1
|
Brival R, Ghafari N, Mingotaud AF, Fourquaux I, Gilard V, Collin F, Vicendo P, Balayssac S, Gibot L. Encapsulation of photosensitizer worsen cell responses after photodynamic therapy protocol and polymer micelles act as biomodulators on their own. Int J Pharm 2024; 663:124589. [PMID: 39147251 DOI: 10.1016/j.ijpharm.2024.124589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a photochemical therapeutic modality used clinically for dermatological, ophthalmological and oncological applications. Pheo a was used as a model photosensitizer, either in its free form or encapsulated within poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) polymer micelles. Block copolymer micelles are water-soluble biocompatible nanocontainers with great potential for delivering hydrophobic drugs. Empty PEO-PCL micelles were also tested throughout the experiments. The goal was to conduct an in vitro investigation into human colorectal tumor HCT-116 cellular responses induced by free and encapsulated Pheo a in terms of cell architecture, plasma membrane exchanges, mitochondrial function, and metabolic disturbances. In a calibrated PDT protocol, encapsulation enhanced Pheo a penetration (flow cytometry, confocal microscopy) and cell death (Prestoblue assay), causing massive changes to cell morphology (SEM) and cytoskeleton organization (confocal), mitochondrial dysfunction and loss of integrity (TEM), rapid and massive ion fluxes across the plasma membrane (ICP-OES, ion chromatography), and metabolic alterations, including increased levels of amino acids and choline derivatives (1H NMR). The detailed investigation provides insights into the multifaceted effects of encapsulated Pheo-PDT, emphasizing the importance of considering both the photosensitizer and its delivery system in understanding therapeutic outcomes. The study also raises questions as to the broader impact of empty nanovectors per se, and encourages a more comprehensive exploration of their biological effects.
Collapse
Affiliation(s)
- Rachel Brival
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Nathan Ghafari
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Véronique Gilard
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Fabrice Collin
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Stéphane Balayssac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
2
|
Heaugwane D, Cerlati O, Belkhir K, Tarek Benkhaled B, Catrouillet S, Fabing I, Claparols C, Vedrenne M, Goudounèche D, Payré B, Lucia Bona B, Tosi A, Baldelli Bombelli F, Vicendo P, Lapinte V, Lonetti B, Mingotaud AF, Gibot L. Coumarin-poly(2-oxazoline)s as synergetic and protein-undetected nanovectors for photodynamic therapy. Int J Pharm 2024; 658:124186. [PMID: 38701908 DOI: 10.1016/j.ijpharm.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.
Collapse
Affiliation(s)
- Diana Heaugwane
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Orélia Cerlati
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Isabelle Fabing
- Laboratoire SPCMIB, CNRS UMR5068, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse cedex 9, France
| | - Catherine Claparols
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Marc Vedrenne
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Beatrice Lucia Bona
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Alice Tosi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
3
|
Khaled YS, Khot MI, Aiyappa-Maudsley R, Maisey T, Pramanik A, Tiernan J, Lintern N, Al-Enezi E, Shamsuddin SH, Tomlinson D, Coletta L, Millner PA, Hughes TA, Jayne DG. Photoactive imaging and therapy for colorectal cancer using a CEA-Affimer conjugated Foslip nanoparticle. NANOSCALE 2024; 16:7185-7199. [PMID: 38506227 PMCID: PMC10993305 DOI: 10.1039/d3nr04118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/08/2023] [Indexed: 03/21/2024]
Abstract
Theranostic nanoparticles hold promise for simultaneous imaging and therapy in colorectal cancer. Carcinoembryonic antigen can be used as a target for these nanoparticles because it is overexpressed in most colorectal cancers. Affimer reagents are synthetic proteins capable of binding specific targets, with additional advantages over antibodies for targeting. We fabricated silica nanoparticles using a water-in-oil microemulsion technique, loaded them with the photosensitiser Foslip, and functionalised the surface with anti-CEA Affimers to facilitate fluorescence imaging and photodynamic therapy of colorectal cancer. CEA-specific fluorescence imaging and phototoxicity were quantified in colorectal cancer cell lines and a LS174T murine xenograft colorectal cancer model. Anti-CEA targeted nanoparticles exhibited CEA-specific fluorescence in the LoVo, LS174T and HCT116 cell lines when compared to control particles (p < 0.0001). No toxicity was observed in LS174T cancer mouse xenografts or other organs. Following photo-irradiation, the anti-CEA targeted particles caused significant cell death in LoVo (60%), LS174T (90%) and HCT116 (70%) compared to controls (p < 0.0001). Photodynamic therapy (PDT) at 24 h in vivo showed a 4-fold reduction in tumour volume compared to control mouse xenografts (p < 0.0001). This study demonstrates the efficacy of targeted fluorescence imaging and PDT using Foslip nanoparticles conjugated to anti-CEA Affimer nanoparticles in in vitro and in vivo colorectal cancer models.
Collapse
Affiliation(s)
- Yazan S Khaled
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | - M Ibrahim Khot
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | | | - Thomas Maisey
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | - Arindam Pramanik
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | - Jim Tiernan
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | - Nicole Lintern
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Eiman Al-Enezi
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Shazana H Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Malaysia
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Louise Coletta
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| | - Paul A Millner
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Thomas A Hughes
- School of Medicine, University of Leeds, Leeds, UK
- School of Science, Technology and Health, York St John University, York, UK
| | - David G Jayne
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom.
