitinib in the aqueous cavity, is developed. The liposomal membrane is doped with photosensitizer porphyrin-phospholipid (PoP) and hybridized with red blood cell membrane to confer biomimetic features. Near-infrared light-induced membrane permeabilization triggers the "ultrafast" and "thorough" release of sunitinib (100% release in 5 min) for antiangiogenic therapy and also myeloid-derived suppressor cell (MDSC) inhibition to reverse the immunosuppressive tumor environment. Subsequently, the small-sized DOX-NP liberated from the liposomes is more easily uptaken by tumor cells for improved immunogenic chemotherapy. RNA sequencing and immune-related assay indicates therapeutic immune enhancement. This light-triggered sequential delivery strategy demonstrates the potency in cancer multimodal therapy against multiple targets in different spatial positions in tumor microenvironment.
Collapse
Affiliation(s)
- Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Hong Pan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei Long
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| |
Collapse
|
6
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022; 33:369-385. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective nanocarrier-mediated drug delivery to cancer cells primarily faces limitations like the presence of successive drug delivery barriers, insufficient circulation time, drug leakage, and decreased tumor penetration capacity. With the aim of addressing this paradox, a self-therapeutic, curcumin-derived copolymer was synthesized by conjugation with PEGylated biotin via enzyme- and acid-labile ester and acetal linkages. This copolymer is a prodrug of curcumin and self-assembles into ∼150-200 nm-sized nanomicelles; it is capable of encapsulating doxorubicin (DOX) and hence can be designated as self-therapeutic. pH- and enzyme-responsive linkages in the polymer skeleton assist in its hierarchical disassembly only in the tumor microenvironment. Further, the conjugation of biotin and poly(ethylene glycol) (PEG) imparts features of tumor specificity and improved circulation times to the nanocarrier. The dynamic light scattering (DLS) analysis supports this claim and demonstrates rapid swelling and disruption of micelles under acidic pH. UV-vis spectroscopy provided evidence of an accelerated acetal degradation at pH 4.0 and 5.0. The in vitro release studies revealed a controlled release of DOX under acidic conditions and curcumin release in response to the enzyme. The value of the combination index calculated on HepG2 cells was found to be <1, and hence, the drug pair curcumin and DOX acts synergistically for tumor regression. To prove the efficiency of acid-labile linkages and the prodrug strategy for effective cancer therapy, curcumin-derived polymers devoid of sensitive linkages were also prepared. The prodrug stimuli-responsive nanomicelles showed enhanced cell cytotoxicity and tumor penetration capability on HepG2 cells as well as drug-resistant MCF-7 cell lines and no effect on normal NIH/3T3 fibroblasts as compared to the nonresponsive micelles. The results were also supported by in vivo evidence on a hepatocellular carcinoma (HCC)-induced nude mice model. An evident decrease in MMP-2, MMP-9, and α-fetoprotein (AFP), the biomarkers specific to tumor progression, was observed along with metastasis upon treatment with the drug-loaded dual-responsive nanomicelles. These observations corroborated with the SGOT and SGPT data as well as the histoarchitecture of the liver tissue in mice.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad 382 481, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| |
Collapse
|
7
|
Kalva N, Uthaman S, Lee SJ, Lim YJ, Augustine R, Huh KM, Park IK, Kim I. Degradable pH-responsive polymer prodrug micelles with aggregation-induced emission for cellular imaging and cancer therapy. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Li C, Xu Y, Liu SY, Zhang Y, Yin W, Dai Z, Zou X. Cancer cell identification by facile imaging of intracellular reductive substances with fluorescent nanosensor. Talanta 2021; 234:122650. [PMID: 34364459 DOI: 10.1016/j.talanta.2021.122650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Ascorbic acid (AA) and glutathione (GSH), the most abundant intracellular reductive substances, have been widely used as biomarkers for cancer cells identification. The current methods relying on imaging of AA or GSH alone to identify cancer cells may cause systematic errors, since a mutual conversion relationship exists between AA and GSH. In this work, we propose a fluorescent nanosensor for the simultaneous imaging of intracellular reductive substances including AA and GSH. Biocompatible fluorescent silicon nanoparticles (SiNPs) with rich surface amine and carboxyl groups were synthesized. The fluorescence of the SiNP was initially quenched by chelation of Fe3+ ions, forming SiNP/Fe3+ complex as the fluorescent nanosensor. Upon the redox reaction with reductive substances, the nanosensor showed sensitively fluorescent recovery. Moreover, benefited from the efficient cellular uptake of the SiNP/Fe3+ and the overexpressed intracellular reductive substances in cancer cells, the fluorescent nanosensor was used to accurately identify the human breast carcinoma (MCF-7) cells from normal mammary epithelial (MCF-10A) cells by imaging of intracellular AA and GSH simultaneously. This strategy would be promising in imaging-guided precision cancer diagnosis.
