1
|
Halaszynski NI, Saven JG, Pochan DJ, Kloxin CJ. Thermoresponsive Coiled-Coil Peptide-Polymer Grafts. Bioconjug Chem 2023; 34:2001-2006. [PMID: 37874177 DOI: 10.1021/acs.bioconjchem.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Alkyl halide side groups are selectively incorporated into monodispersed, computationally designed coiled-coil-forming peptide nanoparticles. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) is polymerized from the coiled-coil periphery using photoinitiated atom transfer radical polymerization (photoATRP) to synthesize well-defined, thermoresponsive star copolymer architectures. This facile synthetic route is readily extended to other monomers for a range of new complex star-polymer macromolecules.
Collapse
Affiliation(s)
- Nicole I Halaszynski
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. PLoS Comput Biol 2023; 19:e1011454. [PMID: 37669309 PMCID: PMC10503714 DOI: 10.1371/journal.pcbi.1011454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of suitable software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540690. [PMID: 37425873 PMCID: PMC10327192 DOI: 10.1101/2023.05.14.540690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of available software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Makhayeva DN, Filippov SK, Yestemes SS, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors with poly(2-ethyl-2-oxazoline) and poly(N-vinylpyrrolidone): optical, hydrodynamic, thermodynamic, and antimicrobial properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Kalousková B, Skořepa O, Cmunt D, Abreu C, Krejčová K, Bláha J, Sieglová I, Král V, Fábry M, Pola R, Pechar M, Vaněk O. Tumor Marker B7-H6 Bound to the Coiled Coil Peptide-Polymer Conjugate Enables Targeted Therapy by Activating Human Natural Killer Cells. Biomedicines 2021; 9:biomedicines9111597. [PMID: 34829829 PMCID: PMC8615638 DOI: 10.3390/biomedicines9111597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023] Open
Abstract
Targeted cancer immunotherapy is a promising tool for restoring immune surveillance and eradicating cancer cells. Hydrophilic polymers modified with coiled coil peptide tags can be used as universal carriers designed for cell-specific delivery of such biologically active proteins. Here, we describe the preparation of pHPMA-based copolymer conjugated with immunologically active protein B7-H6 via complementary coiled coil VAALEKE (peptide E) and VAALKEK (peptide K) sequences. Receptor B7-H6 was described as a binding partner of NKp30, and its expression has been proven for various tumor cell lines. The binding of B7-H6 to NKp30 activates NK cells and results in Fas ligand or granzyme-mediated apoptosis of target tumor cells. In this work, we optimized the expression of coiled coil tagged B7-H6, its ability to bind activating receptor NKp30 has been confirmed by isothermal titration calorimetry, and the binding stoichiometry of prepared chimeric biopolymer has been characterized by analytical ultracentrifugation. Furthermore, this coiled coil B7-H6-loaded polymer conjugate activates NK cells in vitro and, in combination with coiled coil scFv, enables their targeting towards a model tumor cell line. Prepared chimeric biopolymer represents a promising precursor for targeted cancer immunotherapy by activating the cytotoxic activity of natural killer cells.