| |
Collapse
|
4
|
Simelane NWN, Abrahamse H. Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures. Front Mol Biosci 2024; 10:1340212. [PMID: 38259685 PMCID: PMC10801020 DOI: 10.3389/fmolb.2023.1340212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In conventional photodynamic therapy (PDT), effective delivery of photosensitizers (PS) to cancer cells can be challenging, prompting the exploration of active targeting as a promising strategy to enhance PS delivery. Typically, two-dimensional (2-D) monolayer cell culture models are used for investigating targeted photodynamic therapy. However, despite their ease of use, these cell culture models come with certain limitations due to their structural simplicity when compared to three-dimensional (3-D) cell culture models such as multicellular tumour spheroids (MCTSs). In this study, we prepared gold nanoparticles (AuNPs) that were functionalized with antibodies and loaded with tetra sulphonated zinc phthalocyanine (ZnPcS4). Characterization techniques including transmission electron microscopy (TEM) was used to determine the size and morphology of the prepared nanoconjugates. We also conducted a comparative investigation to assess the photodynamic effects of ZnPcS4 alone and/or conjugated onto the bioactively functionalized nanodelivery system in colorectal Caco-2 cells cultured in both in vitro 2-D monolayers and 3-D MCTSs. TEM micrographs revealed small, well distributed, and spherical shaped nanoparticles. Our results demonstrated that biofunctionalized nanoparticle mediated PDT significantly inhibited cell proliferation and induced apoptosis in Caco-2 cancer monolayers and, to a lesser extent, in Caco-2 MCTSs. Live/dead assays further elucidated the impact of actively targeted nanoparticle-photosensitizer nanoconstruct, revealing enhanced cytotoxicity in 2-D cultures, with a notable increase in dead cells post-PDT. In 3-D spheroids, however, while the presence of targeted nanoparticle-photosensitizer system facilitated improved therapeutic outcomes, the live/dead results showed a higher number of viable cells after PDT treatment compared to their 2-D monolayer counterparts suggesting that MCTSs showed more resistance to PS drug as compared to 2-D monolayers. These findings suggest a high therapeutic potential of the multifunctional nanoparticle as a targeted photosensitizer delivery system in PDT of colorectal cancer. Furthermore, the choice of cell culture model influenced the response of cancer cells to PDT treatment, highlighting the feasibility of using MCTSs for targeted PS delivery to colorectal cancer cells.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Pallavi P, Harini K, Crowder S, Ghosh D, Gowtham P, Girigoswami K, Girigoswami A. Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Appl Biochem Biotechnol 2023; 195:6979-6993. [PMID: 36976503 DOI: 10.1007/s12010-023-04475-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Photodynamic therapy (PDT) has recently become significant as a clinical modality for cancer therapy and multidrug-resistant (MDR) infections, replacing conventional chemotherapy and radiation therapy protocols. PDT involves the excitation of certain nontoxic molecules called photosensitizers (PS), applying a specific wavelength of light to generate reactive oxygen species (ROS) to treat cancer cells and other pathogens. Rhodamine 6G (R6G) is a well-known laser dye with poor aqueous solubility, and lower sensitivity poses an issue in using PS for PDT. Nanocarrier systems are needed to deliver R6G to cancer targets since PDT requires a higher accumulation of PS. It was found that R6G-conjugated gold nanoparticles (AuNP) have a higher ROS quantum yield of 0.92 compared to 0.3 in an aqueous R6G solution, increasing their potency as PS. Cytotoxicity assessment on A549 cells and antibacterial assay on MDR Pseudomonas aeruginosa collected from a sewage treatment plant are the evidence to support efficient PDT. In addition to their enhanced quantum yields, the decorated particles are effective in generating fluorescent signals that can be used for cellular imaging and real-time optical imaging, and the presence of AuNP is a valuable addition to CT imaging. Furthermore, the fabricated particle exhibits anti-Stokes properties, which makes it suitable for use as a background-free biological imaging agent. As a result, R6G-conjugated AuNP is an effective theranostic agent that prevents the progression of cancer and MDR bacteria, along with contrasting abilities in medical imaging with minimal toxicity observed in in vitro and in vivo assays using zebrafish embryos.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Symone Crowder
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Debanjana Ghosh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, 30460, USA
- Department of Chemistry, Southern Illinois University Edwardsville, Science Building West, Edwardsville, IL, 62026-1652, USA
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
6
|
Zheng X, Lordon B, Mingotaud A, Vicendo P, Brival R, Fourquaux I, Gibot L, Gallot G. Terahertz Spectroscopy Sheds Light on Real-Time Exchange Kinetics Occurring through Plasma Membrane during Photodynamic Therapy Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300589. [PMID: 37096839 PMCID: PMC10288265 DOI: 10.1002/advs.202300589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Methods to follow in real time complex processes occurring along living cell membranes such as cell permeabilization are rare. Here, the terahertz spectroscopy reveals early events in plasma membrane alteration generated during photodynamic therapy (PDT) protocol, events which are not observable in any other conventional biological techniques performed in parallel as comparison. Photodynamic process is examined in Madin-Darby canine kidney cells using Pheophorbide (Pheo) photosensitizer alone or alternatively encapsulated in poly(ethylene oxide)-block-poly(ε-caprolactone) micelles for drug delivery purpose. Terahertz spectroscopy (THz) reveals that plasma membrane permeabilization starts simultaneously with illumination and is stronger when photosensitizer is encapsulated. In parallel, the exchange of biological species is assessed. Over several hours, this conventional approach demonstrates significant differences between free and encapsulated Pheo, the latter leading to high penetration of propidium iodide, Na+ and Ca2+ ions, and a high level of leakage of K+ , ATP, and lactate dehydrogenase. THz spectroscopy provides, in a single measurement, the relative number of defects per membrane surface created after PDT, which is not achieved by any other method, providing early, sensitive real-time information. THz spectroscopy is therefore a promising technique and can be applied to any biological topic requiring the examination of short-term plasma membrane permeabilization.
Collapse
Affiliation(s)
- Xiujun Zheng
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Blandine Lordon
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Anne‐Françoise Mingotaud
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Patricia Vicendo
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Rachel Brival
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Laure Gibot
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Guilhem Gallot
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| |
Collapse
|
7
|
Chapron D, Chen J, Zheng G, Rosilio V. Organization of the Interfacial Film of Nanoemulsions Stabilized by Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1364-1372. [PMID: 36680520 DOI: 10.1021/acs.langmuir.2c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photodynamic therapies combining the action of a photosensitizer (PS), molecular oxygen, and light make it possible to destroy certain infectious sites and tumors. The incorporation of photosensitizers in nanocarriers allows for better control of their distribution in tissues and increases their concentration in the area that will be then illuminated. Nanoemulsions of glyceryl trioctanoate (GTO) have been designed in which pyropheophobide a (Pyro-A) or its lipid conjugate (Pyro-Lipid) are both stabilizing and photostimulable agents. In this work, we studied by surface pressure measurements and Brewster angle microscopy (BAM) analysis the organization of the interfacial films of nanodroplets. Comparison of preformed porphyrin nanoemulsions and two porphyrin-GTO mixtures, one mimicking the composition of the nanoemulsions and the other that of a porphyrin-rich interfacial film, highlighted the role of GTO and porphyrin derivatives in the formation, organization, and elasticity of the interfacial films in nanoemulsions. Pyro-Lipid and GTO can mix, and some of the GTO molecules remain inserted in the interfacial film at high surface pressures. In contrast, Pyro-A and GTO do not mix well and tend to segregate, leaving Pyro-A alone in the condensed interfacial film. The results of this study demonstrate the importance of characterizing the interfacial properties of porphyrin derivatives and their interaction with the oil to design stable nanoemulsions with well-controlled optical properties.