Collapse
Affiliation(s)
- Chunrong Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Yuzhi Xu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Si-Yang Liu
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Braatz D, Dimde M, Ma G, Zhong Y, Tully M, Grötzinger C, Zhang Y, Mavroskoufis A, Schirner M, Zhong Z, Ballauff M, Haag R. Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)-SS-poly(ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting. Biomacromolecules 2021; 22:2625-2640. [PMID: 34076415 DOI: 10.1021/acs.biomac.1c00333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper, we present well-defined dPGS-SS-PCL/PLGA/PLA micellar systems demonstrating excellent capabilities as a drug delivery platform in light of high stability and precise in vitro and in vivo drug release combined with active targetability to tumors. These six amphiphilic block copolymers were each targeted in two different molecular weights (8 or 16 kDa) and characterized using 1H NMR, gel permeation chromatography (GPC), and elemental analysis. The block copolymer micelles showed monodispersed size distributions of 81-187 nm, strong negative charges between -52 and -41 mV, and low critical micelle concentrations (CMCs) of up to 1.13-3.58 mg/L (134-527 nM). The serum stability was determined as 94% after 24 h. The drug-loading efficiency for Sunitinib ranges from 38 to 83% (8-17 wt %). The release was selectively triggered by glutathione (GSH) and lipase, reaching 85% after 5 days, while only 20% leaching was observed under physiological conditions. Both the in vitro and in vivo studies showed sustained release of Sunitinib over 1 week. CCK-8 assays on HeLa lines demonstrated the high cell compatibility (1 mg/mL, 94% cell viability, 48 h) and the high cancer cell toxicity of Sunitinib-loaded micelles (IC50 2.5 μg/mL). By in vivo fluorescence imaging studies on HT-29 tumor-bearing mice, the targetability of dPGS7.8-SS-PCL7.8 enabled substantial accumulation in tumor tissue compared to nonsulfated dPG3.9-SS-PCL7.8. As a proof of concept, Sunitinib-loaded dPGS-SS-poly(ester) micelles improved the antitumor efficacy of the chemotherapeutic. A tenfold lower dosage of loaded Sunitinib led to an even higher tumor growth inhibition compared to the free drug, as demonstrated in a HeLa human cervical tumor-bearing mice model. No toxicity for the organism was observed, confirming the good biocompatibility of the system.
Collapse
Affiliation(s)
- Daniel Braatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Mathias Dimde
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Guoxin Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Michael Tully
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, 13353 Berlin, Germany
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Alexandros Mavroskoufis
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
10
|
Tang M, Yang M, He K, Li R, Chen X, Wang Y, Zhang X, Qiu T. Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model. NANOTECHNOLOGY 2021; 32:185702. [PMID: 33503591 DOI: 10.1088/1361-6528/abe076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We aimed to combine glycyrrhetinic acid with doxorubicin to prepare, characterize and evaluate a drug delivery nano-system with REDOX sensitivity for the treatment of breast cancer. M-DOX-GA NPs prepared by nano sedimentation were spherical, with a particle size of 181 nm. And the maximum encapsulation efficiency and drug loading in M-DOX-GA NPs were 89.28% and 18.22%, respectively. Cytotoxicity and cellular uptake experiments of nanoparticles to KC cells, Cal-27 cells and 4T1 cells were studied by the CCK-8 method. The result indicated that M-DOX-GA NPs could accurately release the drug into the tumor cells, thus achieving the targeted release of the drug. Comparing the survival rate of the above three cells, it was found that M-DOX-GA NPs had a good tumor selectivity and had a more significant therapeutic effect on breast cancer. A 4T1-bearing mouse model was established, and the tumor inhibition rate was 77.37% after injection of nanoparticle solution for 14 d. Normal tissue H&E stained sections and TUNEL assay were verified M-DOX-GA NPs have excellent tumor suppressive effect, and can efficiently reduce the toxic side effects on normal organisms, and effectively avoided 4T1 cells metastasis. Immunofluorescence detection and Western-blot analysis figured a decline in both CUGBP1 and α-SMA, which verifying the TME remodeling induced by glycyrrhetinic acid. Collectively, the combination of doxorubicin and glycyrrhetinic acid is an effective and safe strategy for remodeling fibrotic TME by improving the therapeutic outcome for breast cancer.
Collapse
Affiliation(s)
- Mingxiu Tang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengjia Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Kaiyong He
- Hubei Institute for Drug Control, Wuhan University, Wuhan 430079, People's Republic of China
| | - Ran Li
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, People's Republic of China
| | - Xiaojie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Yaowen Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Tong Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
11
|
Yan J, Zhang N, Zhang Z, Zhu W, Li B, Li L, Pu Y, He B. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance. J Control Release 2020; 329:36-49. [PMID: 33259850 DOI: 10.1016/j.jconrel.2020.11.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Deep penetration of nanomedicines to cancer cells and tissues is a main obstacle to conquering multidrug resistant (MDR) cancer. Here, we presented redox-responsive polyethyleneimine (disulfide cross-linked PEI, PSP)/tetrahedral DNA (TDNs)/doxorubicin (DOX) nanocomplexes (NCs), PSP/TDNs@DOX NCs, to accomplish tumor cell/tissue penetration for overcoming MDR. The NCs can respond to glutathione and DNase I to disassociate and release DOX. In vitro study revealed that the NCs (N/P = 30) with positive charge could be associated to cell membranes and "dig holes" on them, evoking the membrane-breaking for enhanced cellular internalization and bypassing endocytosis regardless of drug-resistant mechanism. Transwell and 3D tumor models study established that NCs can efficiently depart from cells through "holes leakage" and "infected" surrounding cells to penetrate into deep tumor tissues. In vivo study showed that the PSP/TDNs@DOX NCs exhibited superior tumor penetration and therapeutic efficiency in xenografted drug-resistant tumor mouse models including human breast (MCF-7/R) and ovarian (SKOV3/R) cancer, which represent MDR with characteristics of DOX efflux and impermeability, respectively.