Collapse
Affiliation(s)
- Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Denis Cmunt
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Kateřina Krejčová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Irena Sieglová
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Vlastimil Král
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
- Correspondence:
| |
Collapse
|
7
|
Tavassoly O, Tavassoly I. Pharmacological Functionalization of Protein-Based Nanorobots as a Novel Tool for Drug Delivery in Cancer. ACS Pharmacol Transl Sci 2021; 4:1463-1467. [PMID: 34423277 DOI: 10.1021/acsptsci.1c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/29/2022]
Abstract
The delivery of hydrophobic therapeutic agents to tumors is a challenge in the treatment of cancers. Here, we review recent advances in coiled-coil protein origami and discuss a proposed programmable protein origami structure, switchable by a protein kinase A/phosphatase switch, as an example of functionalization for designing future protein nanorobots.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Iman Tavassoly
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
8
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
9
|
Thota C, Mikolajczak DJ, Roth C, Koksch B. Enhancing Antimicrobial Peptide Potency through Multivalent Presentation on Coiled-Coil Nanofibrils. ACS Med Chem Lett 2021; 12:67-73. [PMID: 33488966 PMCID: PMC7812673 DOI: 10.1021/acsmedchemlett.0c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotic-resistant microbes have become a global health threat. New delivery systems that enhance the efficacy of antibiotics and/or overcome the resistances can help combat them. In this context, we present FF03, a fibril-forming α-helical coiled-coil peptide that functions as an efficient scaffold for the multivalent presentation of the weakly cationic antimicrobial peptide (AMP) IN4. The resulting IN4-decorated FF03 coiled-coil fibrils (FF03 + IN4) are nonhemolytic and noncytotoxic and show enhanced antimicrobial activity relative to unconjugated IN4 and standard antibiotics against several bacterial strains. Scanning electron microscopy analysis shows that FF03 + IN4 nanofibers disrupt methicillin-resistant Staphylococcus aureus membranes, indicating a surface-level mode of action. Furthermore, transmission electron microscopy and circular dichroism studies indicate that decoration of the FF03 scaffold with IN4 does not alter the secondary-structure propensity or fibril-forming properties of FF03. Thus, the approach reported herein provides a new peptidic scaffold for the multivalent presentation of AMPs to obtain nonhemolytic and noncytotoxic antimicrobial systems with improved efficacy relative to the unconjugated AMP analogues.
Collapse
Affiliation(s)
- Chaitanya
Kumar Thota
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Dorian J. Mikolajczak
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14195 Berlin, Germany
| | - Beate Koksch
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
10
|
Anas M, Jana S, Mandal TK. Vesicular assemblies of thermoresponsive amphiphilic polypeptide copolymers for guest encapsulation and release. Polym Chem 2020. [DOI: 10.1039/d0py00135j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive amphiphilic polypeptide copolymers are synthesized via different polymerization techniques for their self-assembly into vesicular aggregates for guest encapsulation and release.
Collapse
Affiliation(s)
- Mahammad Anas
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Somdeb Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tarun K. Mandal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
11
|
Guo RC, Zhang XH, Ji L, Wei ZJ, Duan ZY, Qiao ZY, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8:6175-6189. [DOI: 10.1039/d0bm01358g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review has described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer–peptide conjugates (PPCs).
Collapse
Affiliation(s)
- Ruo-Chen Guo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Lei Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zi-Jin Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
12
|
Francica JR, Laga R, Lynn GM, Mužíková G, Androvič L, Aussedat B, Walkowicz WE, Padhan K, Ramirez-Valdez RA, Parks R, Schmidt SD, Flynn BJ, Tsybovsky Y, Stewart-Jones GBE, Saunders KO, Baharom F, Petrovas C, Haynes BF, Seder RA. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biol 2019; 17:e3000328. [PMID: 31206510 PMCID: PMC6597128 DOI: 10.1371/journal.pbio.3000328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic “star” nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes. Synthetic polymer-based nanoparticles effectively deliver HIV Env glycopeptide immunogens to lymph nodes and stimulate B cell lineages with characteristics resembling broadly neutralizing antibodies, in nonhuman primates.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Geoffrey M Lynn
- Avidea Technologies, Inc., Baltimore, Maryland, United States of America
| | - Gabriela Mužíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kartika Padhan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramiro Andrei Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Nakayama N, Takaoka S, Ota M, Takagaki K, Sano KI. Effect of the Aspect Ratio of Coiled-Coil Protein Carriers on Cellular Uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14286-14293. [PMID: 30384613 DOI: 10.1021/acs.langmuir.8b02616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We showed previously that a rigid and fibrous-structured cationic coiled-coil artificial protein had cell-penetrating activity that was significantly greater when compared with a less-structured cell-penetrating peptide. Nanomaterials with anisotropic structures often show aspect-ratio-dependent unique physicochemical properties, as well as cell-penetrating activities. In this report, we have designed and demonstrated the cell-penetrating activity of a shorter cationic coiled-coil protein. An aspect ratio at 4.5:1 was found to be critical for ensuring that the cationic coiled-coil protein showed strong cell-penetrating activity. At an aspect ratio of 3.5:1, the cationic coiled-coil protein showed cell-penetrating activity that was similar to a less-structured short cationic cell-penetrating peptide. Interestingly, at an aspect ratio of 4:1, the cationic coiled-coil protein exhibited intermediate cell-penetrating activity. These findings should aid in the principle design of intracellular drug delivery carriers including coiled-coil artificial proteins, their derivatives, and α-helical cell-penetrating peptides as well as provide a framework for developing synthetic nanomaterials, such as metal nanorods and synthetic polymers.