Collapse
Affiliation(s)
- David Chapron
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400Orsay, France
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400Orsay, France
| |
Collapse
|
8
|
Carton F, Malatesta M. Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine. Eur J Histochem 2022; 66. [DOI: 10.4081/ejh.2022.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Nanoconstructs intended to be used as biomedical tool must be assessed for their capability to cross biological barriers. However, studying in vivo the permeability of biological barriers to nanoparticles is quite difficult due to the many structural and functional factors involved. Therefore, the in vitro modeling of biological barriers -2D cell monocultures, 2D/3D cell co-cultures, microfluidic devices- is gaining more and more relevance in nanomedical research. Microscopy techniques play a crucial role in these studies, as they allow both visualizing nanoparticles inside the biological barrier and evaluating their impact on the barrier components. This paper provides an overview of the various microscopical approaches used to investigate nanoparticle translocation through in vitro biological barrier models. The high number of scientific articles reported highlights the great contribution of the morphological and histochemical approach to the knowledge of the dynamic interactions between nanoconstructs and the living environment.
Collapse
|
9
|
Tavares MR, Kirakci K, Kotov N, Pechar M, Lang K, Pola R, Etrych T. Octahedral Molybdenum Cluster-Based Nanomaterials for Potential Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3350. [PMID: 36234477 PMCID: PMC9565569 DOI: 10.3390/nano12193350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Photo/radiosensitizers, such as octahedral molybdenum clusters (Mo6), have been intensively studied for photodynamic applications to treat various diseases. However, their delivery to the desired target can be hampered by its limited solubility, low stability in physiological conditions, and inappropriate biodistribution, thus limiting the therapeutic effect and increasing the side effects of the therapy. To overcome such obstacles and to prepare photofunctional nanomaterials, we employed biocompatible and water-soluble copolymers based on N-(2-hydroxypropyl)methacrylamide (pHPMA) as carriers of Mo6 clusters. Several strategies based on electrostatic, hydrophobic, or covalent interactions were employed for the formation of polymer-cluster constructs. Importantly, the luminescent properties of the Mo6 clusters were preserved upon association with the polymers: all polymer-cluster constructs exhibited an effective quenching of their excited states, suggesting a production of singlet oxygen (O2(1Δg)) species which is a major factor for a successful photodynamic treatment. Even though the colloidal stability of all polymer-cluster constructs was satisfactory in deionized water, the complexes prepared by electrostatic and hydrophobic interactions underwent severe aggregation in phosphate buffer saline (PBS) accompanied by the disruption of the cohesive forces between the cluster and polymer molecules. On the contrary, the conjugates prepared by covalent interactions notably displayed colloidal stability in PBS in addition to high luminescence quantum yields, suggesting that pHPMA is a suitable nanocarrier for molybdenum cluster-based photosensitizers intended for photodynamic applications.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež 1001, Czech Republic
| | - Nikolay Kotov
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež 1001, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
10
|
In Vitro Models of Biological Barriers for Nanomedical Research. Int J Mol Sci 2022; 23:ijms23168910. [PMID: 36012181 PMCID: PMC9408841 DOI: 10.3390/ijms23168910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoconstructs developed for biomedical purposes must overcome diverse biological barriers before reaching the target where playing their therapeutic or diagnostic function. In vivo models are very complex and unsuitable to distinguish the roles plaid by the multiple biological barriers on nanoparticle biodistribution and effect; in addition, they are costly, time-consuming and subject to strict ethical regulation. For these reasons, simplified in vitro models are preferred, at least for the earlier phases of the nanoconstruct development. Many in vitro models have therefore been set up. Each model has its own pros and cons: conventional 2D cell cultures are simple and cost-effective, but the information remains limited to single cells; cell monolayers allow the formation of cell–cell junctions and the assessment of nanoparticle translocation across structured barriers but they lack three-dimensionality; 3D cell culture systems are more appropriate to test in vitro nanoparticle biodistribution but they are static; finally, bioreactors and microfluidic devices can mimicking the physiological flow occurring in vivo thus providing in vitro biological barrier models suitable to reliably assess nanoparticles relocation. In this evolving context, the present review provides an overview of the most representative and performing in vitro models of biological barriers set up for nanomedical research.
Collapse
|
11
|
Zhang H, Yan X, Zhang Y, Bao C, Li C. An oxygen-economical nano-photosensitizer with a high photodynamic therapeutic outcome via simultaneous reduction of the cellular respiration and oxygen depletion of PDT. J Mater Chem B 2022; 10:4623-4631. [PMID: 35647782 DOI: 10.1039/d2tb00309k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of photodynamic nanomedicines that can alleviate intratumoral oxygen deficiency during photodynamic therapy (PDT) is of great significance for improving the therapeutic outcome of solid tumors characterized by severe hypoxia. Massive oxygen consumption due to vigorous cellular respiration, i.e., mitochondrial-associated oxidative phosphorylation (OXPHOS), is another major cause of severe tumor hypoxia in addition to insufficient oxygen supply. Moreover, oxygen depletion during PDT further exacerbates the shortage of intratumoral oxygen. In this work, we engineered a novel oxygen-economical nano-photosensitizer via co-encapsulation of an OXPHOS inhibitor (ATO) and a newly developed type-I photosensitizer (IPS) into a polymeric micelle of PEG-b-PCL. By controlling the length of hydrophobic PCL segments, we successfully optimized the micelle size to around 30 nm for enhanced tumor penetration. The orchestration of the two functional components, ATO and IPS, can simultaneously hinder the two major tumor oxygen-consuming pathways, where ATO targets mitochondrial complex III to inhibit cellular respiration, while IPS generates ROS through a low oxygen-consuming type-I photochemical pathway, enabling remarkable PDT efficacies in both hypoxic cells and a 4T1 tumor-bearing BALB/c mouse model. This work sheds new light on the construction of nano-photosensitizers to rejuvenate PDT against hypoxic solid tumors.
Collapse
Affiliation(s)
- Hao Zhang
- School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Tianjin 300387, China.
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Chenlu Bao
- School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Tianjin 300387, China.