Collapse
Affiliation(s)
- Jianqin Yan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Bing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Li Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
12
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
13
|
Fan L, Wang J, Xia C, Zhang Q, Pu Y, Chen L, Chen J, Wang Y. Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy. J Mater Chem B 2020; 8:3113-3122. [PMID: 32207763 DOI: 10.1039/c9tb02818h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, a drug delivery system based on glutathione (GSH)-sensitive and folic acid (FA)-targeted nanoparticles loaded with paclitaxel (FA-PEG-S-S-PCL@PTX, FA-NPs) was developed. First, we proved that the FA receptor was significantly expressed in 95 oral squamous cell carcinoma (OSCC) specimens (57.9%). This provided feasibility to release FA-targeted nanoparticles in tumour sites for patients with OSCC. Next, FA-NPs were synthesized and characterized. In vitro, we found enhancement in FA-mediated endocytosis in the HSC3 cells with FA overexpression. Therefore, paclitaxel (PTX) from FA-NPs could be precisely released due to the disulfide bonds that were cleaved by a redox reaction. In vivo, FA-NPs could be accumulated in mice bearing HSC3 cells, where they exhibited effective antitumor effects when compared to the treatments with free PTX and PEG-S-S-PCL@PTX. In summary, this novel drug system has an opportunity to improve OSCC treatment.
Collapse
Affiliation(s)
- Lei Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10:4557-4588. [PMID: 32292515 PMCID: PMC7150471 DOI: 10.7150/thno.38069] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, much progress has been motivated in stimuli-responsive nanocarriers, which could response to the intrinsic physicochemical and pathological factors in diseased regions to increase the specificity of drug delivery. Currently, numerous nanocarriers have been engineered with physicochemical changes in responding to external stimuli, such as ultrasound, thermal, light and magnetic field, as well as internal stimuli, including pH, redox potential, hypoxia and enzyme, etc. Nanocarriers could respond to stimuli in tumor microenvironments or inside cancer cells for on-demanded drug delivery and accumulation, controlled drug release, activation of bioactive compounds, probes and targeting ligands, as well as size, charge and conformation conversion, etc., leading to sensing and signaling, overcoming multidrug resistance, accurate diagnosis and precision therapy. This review has summarized the general strategies of developing stimuli-responsive nanocarriers and recent advances, presented their applications in drug delivery, tumor imaging, therapy and theranostics, illustrated the progress of clinical translation and made prospects.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, 610041, China
| |
Collapse
|
15
|
Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. SOFT MATTER 2020; 16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic nature of the disulfide bond has enhanced the potential for disulfide based amphiphiles in the emerging biomedical field. Disulfide containing amphiphiles have extensively been used for constructing wide ranging soft nanostructures as potential candidates for delivery of drugs, proteins and genes owing to their degradable nature in the presence of intracellular glutathione (present in a many fold excess compared to the extracellular milieu). This degradable nature of amphiphiles is not only useful to deliver therapeutics but it also eliminates the toxicity issues associated with the carrier after delivery of such therapeutics. Therefore, these bioreducible and biocompatible nano-aggregates inspired researchers to use them as vehicles for therapeutic delivery and as a result the literature of disulfide containing amphiphiles has been intensified. This review article highlights the structural diversity in disulfide containing amphiphilic small molecule and polymeric systems, structural effects on their aqueous aggregation, redox-responsive disassembly and biological applications. Furthermore, the use of disulfide chemistry towards the design of cell penetrating polymers has also been discussed. Finally a brief perspective on some future opportunities of these systems is provided.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
16
|
|
17
|
Wang Y, Zhang Y, Jin M, Lv Y, Pei Z, Pei Y. A Hypericin Delivery System Based on Polydopamine Coated Cerium Oxide Nanorods for Targeted Photodynamic Therapy. Polymers (Basel) 2019; 11:E1025. [PMID: 31185679 PMCID: PMC6630464 DOI: 10.3390/polym11061025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) as a non-aggressive therapy with fewer side effects has unique advantages over traditional treatments. However, PDT still has certain limitations in clinical applications, mainly because most photosensitizers utilized in PDT are hydrophobic compounds, which will self-aggregate in the aqueous phase and cause undesirable effects. In order to resolve this, we utilized the self-polymerization of dopamine molecules under alkaline conditions to coat cerium oxide nanorods (CeONR) with a dense polydopamine (PDA) film. Thereafter, thiolated galactose (Gal-SH) and hypericin (Hyp) were modified and loaded onto the surface to construct CeONR@PDA-Gal/Hyp, respectively, which can be used for targeted photodynamic therapy of human hepatoma HepG2 cells. CeONR@PDA-Gal/Hyp was characterized by transmission electron microscope (TEM), Zeta potential, Ultraviolet-visible (UV-Vis), and fluorescence spectroscopy, respectively. This hypericin delivery system possesses good biocompatibility and specific targeting ability, where the galactose units on the surface of CeONR@PDA-Gal/Hyp can specifically recognize the asialo-glycoprotein receptors (ASGP-R), which overexpress on HepG2 cell membrane. Furthermore, Hyp will detach from the surface of CeONR@PDA-Gal/Hyp after the nanorods enter cancer cells, and shows excellent PDT effect under the irradiation of light with a wavelength of 590 nm. Our work exemplifies a novel targeted delivery of hydrophobic photosensitizers for cancer treatment.