Collapse
Affiliation(s)
- Norihisa Nakayama
- Graduate School of Environmental Symbiotic System Major , Nippon Institute of Technology , Miyashiro , Saitama 345-8501 , Japan
| | - Sho Takaoka
- BioMimetics Sympathies Inc. , Aomi, Koto-Ku, Tokyo 135-0064 , Japan
| | - Megumi Ota
- BioMimetics Sympathies Inc. , Aomi, Koto-Ku, Tokyo 135-0064 , Japan
| | - Kentaro Takagaki
- BioMimetics Sympathies Inc. , Aomi, Koto-Ku, Tokyo 135-0064 , Japan
| | - Ken-Ichi Sano
- Graduate School of Environmental Symbiotic System Major , Nippon Institute of Technology , Miyashiro , Saitama 345-8501 , Japan
- Department of Applied Chemistry, Faculty of Fundamental Engineering , Nippon Institute of Technology , Miyashiro , Saitama 345-8501 , Japan
| |
Collapse
|
14
|
Tallec G, Loh C, Liberelle B, Garcia-Ac A, Duy SV, Sauvé S, Banquy X, Murschel F, De Crescenzo G. Adequate Reducing Conditions Enable Conjugation of Oxidized Peptides to Polymers by One-Pot Thiol Click Chemistry. Bioconjug Chem 2018; 29:3866-3876. [PMID: 30350572 DOI: 10.1021/acs.bioconjchem.8b00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiol(-click) chemistry has been extensively investigated to conjugate (bio)molecules to polymers. Handling of cysteine-containing molecules may however be cumbersome, especially in the case of fast-oxidizing coiled-coil-forming peptides. In the present study, we investigated the practicality of a one-pot process to concomitantly reduce and conjugate an oxidized peptide to a polymer. Three thiol-based conjugation chemistries (vinyl sulfone (VS), maleimide, and pyridyldithiol) were assayed along with three reducing agents (tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol, and β-mercaptoethanol). Seven out of the nine possible combinations significantly enhanced the conjugation yield, provided that an adequate concentration of reductant was used. Among them, the coincubation of an oxidized peptide with TCEP and a VS-modified polymer displayed the highest level of conjugation. Our results also provide insights into two topics that currently lack consensus: TCEP is stable in 10 mM phosphate buffered saline and it reacts with thiol-alkylating agents at submillimolar concentrations, and thus should be carefully used in order to avoid interference with thiol-based conjugation reactions.