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int J Mol Sci 2021; 22:12405. [PMID: 34830287 PMCID: PMC8622021 DOI: 10.3390/ijms222212405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) involving a malignant tumour remains one of the greatest contributing causes of fatal mortality and has become the third globally ranked malignancy in terms of cancer-associated deaths. Conventional CRC treatment approaches such as surgery, radiation, and chemotherapy are the most utilized approaches to treat this disease. However, they are limited by low selectivity and systemic toxicity, so they cannot completely eradicate this disease. Photodynamic therapy (PDT) is an emerging therapeutic modality that exerts selective cytotoxicity to cancerous cells through the activation of photosensitizers (PSs) under light irradiation to produce cytotoxic reactive oxygen species (ROS), which then cause cancer cell death. Cumulative research findings have highlighted the significant role of traditional PDT in CRC treatment; however, the therapeutic efficacy of the classical PDT strategy is restricted due to skin photosensitivity, poor cancerous tissue specificity, and limited penetration of light. The application of nanoparticles in PDT can mitigate some of these shortcomings and enhance the targeting ability of PS in order to effectively use PDT against CRC as well as to reduce systemic side effects. Although 2D culture models are widely used in cancer research, they have some limitations. Therefore, 3D models in CRC PDT, particularly multicellular tumour spheroids (MCTS), have attracted researchers. This review summarizes several photosensitizers that are currently used in CRC PDT and gives an overview of recent advances in nanoparticle application for enhanced CRC PDT. In addition, the progress of 3D-model applications in CRC PDT is discussed.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
13
|
Godard J, Chapron D, Bregier F, Rosilio V, Sol V. Synthesis and supramolecular arrangement of new stearoyl acid-based phenalenone derivatives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:271-299. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple studies about tumor biology have revealed the determinant role of the tumor microenvironment in cancer progression, resulting from the dynamic interactions between tumor cells and surrounding stromal cells within the extracellular matrix. This malignant microenvironment highly impacts the efficacy of anticancer nanoparticles by displaying drug resistance mechanisms, as well as intrinsic physical and biochemical barriers, which hamper their intratumoral accumulation and biological activity.Currently, two-dimensional cell cultures are used as the initial screening method in vitro for testing cytotoxic nanocarriers. However, this fails to mimic the tumor heterogeneity, as well as the three-dimensional tumor architecture and pathophysiological barriers, leading to an inaccurate pharmacological evaluation.Biomimetic 3D in vitro tumor models, on the other hand, are emerging as promising tools for more accurately assessing nanoparticle activity, owing to their ability to recapitulate certain features of the tumor microenvironment and thus provide mechanistic insights into nanocarrier intratumoral penetration and diffusion rates.Notwithstanding, in vivo validation of nanomedicines remains irreplaceable at the preclinical stage, and a vast variety of more advanced in vivo tumor models is currently available. Such complex animal models (e.g., genetically engineered mice and patient-derived xenografts) are capable of better predicting nanocarrier clinical efficiency, as they closely resemble the heterogeneity of the human tumor microenvironment.Herein, the development of physiologically more relevant in vitro and in vivo tumor models for the preclinical evaluation of anticancer nanoparticles will be discussed, as well as the current limitations and future challenges in clinical translation.
Collapse
Affiliation(s)
- Teresa R Abreu
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal.,UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Mariana Biscaia
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal
| | - Nélio Gonçalves
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal.,TREAT U, SA, Parque Industrial de Taveiro, Lote 44, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal. .,UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal.
| |
Collapse
|
16
|
Tsubone TM, Zhang Z, Goyal R, Santacruz C, Martins WK, Kohn J, Baptista MS. Porphyrin-Loaded TyroSpheres for the Intracellular Delivery of Drugs and Photoinduced Oxidant Species. Mol Pharm 2020; 17:2911-2924. [DOI: 10.1021/acs.molpharmaceut.0c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tayana Mazin Tsubone
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| | - Zheng Zhang
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8009, United States
| | - Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8009, United States
| | - Carolina Santacruz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8009, United States
| | - Mauricio S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
17
|
Gibot L, Demazeau M, Pimienta V, Mingotaud AF, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, Lonetti B. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020; 12:E384. [PMID: 32046147 PMCID: PMC7072360 DOI: 10.3390/cancers12020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)-block-poly(-caprolactone) PEO-PCL and poly(ethylene oxide)-block-poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide a (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
Collapse
Affiliation(s)
- Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Nathalie Martins-Froment
- Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France;
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| |
Collapse
|
18
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
19
|
Yan L, Luo L, Amirshaghaghi A, Miller J, Meng C, You T, Busch TM, Tsourkas A, Cheng Z. Dextran-Benzoporphyrin Derivative (BPD) Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Micelles for T 2-Weighted Magnetic Resonance Imaging and Photodynamic Therapy. Bioconjug Chem 2019; 30:2974-2981. [PMID: 31661959 DOI: 10.1021/acs.bioconjchem.9b00676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) has attracted extensive attention in recent years as a noninvasive and locally targeted cancer treatment approach. Nanoparticles have been used to improve the solubility and pharmacokinetics of the photosensitizers required for PDT; however, nanoparticles also suffer from many shortcomings including uncontrolled drug release and low tumor accumulation. Herein, we describe a novel biodegradable nanoplatform for the delivery of the clinically used PDT photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) to tumors. Specifically, the hydrophobic photosensitizer BPD was covalently conjugated to the amine groups of a dextran-b-oligo (amidoamine) (dOA) dendron copolymer, forming amphiphilic dextran-BPD conjugates that can self-assemble into nanometer-sized micelles in water. To impart additional imaging capabilities to these micelles, superparamagnetic iron oxide nanoparticles (SPIONs) were encapsulated within the hydrophobic core to serve as a magnetic resonance imaging (MRI) contrast agent. The use of a photosensitizer as a hydrophobic building block enabled facile and reproducible synthesis and high drug loading capacity (∼30%, w/w). Furthermore, covalent conjugation of BPD to dextran prevents the premature release of drug during systemic circulation. In vivo studies show that the intravenous administration of dextran-BPD coated SPION nanoparticles results in significant MR contrast enhancement within tumors 24 h postinjection and PDT led to a significant reduction in the tumor growth rate.