Collapse
Affiliation(s)
- Yang Wang
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yu Zhang
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Ming Jin
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yinghua Lv
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Zhichao Pei
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yuxin Pei
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
18
|
Cao J, Gao X, Cheng M, Niu X, Li X, Zhang Y, Liu Y, Wang W, Yuan Z. Reversible Shielding between Dual Ligands for Enhanced Tumor Accumulation of ZnPc-Loaded Micelles. NANO LETTERS 2019; 19:1665-1674. [PMID: 30801190 DOI: 10.1021/acs.nanolett.8b04645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we report a ligand-reversible-shielding strategy based on the mutual shielding of dual ligands tethered to the surface of nanoparticles. To exemplify this concept, phenylboronic acid-functionalized poly(ethylene glycol)- b-poly(ε-caprolactone) (PBA-PEG-PCL) and galactose-functionalized diblock polymer (Gal-PEG-PCL) were mixed to form dual-ligand micelles (PBA/Gal). PBA and Gal residues could form a complex at pH 7.4 and mutually shield their targeting function. At pH 6.8, the binding affinity between PBA and Gal weakened, and PBA preferred to bind with the sialic acid residues on the tumor cell surface rather than to Gal on the micellar surface; furthermore, the unbound Gal recovered its targeting ability toward the asialoglycoprotein receptor. When the pH decreased from 7.4 to 6.8, enzyme-linked immunosorbent assays exhibited that the percentage of exposed Gal on the micellar surface increased 1.9-fold, and flow cytometry showed that HepG2 cellular uptake increased 4.3-fold. More importantly, this process was reversible, confirming the reversible shielding and deshielding of dual ligands. With the encapsulation of a photosensitizer, zinc phthalocyanine (ZnPc), the reversible-shielding micelles showed a 48% improvement in the half-life ( t1/2) in blood circulation, a 54% decrease in liver capture, a 40% increase in tumor accumulation, and a 10.3% improvement in the tumor inhibition rate compared to the Gal-coated irreversible micelles. This dual-ligand mutual-shielding strategy provides a new perspective on reversible tumor targeting.
Collapse
Affiliation(s)
- Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Mingbo Cheng
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaomin Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
19
|
Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. NANOSCALE HORIZONS 2019; 4:378-387. [PMID: 32254090 DOI: 10.1039/c8nh00417j] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To maximize drug targeting to solid tumors, cancer nanomedicines with prolonged circulation times are required. To this end, poly(ethylene glycol) (PEG) has been widely used as a steric shield of nanomedicine surfaces to minimize serum protein absorption (opsonisation) and subsequent recognition and clearance by cells of the mononuclear phagocyte system (MPS). However, PEG also inhibits interactions of nanomedicines with target cancer cells, limiting the effective drug dose that can be reached within the target tumor. To overcome this dilemma, nanomedicines with stimuli-responsive cleavable PEG functionality have been developed. These benefit from both long circulation lifetimes en route to the targeted tumor as well as efficient drug delivery to target cancer cells. In this review, various stimuli-responsive strategies to dePEGylate nanomedicines within the tumor microenvironment will be critically reviewed.
Collapse
Affiliation(s)
- Li Kong
- Leiden Institute of Chemistry - Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | | | |
Collapse
|
20
|
Nurunnabi M, Khatun Z, Badruddoza AZM, McCarthy JR, Lee YK, Huh KM. Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 United States
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219 United States
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-706, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
21
|
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019; 7:7639-7655. [DOI: 10.1039/c9tb01842e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applications of nanoparticulate drug delivery have received abundant interest in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
| | - Hajra Zafar
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Asifullah Khan
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Liang Ge
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
22
|
Tiwari R, Jain P, Asati S, Haider T, Soni V, Pandey V. State-of-art based approaches for anticancer drug-targeting to nucleus. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Li X, Xie C, Xia H, Wang Z. pH and Ultrasound Dual-Responsive Polydopamine-Coated Mesoporous Silica Nanoparticles for Controlled Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9974-9981. [PMID: 30056720 DOI: 10.1021/acs.langmuir.8b01091] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A pH- and ultrasound dual-responsive drug release pattern was successfully achieved using mesoporous silica nanoparticles (MSNs) coated with polydopamine (PDA). In this paper, the PDA shell on the MSN surface was obtained through oxidative self-polymerization under the alkaline condition. The morphology and structure of this composite nanoparticle were fully characterized by a series of analyses, such as infrared (IR), transmission electron microscopy, and thermogravimetric analysis. Doxorubicin hydrochloride (DOX)-loaded composite nanoparticles were used to study the performances of responsive drug storage/release behavior, and this kind of hybrid material displayed an apparent pH response in DOX releasing under the acidic condition. Beyond that, upon high-intensity focused ultrasound exposure, loaded DOX in composite nanoparticles was successfully triggered to release from pores because of the ultrasonic cavitation effect, and the DOX-releasing pattern could be optimized into a unique pulsatile fashion by switching the on/off status. From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was observed that our blank nanoparticles showed no toxicity to HeLa cells, but DOX-loaded nanoparticles could inhibit the growth of tumor cells. Furthermore, these composite nanoparticles displayed an effective near-IR photothermal conversion capability with a relatively high conversion efficiency (∼37%). These as-desired drug delivery carriers might have a great potential for future cancer treatment that combine the chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Xiaochong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Chuan Xie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
24
|
Li L, Li D, Zhang M, He J, Liu J, Ni P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjug Chem 2018; 29:2806-2817. [PMID: 30005157 DOI: 10.1021/acs.bioconjchem.8b00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , 215123 , People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
25
|
Villarreal-Gómez LJ, Serrano-Medina A, José Torres-Martínez E, Lizeth Perez-González G, Manuel Cornejo-Bravo J. Polymeric advanced delivery systems for antineoplasic drugs: doxorubicin and 5-fluorouracil. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractConventional pharmaceuticals generally display the inability to transport active ingredients directly to specific regions of the body, amongst some of their main limitations. The distribution of the drugs in the circulatory system may lead to undesired toxicity, and therefore, adverse reactions. To address this situation, a selective transport of drugs is required, that is, releasing drugs specifically to the site of action in appropriate concentrations and in the right time. To achieve this goal, it is necessary to develop delivery systems that respond to several features, such as low toxicity, optimum properties for the transport and release of the drug, as well as a long half-life in the body. This feature paper critically provides an overview of different strategies of controlled drug release for two model antineoplasic drugs, i.e. doxorubicin (DOX) and 5-fluorouracil (5-FU). Any of the presented strategies for drug release possess advantages and disadvantages, and the selection of the strategy used will depend on the targeted tissue and nature of the drug.