Collapse
Affiliation(s)
- Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Lijun Luo
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,School of Agricultural Equipment Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Cathy Meng
- Department of Bioengineering, School of Engineering , University of California Berkeley , Berkeley , California 94720 , United States
| | - Tianyan You
- School of Agricultural Equipment Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
20
|
Srivastava PK, Han S, Tu CC, Jing L. Phototoxicity Generated by Silicon Quantum Dot Nanoparticles on Zebrafish Embryos. ACS APPLIED BIO MATERIALS 2019; 2:2872-2878. [PMID: 35030821 DOI: 10.1021/acsabm.9b00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate phototoxicity generated by silicon quantum dot nanoparticles (SiQDNPs) using zebrafish as an animal model. Having long exciton lifetime, the SiQDNPs can function as photosensitizers which absorb incident optical light and transfer the energy to oxygen molecules in close proximity, generating cytotoxic singlet oxygens. First, the zebrafish embryos were soaked in the SiQDNP suspension in E3 medium, while being illuminated under blue light or kept in the dark for 6 h. Through neutral red staining immediately afterward, the illuminated embryos showed more prominent injuries at their head, yolk sac and tail parts than those in the dark. Furthermore, prolonged observation after the treatment revealed that the illuminated embryos had mortality rates significantly higher than those without illumination, clearly showing the phototoxicity effect generated by the SiQDNPs. However, adverse effect due to the immersion of whole embryos in the SiQDNP suspension was also observed. To alleviate this issue, minute amounts of the SiQDNPs were microinjected to the embryos, followed by blue light illumination. By acridine orange staining subsequently, cell apoptosis localized near the microinjection site was revealed, whereas no apoptosis was found for those also microinjected with the SiQDNPs but without illumination. The phototoxicity effect demonstrated on zebrafish embryos in this work manifests the potential of using the SiQDNPs as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Prateek K Srivastava
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Han
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang-Ching Tu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Adriouach S, Vorobiev V, Trefalt G, Allémann E, Lange N, Babič A. Squalene-PEG: Pyropheophorbide-a nanoconstructs for tumor theranostics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 15:243-251. [DOI: 10.1016/j.nano.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
22
|
Oudin A, Chauvin J, Gibot L, Rols MP, Balor S, Goudounèche D, Payré B, Lonetti B, Vicendo P, Mingotaud AF, Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J Mater Chem B 2019; 7:4973-4982. [DOI: 10.1039/c9tb00118b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coumarin crosslinked polyoxazoline-based vectors developed for efficient photodynamic therapy.
Collapse
|
23
|
Figarol A, Gibot L, Golzio M, Lonetti B, Mingotaud AF, Rols MP. A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv 2018; 25:1766-1778. [PMID: 30311803 PMCID: PMC6197035 DOI: 10.1080/10717544.2018.1510064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Polymeric nanocarriers must overcome several biological barriers to reach the vicinity of solid tumors and deliver their encapsulated drug. This study assessed the in vitro and in vivo passage through the blood vessel wall to tumors of two well-characterized polymeric nanocarriers: poly(ethyleneglycol-b-ε-caprolactone) micelles and polymersomes charged with a fluorescent membrane dye (DiO: 3,3'-dioctadecyloxacarbo-cyanine perchlorate). The internalization and translocation from endothelial (human primary endothelial cells HUVEC) to cancer cells (human tumor cell line HCT-116) was studied in conventional 2D monolayers, 3D tumor spheroids, or in an endothelium model based on transwell assay. Micelles induced a faster DiO internalization compared to polymersomes but the latter crossed the endothelial monolayer more easily. Both translocation rates were enhanced by the addition of a pro-inflammatory factor or in the presence of tumor cells. These results were confirmed by early in vivo experiments. Overall, this study pointed out the room for the improvement of polymeric nanocarriers design to avoid drug losses when crossing the blood vessel walls.
Collapse
Affiliation(s)
- Agathe Figarol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | - Laure Gibot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | | | - Marie-Pierre Rols
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
24
|
Duthen S, Rochat C, Kleiber D, Violleau F, Daydé J, Raynaud C, Levasseur-Garcia C. Physicochemical characterization and study of molar mass of industrial gelatins by AsFlFFF-UV/MALS and chemometric approach. PLoS One 2018; 13:e0203595. [PMID: 30300343 PMCID: PMC6177121 DOI: 10.1371/journal.pone.0203595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
Industrial gelatins have different physicochemical properties that mainly depend of the raw materials origin and the extraction conditions. These properties are closely related to the molar mass distribution of these gelatins. Several methods exist to characterize molar mass distribution of polymer, including the Asymmetrical Flow Field Flow Fractionation method. The goal of this study is to analyze the relationship between physicochemical properties and the gelatins molar mass distribution obtained by Asymmetrical Flow Field Flow Fractionation. In this study, 49 gelatins samples extracted from pig skin are characterized in terms of gel strength and viscosity and their molar mass distribution are analyzed by Asymmetrical Flow Field Flow Fractionation coupled to an Ultraviolet and Multi Angle Light Scattering detector. This analytical method is an interesting tool for studying, simultaneously, the primary chains and the high-molar-mass fraction corresponding to the polymer chains. Correlation analysis between molar mass distribution data from the different fractions highlights the importance of high molar mass polymer chains to explain the gel strength and viscosity of gelatins. These results are confirmed by an additional chemometric approach based on the UV absorbance of gelatin fractograms to predict gel strength (r2Cal = 0.85) and viscosity (r2Cal = 0.79).
Collapse
Affiliation(s)
- Simon Duthen
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
| | - Chloé Rochat
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Didier Kleiber
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Frederic Violleau
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
| | - Jean Daydé
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Christine Raynaud
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
- Centre d’Application et de Traitement des Agroressources (CATAR), INPT, Toulouse, France
| | - Cecile Levasseur-Garcia
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
25
|
Montis C, Till U, Vicendo P, Roux C, Mingotaud AF, Violleau F, Demazeau M, Berti D, Lonetti B. Extended photo-induced endosome-like structures in giant vesicles promoted by block-copolymer nanocarriers. NANOSCALE 2018; 10:15442-15446. [PMID: 30091780 DOI: 10.1039/c8nr04355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Upon irradiation, the photosensitizer pheophorbide-a causes dramatic morphological transitions in giant unilamellar lipid vesicles. This endocytosis-like process occurs only when the photoactive species are encapsulated in a copolymer nanocarrier and strictly depends on the chemical nature of the copolymer. Altogether, these results open up new perspectives in the field of photo-chemical internalization mediated by nanoassemblies.
Collapse
Affiliation(s)
- C Montis
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706320. [PMID: 29577458 DOI: 10.1002/adma.201706320] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Cancer is one of the most deadly diseases threatening the lives of humans. Although many treatment methods have been developed to tackle cancer, each modality of cancer treatment has its own limitations and drawbacks. The development of minimally invasive treatment modalities for cancers remains a great challenge. Near-infrared (NIR) light-activated nanomaterial-mediated phototherapies, including photothermal and photodynamic therapies, provide an alternative means for spatially and temporally controlled minimally invasive treatments of cancers. Nanomaterials can serve as nanocargoes for the delivery of chemo-drugs, diagnostic contrast reagents, and organic photosensitizers, and can be used to directly generate heat or reactive oxygen species for the treatment of tumors without the need for organic photosensitizers with NIR-light irradiation. Here, current progress in NIR-light-activated nanomaterial-mediated photothermal therapy and photodynamic therapy is summarized. Furthermore, the effects of size, shape, and surface functionalities of nanomaterials on intracellular uptake, macrophage clearance, biodistribution, cytotoxicities, and biomedical efficacies are discussed. The use of various types of nanomaterials, such as gold nanoparticles, carbon nanotubes, graphene, and many other inorganic nanostructures, in combination with diagnostic and therapeutic modalities for solid tumors, is briefly reviewed.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC
| |
Collapse
|
27
|
Hovan A, Datta S, Kruglik SG, Jancura D, Miskovsky P, Bánó G. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory. J Phys Chem B 2018; 122:5147-5153. [DOI: 10.1021/acs.jpcb.8b00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Sergei G. Kruglik
- Laboratoire Jean Perrin, Sorbonne Universités, UPMC Univ. Paris 6, CNRS UMR 8237, 4 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
28
|
Liu Y, Pujals S, Stals PJM, Paulöhrl T, Presolski SI, Meijer EW, Albertazzi L, Palmans ARA. Catalytically Active Single-Chain Polymeric Nanoparticles: Exploring Their Functions in Complex Biological Media. J Am Chem Soc 2018; 140:3423-3433. [PMID: 29457449 PMCID: PMC5997400 DOI: 10.1021/jacs.8b00122] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 01/01/2023]
Abstract
Dynamic single-chain polymeric nanoparticles (SCPNs) are intriguing, bioinspired architectures that result from the collapse or folding of an individual polymer chain into a nanometer-sized particle. Here we present a detailed biophysical study on the behavior of dynamic SCPNs in living cells and an evaluation of their catalytic functionality in such a complex medium. We first developed a number of delivery strategies that allowed the selective localization of SCPNs in different cellular compartments. Live/dead tests showed that the SCPNs were not toxic to cells while spectral imaging revealed that SCPNs provide a structural shielding and reduced the influence from the outer biological media. The ability of SCPNs to act as catalysts in biological media was first assessed by investigating their potential for reactive oxygen species generation. With porphyrins covalently attached to the SCPNs, singlet oxygen was generated upon irradiation with light, inducing spatially controlled cell death. In addition, Cu(I)- and Pd(II)-based SCPNs were prepared and these catalysts were screened in vitro and studied in cellular environments for the carbamate cleavage reaction of rhodamine-based substrates. This is a model reaction for the uncaging of bioactive compounds such as cytotoxic drugs for catalysis-based cancer therapy. We observed that the rate of the deprotection depends on both the organometallic catalysts and the nature of the protective group. The rate reduces from in vitro to the biological environment, indicating a strong influence of biomolecules on catalyst performance. The Cu(I)-based SCPNs in combination with the dimethylpropargyloxycarbonyl protective group showed the best performances both in vitro and in biological environment, making this group promising in biomedical applications.
Collapse
Affiliation(s)
- Yiliu Liu
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sílvia Pujals
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Patrick J. M. Stals
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Thomas Paulöhrl
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stanislav I. Presolski
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Anja R. A. Palmans
- Laboratory
for Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Cepraga C, Marotte S, Ben Daoud E, Favier A, Lanoë PH, Monnereau C, Baldeck P, Andraud C, Marvel J, Charreyre MT, Leverrier Y. Two-Photon Photosensitizer–Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. Biomacromolecules 2017; 18:4022-4033. [DOI: 10.1021/acs.biomac.7b01090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Cepraga
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Sophie Marotte
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Edna Ben Daoud
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Arnaud Favier
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Pierre-Henri Lanoë
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Cyrille Monnereau
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Patrice Baldeck
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Chantal Andraud
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Jacqueline Marvel
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Yann Leverrier
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| |
Collapse
|
30
|
Pillet F, Gibot L, Madi M, Rols MP, Dague E. Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication 2017; 9:025017. [PMID: 28493850 DOI: 10.1088/1758-5090/aa6ed5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we characterized the physical properties of a single cell type growing in configurations of increasing complexity. From one human skin biopsy, primary dermal fibroblasts were isolated and seeded to give monolayer (2D model), spheroid (3D model poor in extracellular matrix) and tissue-engineered cell sheet (3D model rich in endogenous extracellular matrix). Living native human dermis tissue was used as a gold standard. Nanomechanical and viscoelastic properties at the cell scale were measured by atomic force microscopy (AFM) while biphoton microscopy allowed collagen detection by second harmonic generation and scanning electron microscopy helped in model morphological characterization. In all models, fibroblasts presented a similar typical elongated cell shape, with a cytoskeleton well-arranged along the long axis of the cell. However, elastic moduli of the tissue-engineered cell sheet and native dermis tissue were similar and statistically lower than monolayer and spheroid models. We successfully carried out AFM force measurements on 3D models such as spheroids and tissue-engineered cell sheets, as well as on living native human tissue. We demonstrated that a tissue-engineered dermal model recapitulates the mechanical properties of human native dermal tissue unlike the classically used monolayer and spheroid models. Furthermore, we give statistical evidence to indicate a correlation between cell mechanical properties and the presence of collagens in the models studied.
Collapse
Affiliation(s)
- Flavien Pillet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | | | | |
Collapse
|
31
|
Yan L, Miller J, Yuan M, Liu JF, Busch TM, Tsourkas A, Cheng Z. Improved Photodynamic Therapy Efficacy of Protoporphyrin IX-Loaded Polymeric Micelles Using Erlotinib Pretreatment. Biomacromolecules 2017; 18:1836-1844. [PMID: 28437090 DOI: 10.1021/acs.biomac.7b00274] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) has attracted widespread attention in recent years as a noninvasive and highly selective approach for cancer treatment. We have previously reported a significant increase in the 90-day complete response rate when tumor-bearing mice are treated with the epidermal growth factor receptor (EGFR) inhibitor erlotinib prior to PDT with the photosensitizer benzoporphyrin-derivative monoacid ring A (BPD-MA) compared to treatment with PDT alone. To further explore this strategy for anticancer therapy and clinical practice, we tested whether pretreatment with erlotinib also exhibited a synergistic therapeutic effect with a nanocarrier containing the clinically relevant photosensitizer protoporphyrin IX (PpIX). The PpIX was encapsulated within biodegradable polymeric micelles formed from the amphiphilic block copolymer poly(ethylene glycol)-polycaprolactone (PEG-PCL). The obtained micelles were characterized systematically in vitro. Further, an in vitro cytotoxicity study showed that PDT with PpIX loaded micelles did exhibit a synergistic effect when combined with erlotinib pretreatment. Considering the distinct advantages of polymeric nanocarriers in vivo, this study offers a promising new approach for the improved treatment of localized tumors. The strategy developed here has the potential to be extended to other photosensitizers currently used in the clinic for photodynamic therapy.