Collapse
Affiliation(s)
- Luis Jesús Villarreal-Gómez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Aracely Serrano-Medina
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Erick José Torres-Martínez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Graciela Lizeth Perez-González
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - José Manuel Cornejo-Bravo
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| |
Collapse
|
26
|
Shao C, Shang K, Xu H, Zhang Y, Pei Z, Pei Y. Facile fabrication of hypericin-entrapped glyconanoparticles for targeted photodynamic therapy. Int J Nanomedicine 2018; 13:4319-4331. [PMID: 30087563 PMCID: PMC6061409 DOI: 10.2147/ijn.s161262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Photodynamic therapy is a safe, noninvasive modality for cancer therapy, in which the photosensitizer (PS) is a crucial component. Hypericin (Hy) is a promising PS; however, its clinical application is significantly limited by its poor hydrophilicity. MATERIALS AND METHODS To overcome the clinical application limitation of Hy, a novel strategy is developed here by entrapping Hy into polydopamine (PDA) film formed on the surface of magnetic iron oxide nanoparticles (MNPs) through the self-polymerization of dopamine under alkaline condition. The amount of Hy in the Hy-entrapped PDA-MNP composite nanoparticles (denoted as PHMs) was measured by spectrophotometry. Furthermore, lactose, as the targeting ligand to asialoglycoprotein receptors, was conjugated to the surface of the PHMs by taking advantage of the spontaneous reaction of PDA with amino groups. RESULTS Spectrophotometry analysis revealed that the amount of Hy in the PHMs was 72 μmol g-1 PHMs. The fabricated Hy-entrapped glyconanoparticle (Lac-PHM) exhibited excellent water dispersibility, stability, and selectivity for asialoglycoprotein receptors overexpressing HepG2 cells. Atomic absorption spectroscopy analysis showed that the amount of the Lac-PHMs taken in HepG2 cells was 2.1-fold higher than that of the triethylene glycol-modified PHMs. The results of intracellular reactive oxygen species generation detection, cytotoxicity study, and apoptosis detection indicated that the Lac-PHMs had a satisfying photodynamic effect to HepG2 cells. CONCLUSION The strategy developed in this work offers great potential for delivery of a variety of hydrophobic PSs.
Collapse
Affiliation(s)
- Chen Shao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| | - Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| | - Huaibao Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| | - Yu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China, ;
| |
Collapse
|
27
|
Zhang L, Qin Y, Zhang Z, Fan F, Huang C, Lu L, Wang H, Jin X, Zhao H, Kong D, Wang C, Sun H, Leng X, Zhu D. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater 2018; 75:371-385. [PMID: 29777957 DOI: 10.1016/j.actbio.2018.05.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/04/2023]
Abstract
The combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed new pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs exhibited nano-sized structure (∼100 nm) with good monodispersity, high encapsulation efficiency of both ICG and DOX, triggered DOX release in response to acid pH and reduction environment, and excellent temperature conversion with laser irradiation. In vitro cellular uptake study indicated FA Co-PMs achieved significant targeting to BEL-7404 cells via folate receptor-mediated endocytosis, and laser-induced hyperthermia further enhanced drug accumulation into cancer cells. In vivo biodistribution study indicated that FA Co-PMs prolonged drug circulation and enhanced drug accumulation into the tumor via EPR effect and FA targeting. Furthermore, the ICG-based photo-triggered hyperthermia combined with DOX-based chemotherapy synergistically induced the BEL-7404 cell death and apoptosis, and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs were promising theranostic nanocarriers for versatile antitumor drug delivery and imaging-guided cancer chemo-photothermal combination therapy. STATEMENT OF SIGNIFICANCE The combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed novel pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs triggered DOX release in response to acid pH and reduction environment and exhibited excellent temperature conversion with laser irradiation. The results indicated FA Co-PMs achieved significant targeting to BEL-7404 cells in vitro and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs displayed great potential in imaging-guided cancer chemo-photothermal combination therapy as theranostic nanocarriers.