Collapse
Affiliation(s)
- Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Joann Miller
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Min Yuan
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Jessica F Liu
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Theresa M Busch
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Sciences, and ‡Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. Int J Biol Macromol 2017; 98:125-138. [DOI: 10.1016/j.ijbiomac.2017.01.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
|
33
|
Till U, Gibot L, Mingotaud A, Mingotaud C, Rols M, Gaucher M, Violleau F, Vicendo P. Polymeric self-assemblies for photodynamic therapy: A critical approach. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Gerola AP, de Morais FAP, Costa PFA, Kimura E, Caetano W, Hioka N. Characterization of chlorophyll derivatives in micelles of polymeric surfactants aiming photodynamic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:213-221. [PMID: 27665188 DOI: 10.1016/j.saa.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 05/20/2023]
Abstract
The spectrophotometric properties of chlorophylls' derivatives (Chls) formulated in the Pluronics® F-127 and P-123 were evaluated and the results have shown that the Chls were efficiently solubilized in these drug delivery systems as monomers. The relative location of the Chls in the Pluronics® was estimated from the Stokes shift and micropolarity of the micellar environment. Chls with phytyl chain were located in the micellar core, where the micropolarity is similar to ethanol, while phorbides' derivatives (without phytyl chain) were located in the outer shell of the micelle, i.e., more polar environment. In addition, the thermal stability of the micellar formulations was evaluated through electronic absorption, fluorescence emission and resonance light scattering with lowering the temperature. The Chls promote the stability of the micelles at temperatures below the Critical Micellar Temperature (CMT) of these surfactants. For F-127 formulations, the water molecules drive through inside the nano-structure at temperatures below the CMT, which increased the polarity of this microenvironment and directly affected the spectrophotometric properties of the Chls with phytyl chain. The properties of the micellar microenvironment of P-123, with more hydrophobic core due to the small PEO/PPO fraction, were less affected by lowering the temperature than for F-127. These results enable us to better understand the Chls behavior in micellar copolymers and allowed us to design new drug delivery system that maintains the photosensitizer's properties for photodynamic applications.
Collapse
Affiliation(s)
- Adriana Passarella Gerola
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | | | - Paulo Fernando A Costa
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Elza Kimura
- Department of Pharmacy, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
35
|
|
36
|
Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies. J Chromatogr A 2017; 1481:101-110. [DOI: 10.1016/j.chroma.2016.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/15/2023]
|
37
|
Till U, Gibot L, Mingotaud AF, Ehrhart J, Wasungu L, Mingotaud C, Souchard JP, Poinso A, Rols MP, Violleau F, Vicendo P. Drug Release by Direct Jump from Poly(ethylene-glycol-b-ε-caprolactone) Nano-Vector to Cell Membrane. Molecules 2016; 21:E1643. [PMID: 27916905 PMCID: PMC6273951 DOI: 10.3390/molecules21121643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Drug delivery by nanovectors involves numerous processes, one of the most important being its release from the carrier. This point still remains unclear. The current work focuses on this point using poly(ethyleneglycol-b-ε-caprolactone) micelles containing either pheophorbide-a (Pheo-a) as a fluorescent probe and a phototoxic agent or fluorescent copolymers. This study showed that the cellular uptake and the phototoxicity of loaded Pheo-a are ten times higher than those of the free drug and revealed a very low cellular penetration of the fluorescence-labeled micelles. Neither loaded nor free Pheo-a displayed the same cellular localization as the labeled micelles. These results imply that the drug entered the cells without its carrier and probably without a disruption, as suggested by their stability in cell culture medium. These data allowed us to propose that Pheo-a directly migrates from the micelle to the cell without disruption of the vector. This mechanism will be discussed.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Laure Gibot
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | | | - Jérôme Ehrhart
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Luc Wasungu
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Christophe Mingotaud
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Jean-Pierre Souchard
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Alix Poinso
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Marie-Pierre Rols
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Frédéric Violleau
- Université de Toulouse, Laboratoire de Chimie Agro-industrielle (LCA), INRA, INPT, INP-EI PURPAN, 31076 Toulouse, France.
| | - Patricia Vicendo
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
38
|
Pucelik B, Arnaut LG, Stochel G, Dąbrowski JM. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22039-55. [PMID: 27492026 DOI: 10.1021/acsami.6b07031] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The therapeutic outcome of photodynamic therapy (PDT) with redaporfin (a fluorinated sulfonamide bacteriochlorin, F2BMet or LUZ11) was improved using Pluronic-based (P123, F127) formulations. Neither redaporfin encapsulated in Pluronic nor micelles alone exhibited cytotoxicity in a broad concentration range. Comprehensive in vitro studies against B16F10 melanoma cells showed that redaporfin-P123 micelles enhanced cellular uptake and increased oxidative stress compared with redaporfin-F127 or photosensitizer alone after short incubation times. ROS-sensitive fluorescent probes showed that the increased oxidative stress is due, at least in part, to a more efficient formation of hydroxyl radicals, and causes strong light-dose dependent apoptosis and necrosis. Tissue distribution and pharmacokinetic studies in tumor-bearing mice show that the Pluronic P123 formulation of redaporfin increases its bioavailability as well as the tumor-to-muscle and tumor-to-skin ratios, in comparison with Cremophor EL and Pluronic F127 formulations. Redaporfin in P123 was most successful in the PDT of C57BL/6J mice bearing subcutaneously implanted B16F10 melanoma tumors. Vascular-targeted PDT combining 1.5 mg kg(-1) redaporfin in P123 with a light dose of 74 J cm(-2) led to 100% complete cures (i.e., no tumor regrowth over one year post-treatment). This remarkable result reveals that modification of redaporfin with Pluronic block copolymers overcomes the resistance of melanoma cells to PDT possibly via increased tumor selectivity and enhanced ROS generation.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University , 30-060 Kraków, Poland
| | - Luis G Arnaut
- CQC, Chemistry Department, University of Coimbra , Rua Larga, 3004-535 Coimbra, Portugal
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University , 30-060 Kraków, Poland
| | | |
Collapse
|
39
|
Till U, Gibot L, Mingotaud C, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. NANOTECHNOLOGY 2016; 27:315102. [PMID: 27334669 DOI: 10.1088/0957-4484/27/31/315102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole d'Ingénieurs de Purpan, Département Sciences Agronomiques et Agroalimentaires, 75 voie du TOEC, BP 57611, F-31076 Toulouse Cedex 03, France. Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou Q, Xu L, Liu F, Zhang W. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Gaio E, Scheglmann D, Reddi E, Moret F. Uptake and photo-toxicity of Foscan®, Foslip® and Fospeg® in multicellular tumor spheroids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:244-52. [DOI: 10.1016/j.jphotobiol.2016.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/20/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023]
|
42
|
Lamch Ł, Kulbacka J, Pietkiewicz J, Rossowska J, Dubińska-Magiera M, Choromańska A, Wilk KA. Preparation and characterization of new zinc(II) phthalocyanine — Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:185-97. [DOI: 10.1016/j.jphotobiol.2016.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
|
43
|
Dionzou M, Morère A, Roux C, Lonetti B, Marty JD, Mingotaud C, Joseph P, Goudounèche D, Payré B, Léonetti M, Mingotaud AF. Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters? SOFT MATTER 2016; 12:2166-76. [PMID: 26754164 DOI: 10.1039/c5sm01863c] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability to self-assemble was evaluated for a large variety of amphiphilic block copolymers, including poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), poly(ethyleneoxide-b-styrene), poly(ethyleneoxide-b-butadiene) and poly(ethyleneoxide-b-methylmethacrylate). Different methods of formation are discussed, such as cosolvent addition, film hydration or electroformation. The influence of experimental parameters and macromolecular structures on the size and morphology of the final self-assembled structures is investigated and critically compared with the literature. The same process is carried out regarding the characterization of these structures. This analysis demonstrates the great care that should be taken when dealing with such polymeric assemblies. If the morphology of such assemblies can be predicted to some extent by macromolecular parameters like the hydrophilic/hydrophobic balance, those parameters cannot be considered as universal. In addition, external experimental parameters (methods of preparation, use of co-solvent, …) appeared as critical key parameters to obtain a good control over the final structure of such objects, which are very often not at thermodynamic equilibrium but kinetically frozen. A principal component analysis is also proposed, in order to examine the important parameters for forming the self-assemblies. Here again, the hydrophilic/hydrophobic fraction is identified as an important parameter.