Collapse
|
28
|
Sun D, Wang M, Ji D, Qiao J, He T, Liu X, Guan Q. Synthesis of a reduction-sensitive Bletilla striata polysaccharide amphiphilic copolymer. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Cao PF, de Leon A, Rong L, Yin KZ, Abenojar EC, Su Z, Tiu BDB, Exner AA, Baer E, Advincula RC. Polymer Nanosheet Containing Star-Like Copolymers: A Novel Scalable Controlled Release System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800115. [PMID: 29700977 DOI: 10.1002/smll.201800115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms.
Collapse
Affiliation(s)
- Peng-Fei Cao
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Al de Leon
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lihan Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ke-Zhen Yin
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eric C Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zhe Su
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brylee David B Tiu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eric Baer
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
30
|
Saravanakumar G, Park H, Kim J, Park D, Pramanick S, Kim DH, Kim WJ. Miktoarm Amphiphilic Block Copolymer with Singlet Oxygen-Labile Stereospecific β-Aminoacrylate Junction: Synthesis, Self-Assembly, and Photodynamically Triggered Drug Release. Biomacromolecules 2018; 19:2202-2213. [DOI: 10.1021/acs.biomac.8b00290] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gurusamy Saravanakumar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinhwan Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Dongsik Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Swapan Pramanick
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
31
|
Li Z, Chen Q, Qi Y, Liu Z, Hao T, Sun X, Qiao M, Ma X, Xu T, Zhao X, Yang C, Chen D. Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(l-histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance. Biomacromolecules 2018; 19:2595-2609. [PMID: 29618203 DOI: 10.1021/acs.biomac.8b00213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China.,Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Qixian Chen
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , PR China
| | - Yan Qi
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Zhihao Liu
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Tangna Hao
- Department of Pharmacy , The Second Affiliated Hospital of Dalian Medical University , Dalian , 116011 , PR China
| | - Xiaoxin Sun
- Institute (College) of Integrative Medicine , Dalian Medical University , Dalian 116044 , PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Xiaodong Ma
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Ting Xu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Chunrong Yang
- School of pharmacy , Jiamusi University , Jiamusi 154007 , PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China.,School of Pharmacy , Medical College of Soochow University , Suzhou 215123 , PR China
| |
Collapse
|
32
|
Lin W, Yin L, Sun T, Wang T, Xie Z, Gu J, Jing X. The Effect of Molecular Structure on Cytotoxicity and Antitumor Activity of PEGylated Nanomedicines. Biomacromolecules 2018; 19:1625-1634. [PMID: 29608275 DOI: 10.1021/acs.biomac.8b00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fundamental studies on the cellular uptake and drug release of PEGylated nanomedicines are beneficial to understand their fate in vivo and construct ideal nanoparticle formulations. In this work, the detailed metabolic process of PEGylated doxorubicin (Dox) nanomedicines were investigated via confocal laser scanning microscopy (CLSM), flow cytometry (FCM), cytotoxicity test, fluorescence imaging in vivo (FLIV) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Among them, only LC-MS/MS could accurately determine the content of PEGylated Dox and Dox in vitro and in vivo. To the best of our knowledge, this was the first time the PEGylated Dox and released Dox were simultaneously quantified. The interplay of molecular structures, cellular uptake, drug release, and antitumor effect was well characterized. PEG with high molecular weight impeded the cellular uptake of nanoparticles, and the acid-labile hydrazone bond between Dox and PEG promoted Dox release significantly. Cellular uptake and drug release play decisive roles in cytotoxicity and antitumor effect, as evidenced by LC-MS/MS. We emphasized that LC-MS/MS would be a practicable method to quantify PEGylated drugs without complex tags, which could be more in-depth to understand the interaction between PEGylated nanomedicines and their antitumor efficacy.
Collapse
Affiliation(s)
- Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Tingting Wang
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| |
Collapse
|
33
|
Fan H, Li Y, Yang J, Ye X. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. J Phys Chem B 2017; 121:9708-9717. [PMID: 28925709 DOI: 10.1021/acs.jpcb.7b06165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Haiyan Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yixia Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jinxian Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Gao YY, Chen H, Zhou YY, Wang LT, Hou Y, Xia XH, Ding Y. Intraorgan Targeting of Gold Conjugates for Precise Liver Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31458-31468. [PMID: 28838233 DOI: 10.1021/acsami.7b08969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intraorgan targeting of chemical drugs at tumor tissues is essential in the treatment of solid tumors that express the same target receptor as normal tissues. Here, asialoglycoprotein receptor (ASGP-R)-targeting paclitaxel-conjugated gold nanoparticles (Gal/PTX-GNPs) are fabricated as a demonstration to realize the precise treatment of liver cancer. The enhanced biological specificity and therapeutic performance of drugs loaded on nanoparticles not only rely on the ligands on carriers for receptor recognition but are also determined by the performance of gold conjugates with designed structure. The tumor cell selectivity of the designed conjugates in liver tumor (HepG2) cells is close to six times of that incubated with control conjugates without galactose modification in liver normal (L02) cells. The drug level in tumor versus liver of Gal/PTX-GNPs is 121.0% at 8 h post injection, a 15.7-fold increase in the tumor specificity compared to that of GNPs conjugated with PTX only. This intraorgan-targeting strategy results in a considerable improvement of performance in treating both Heps heterotopic and orthotopic xenograft tumor models, which is expected to be used for the enhanced antitumor efficacy and reduced hepatotoxicity in liver cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering and Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University , Beijing 100871, China
| | | | | |
Collapse
|
35
|
Xiao L, Huang L, Moingeon F, Gauthier M, Yang G. pH-Responsive Poly(Ethylene Glycol)-block-Polylactide Micelles for Tumor-Targeted Drug Delivery. Biomacromolecules 2017; 18:2711-2722. [DOI: 10.1021/acs.biomac.7b00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lin Xiao
- Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lixia Huang
- Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Firmin Moingeon
- Department
of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Mario Gauthier
- Department
of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Guang Yang
- Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
Yin M, Tan S, Bao Y, Zhang Z. Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release 2017; 258:108-120. [DOI: 10.1016/j.jconrel.2017.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/28/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
37
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
38
|
Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, Wan Y, Xu H, Li Z, Yang X. α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19215-19230. [PMID: 28513132 DOI: 10.1021/acsami.7b04066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paclitaxel (PTX) is an effective antineoplastic agent and shows potent antitumor activity against a wide spectrum of cancers. Yet, the wide clinical use of PTX is limited by its poor aqueous solubility and the side effects associated with its current therapeutic formulation. To tackle these obstacles, we report, for the first time, α-amylase- and redox-responsive nanoparticles based on hydroxyethyl starch (HES) for the tumor-targeted delivery of PTX. PTX is conjugated onto HES by a redox-sensitive disulfide bond to form HES-SS-PTX, which was confirmed by results from NMR, high-performance liquid chromatography-mass spectrometry, and Fourier transform infrared spectrometry. The HES-SS-PTX conjugates assemble into stable and monodispersed nanoparticles (NPs), as characterized with Dynamic light scattering, transmission electron microscopy, and atomic force microscopy. In blood, α-amylase will degrade the HES shell and thus decrease the size of the HES-SS-PTX NPs, facilitating NP extravasation and penetration into the tumor. A pharmacokinetic study demonstrated that the HES-SS-PTX NPs have a longer half-life than that of the commercial PTX formulation (Taxol). As a consequence, HES-SS-PTX NPs accumulate more in the tumor compared with the extent of Taxol, as shown in an in vivo imaging study. Under reductive conditions, the HES-SS-PTX NPs could disassemble quickly as evidenced by their triggered collapse, burst drug release, and enhanced cytotoxicity against 4T1 tumor cells in the presence of a reducing agent. Collectively, the HES-SS-PTX NPs show improved in vivo antitumor efficacy (63.6 vs 52.4%) and reduced toxicity in 4T1 tumor-bearing mice compared with those of Taxol. These results highlight the advantages of HES-based α-amylase- and redox-responsive NPs, showing their great clinical translation potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Yihui Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Yanxiao Ao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
- Wuhan Institute of Biotechnology , High Tech Road 666, East Lake High Tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| |
Collapse
|
39
|
Fu YN, Li Y, Li G, Yang L, Yuan Q, Tao L, Wang X. Adaptive Chitosan Hollow Microspheres as Efficient Drug Carrier. Biomacromolecules 2017; 18:2195-2204. [DOI: 10.1021/acs.biomac.7b00592] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-nan Fu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yongsan Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Yang
- Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100021, People’s Republic of China
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
40
|
Wu S, Zheng L, Li C, Xiao Y, Huo S, Zhang B. Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Shuaidong Huo
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100049 People's Republic of China
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| |
Collapse
|
41
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
42
|
Ghanbari R, Assenza S, Saha A, Mezzenga R. Diffusion of Polymers through Periodic Networks of Lipid-Based Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3491-3498. [PMID: 28304174 DOI: 10.1021/acs.langmuir.7b00437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present an experimental investigation of the diffusion of unfolded polymers in the triply-periodic water-channel network of inverse bicontinuous cubic phases. Depending on the chain size, our results indicate the presence of two different dynamical regimes corresponding to Zimm and Rouse diffusion. We support our findings by scaling arguments based on a combination of blob and effective-medium theories and suggest the presence of a third regime where dynamics is driven by reptation. Our experimental results also show an increasing behavior of the partition coefficient as a function of the polymer molecular weight, indicative of a reduction in the conformational degrees of freedom induced by the confinement.
Collapse
Affiliation(s)
- Reza Ghanbari
- Department of Health Sciences & Technology, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Salvatore Assenza
- Department of Health Sciences & Technology, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Abhijit Saha
- Department of Health Sciences & Technology, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
- Department of Materials, ETH Zurich , Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
43
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 802] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|
45
|
Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. J Control Release 2017; 250:9-19. [DOI: 10.1016/j.jconrel.2017.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
|
46
|
Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3985-3994. [PMID: 28079367 DOI: 10.1021/acsami.6b15105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PLGA-based nanomedicines have enormous potential for targeted cancer therapy. To boost their stability, targetability, and intracellular drug release, here we developed novel multifunctional PLGA anticancer nanomedicines by combining a reductively cleavable surfactant (RCS), vitamin E-SS-oligo(methyl diglycol l-glutamate), with covalent hyaluronic acid (HA) coating. Reduction-sensitive HA-coated PLGA nanoparticles (rHPNPs) were obtained with small sizes of 55-61 nm and ζ potentials of -26.7 to -28.8 mV at 18.4-40.3 wt % RSC. rHPNPs were stable against dilution and 10% FBS while destabilized under reductive condition. The release studies revealed significantly accelerated docetaxel (DTX) release in the presence of 10 mM glutathione. DTX-rHPNPs exhibited potent and specific antitumor effect to CD44 + A549 lung cancer cells (IC50 = 0.52 μg DTX equiv/mL). The in vivo studies demonstrated that DTX-rHPNPs had an extended circulation time and greatly enhanced tolerance in mice. Strikingly, DTX-rHPNPs completely inhibited growth of orthotopic human A549-Luc lung tumor in mice, leading to a significantly improved survival rate and reduced adverse effect as compared to free DTX. This study highlights that advanced nanomedicines can be rationally designed by combining functional surfactants and surface coating.
Collapse
Affiliation(s)
- Jintian Wu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
47
|
Zhang L, Wang Y, Zhang X, Wei X, Xiong X, Zhou S. Enzyme and Redox Dual-Triggered Intracellular Release from Actively Targeted Polymeric Micelles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3388-3399. [PMID: 28071889 DOI: 10.1021/acsami.6b14078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Highly effective delivery of therapeutic agents into target cells using nanocarriers and subsequently rapid intracellular release are of great importance in cancer treatment. Here, we developed an enzyme and redox dual-responsive polymeric micelle with active targeting abilities to achieve rapid intracellular drug release. To overcome both its poor solubility in water and instability in the blood circulation, camptothecin (CPT) was chemically conjugated to monomethyl poly(ethylene glycol) (mPEG) via a redox-responsive linker to form polymeric prodrugs. The enzyme-responsive function is achieved by connecting hydrophobic polycaprolactone segments and hydrophilic PEG segments with azo bonds. Additionally, the end of the PEG segment was decorated with phenylboronic acid (PBA), endowing the nanocarriers with active targeting abilities. The dual-responsive targeting polymeric micelles can be generated by self-assembly of a mixture of the polymeric prodrug and enzyme-responsive copolymer. The in vitro drug release profile revealed that CPT was rapidly released from the micelles under a simulated condition similar to the tumor cell microenvironment. In vivo and ex vivo fluorescence imaging indicated that these micelles possess excellent specificity to target hepatoma carcinoma cells. The antitumor effect in mice liver cancer cells (H22) in tumor-bearing Kunming (KM) mice demonstrated that this nanocarrier exhibits high therapeutic efficiency in artificial solid tumors and low toxicity to normal tissues, with a survival rate of approximately 100% after 160 days of treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiang Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| |
Collapse
|
48
|
Chen F, Zhang J, He Y, Fang X, Wang Y, Chen M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater Sci 2017; 4:167-82. [PMID: 26484363 DOI: 10.1039/c5bm00224a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It remains a challenge to increase drug tumor-specific accumulation as well as to achieve intracellular-controlled drug release for hepatocellular carcinoma (HCC) chemotherapy. Herein, we developed a dual-functional biodegradable micellar system constituted by glycyrrhetinic acid coupling poly(ethylene glycol)-disulfide linkage-poly(lactic-co-glycolic acid) (GA-PEG-SS-PLGA) to achieve both hepatoma-targeting and redox-responsive intracellular drug release. Tanshinone IIA (TAN IIA), an effective anti-HCC drug, was encapsulated. Notably, it exhibited rapid aggregation and faster drug release in 10 mM dithiothreitol compared with the redox-insensitive control. Furthermore, GA-decorated micelles revealed HCC-specific cellular uptake in human liver cancer HepG2 cells with an energy-dependent manner, in which micropinocytosis and caveolae-mediated endocytosis were demonstrated as the major cellular pathways. The enhanced cytotoxicity and pro-apoptotic effects against HepG2 cells in vitro were observed, mediated by up-regulation of the intracellular ROS level, the increased cell cycle arrest at S phase, enhanced necrocytosis and up-regulation of caspase 3/7, P38 protein expression. In addition, TAN IIA-loaded micelles had a significantly prolonged circulation time, improved bioavailability, and resulted in an increased accumulation of TAN IIA in the liver. With the synergistic effects of HCC-targeting and controlled drug release, TAN IIA-loaded GA-PEG-SS-PLGA micelles significantly inhibited tumor growth and increased survival time in a mouse HCC-xenograft model. Collectively, the GA-PEG-SS-PLGA micelles with HCC-targeting and redox-sensitive characters would provide a novel strategy to deliver TAN IIA effectively for HCC therapy.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Yao He
- Pharmacy College, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
49
|
Yang HK, Bao JF, Mo L, Yang RM, Xu XD, Tang WJ, Lin JT, Wang GH, Zhang LM, Jiang XQ. Bioreducible amphiphilic block copolymers based on PCL and glycopolypeptide as multifunctional theranostic nanocarriers for drug delivery and MR imaging. RSC Adv 2017. [DOI: 10.1039/c7ra01440f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphiphilic diblock poly(ε-caprolactone)-b-glycopolypeptides (PCL–SS–GPPs) bearing disulfide bonds were synthesized from a clickable poly(ε-caprolactone)–SS–poly(2-azidoethyl-l-glutamate) diblock copolymer.
Collapse
|
50
|
Wang Z, Sheng R, Luo T, Sun J, Cao A. Synthesis and self-assembly of diblock glycopolypeptide analogues PMAgala-b-PBLG as multifunctional biomaterials for protein recognition, drug delivery and hepatoma cell targeting. Polym Chem 2017. [DOI: 10.1039/c6py01526c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PMAgala-b-PBLG glycopolypeptide analogues might serve as redox-responsive, highly biocompatible multifunctional biomaterial platforms for practical applications.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|