Collapse
Affiliation(s)
- M Dionzou
- Université de Toulouse, UPS/CNRS, IMRCP, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Que Y, Liu Y, Tan W, Feng C, Shi P, Li Y, Xiaoyu H. Enhancing Photodynamic Therapy Efficacy by Using Fluorinated Nanoplatform. ACS Macro Lett 2016; 5:168-173. [PMID: 35614693 DOI: 10.1021/acsmacrolett.5b00935] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic modality with fast healing process and little or no scarring. The production of reactive oxygen species is highly dependent on oxygen concentration, and thus, the therapeutic efficacy of PDT would be retarded by inefficient oxygen supply in hypoxic tumor cell and the oxygen self-consuming mechanism of PDT. It is well-known that perfluorocarbons are endowed with properties of enhanced oxygen solubility and transfer capacity. Herein, we prepared a series of nanoplatforms of spherical micelles with different ratios of pentafluorophenyl to porphyrin in the core and utilized these micelles as models to examine the influence of content of fluorinated segments on the PDT effect of porphyrins. It was found for the first time, as far as we are aware, that the production efficacy of singlet oxygen increased with the rising in the ratio of pentafluorophenyl to porphyrin. Thus, this work presents a new avenue to improve PDT efficacy by enhancing oxygen solubility and diffusivity of nanoplatforms with the incorporation of perfluorocarbon segments.
Collapse
Affiliation(s)
- Yurong Que
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yajing Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Wei Tan
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chun Feng
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ping Shi
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yongjun Li
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Huang Xiaoyu
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
45
|
Debele TA, Mekuria SL, Lin SY, Tsai HC. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Adv 2016. [DOI: 10.1039/c5ra25650j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HPC nanogels possess bright blue fluorescence which eliminates the use of additional probing agents in image-guided drug delivery. The results showed that disulfide crosslinked HPC nanogels are promising vehicles for stimulated photosensitizer delivery in advanced PDT.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Shuian-Yin Lin
- National Applied Research Laboratories
- Instrument Technology Research Center
- Hsinchu 300
- Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| |
Collapse
|
46
|
Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J. Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 2016; 4:589-599. [PMID: 32262941 DOI: 10.1039/c5tb01827g] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semiconducting polymer dot micelles for MRI/photoacoustic imaging and single-laser-induced PDT/PTT therapy.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- Liver Disease Center
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine
- Xiamen University
- P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| |
Collapse
|
47
|
Pellosi DS, Tessaro AL, Moret F, Gaio E, Reddi E, Caetano W, Quaglia F, Hioka N. Pluronic® mixed micelles as efficient nanocarriers for benzoporphyrin derivatives applied to photodynamic therapy in cancer cells. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Till U, Gibot L, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Adv 2016. [DOI: 10.1039/c6ra09013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric crosslinked self-assemblies based on poly(ethyleneoxide-b-ε-caprolactone) have been synthesized. They are shown to be more efficient vectors for photodynamic therapy compared to uncrosslinked systems.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Patricia Vicendo
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Mireille Gaucher
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Frédéric Violleau
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Laboratoire de Chimie Agro-Industrielle
- Toulouse
- France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| |
Collapse
|
49
|
Kerdous R, Sureau F, Bour A, Bonneau S. Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles. Int J Pharm 2015; 495:750-60. [PMID: 26387620 DOI: 10.1016/j.ijpharm.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
Abstract
Block-polymer nanoparticles are now well-known candidates for the delivery of various non-soluble drugs to cells. The release of drugs from these nanoparticles is a major concern related to their efficiency as nanovectors and is still not completely deciphered. Various processes have been identified, depending of both the nature of the block-polymer and those of the drugs used. We focused our interest on an amphiphilic photosensitizer studied for photodynamic treatments of cancer, Pheophorbide-a (Pheo). We studied the transfer of Pheo from poly(ethyleneglycol-b-ϵ-caprolactone) nanoparticles (I) to MCF-7 cancer cells and (II) to models of membranes. Altogether, our results suggest that the delivery of the major part of the Pheo by the nanoparticles occurs via a direct transfer of Pheo from the nanoparticles to the membrane, by collision. A minor process may involve the internalization of a small amount of the nanoplatforms by the cells. So, this research illustrates the great care necessary to address the question of the choice of such nanocarriers, in relation with the properties - in particular the relative hydrophobicity - of the drugs encapsulated, and gives elements to predict the mechanism and the efficiency of the delivery.
Collapse
Affiliation(s)
- Rachid Kerdous
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Franck Sureau
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Aurélien Bour
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Stéphanie Bonneau
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France.
| |
Collapse
|
50
|
Wang S, Yuan F, Chen K, Chen G, Tu K, Wang H, Wang LQ. Synthesis of Hemoglobin Conjugated Polymeric Micelle: A ZnPc Carrier with Oxygen Self-Compensating Ability for Photodynamic Therapy. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00571] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shasha Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fang Yuan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kui Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Kehua Tu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongjun Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li-Qun Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|