Collapse
Affiliation(s)
- Gwendoline Tallec
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| | - Celestine Loh
- Division of Chemical and Biomolecular Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore , Singapore , 639798
| | - Benoit Liberelle
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| | - Araceli Garcia-Ac
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Sung Vo Duy
- Department of Chemistry , Université de Montréal , C.P. 6128, succ. Centre-Ville, Montreal , Quebec , Canada H3C 3J7
| | - Sébastien Sauvé
- Department of Chemistry , Université de Montréal , C.P. 6128, succ. Centre-Ville, Montreal , Quebec , Canada H3C 3J7
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Frederic Murschel
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| |
Collapse
|
15
|
Ding L, Jiang Y, Zhang J, Klok HA, Zhong Z. pH-Sensitive Coiled-Coil Peptide-Cross-Linked Hyaluronic Acid Nanogels: Synthesis and Targeted Intracellular Protein Delivery to CD44 Positive Cancer Cells. Biomacromolecules 2018; 19:555-562. [PMID: 29284258 DOI: 10.1021/acs.biomac.7b01664] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical translation of protein drugs that act intracellularly is limited by the absence of safe and efficient intracellular protein delivery vehicles. Here, pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels (HA-cNGs) were designed and investigated for targeted intracellular protein delivery to CD44 overexpressing MCF-7 breast cancer cells. HA-cNGs were obtained with a small size of 176 nm from an equivalent mixture of hyaluronic acid conjugates with GY(EIAALEK)3GC (E3) and GY(KIAALKE)3GC (K3) peptides, respectively, at pH 7.4 by nanoprecipitation. Circular dichroism (CD) proved the formation of coiled-coil structures between E3 and K3 peptides at pH 7.4 while fast uncoiling at pH 5.0. HA-cNGs showed facile loading of cytochrome C (CC) and greatly accelerated CC release under mild acidic conditions (18.4%, 76.8%, and 91.4% protein release in 24 h at pH 7.4, 6.0, and 5.0, respectively). Confocal microscopy and flow cytometry displayed efficient internalization of CC-loaded HA-cNGs and effective endosomal escape of CC in MCF-7 cancer cells. Remarkably, HA-cNGs loaded with saporin, a ribosome inactivating protein, exhibited significantly enhanced apoptotic activity to MCF-7 cells with a low IC50 of 12.2 nM. These coiled-coil peptide-cross-linked hyaluronic acid nanogels have appeared as a simple and multifunctional platform for efficient intracellular protein delivery.
Collapse
Affiliation(s)
- Lingling Ding
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Yu Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Harm-Anton Klok
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China.,Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| |
Collapse
|
16
|
Pechar M, Pola R, Janoušková O, Sieglová I, Král V, Fábry M, Tomalová B, Kovář M. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Irena Sieglová
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Barbora Tomalová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Marek Kovář
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague 4 Czech Republic
| |
Collapse
|
17
|
Abstract
Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.
Collapse
Affiliation(s)
- G MuŽíková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
18
|
Murschel F, Fortier C, Jolicoeur M, Hodges RS, De Crescenzo G. Two Complementary Approaches for the Controlled Release of Biomolecules Immobilized via Coiled-Coil Interactions: Peptide Core Mutations and Multivalent Presentation. Biomacromolecules 2017; 18:965-975. [DOI: 10.1021/acs.biomac.6b01830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Frederic Murschel
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Charles Fortier
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Mario Jolicoeur
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Robert S. Hodges
- Department
of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Gregory De Crescenzo
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| |
Collapse
|
19
|
Nischang I, Perevyazko I, Majdanski T, Vitz J, Festag G, Schubert US. Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites. Anal Chem 2016; 89:1185-1193. [DOI: 10.1021/acs.analchem.6b03615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ivo Nischang
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Igor Perevyazko
- Department
of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, Saint Petersburg, Russia
| | - Tobias Majdanski
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Vitz
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Grit Festag
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
20
|
Chu TW, Kopeček J. Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 2016; 3:908-22. [PMID: 26191406 DOI: 10.1039/c4bm00442f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review highlights a unique research area in polymer-based nanomedicine designs. Drug-free macromolecular therapeutics induce apoptosis of malignant cells by the crosslinking of surface non-internalizing receptors. The receptor crosslinking is mediated by the biorecognition of high-fidelity natural binding motifs (such as antiparallel coiled-coil peptides or complementary oligonucleotides) that are grafted to the side chains of polymers or attached to targeting moieties against cell receptors. This approach features the absence of low-molecular-weight cytotoxic compounds. Here, we summarize the rationales, different designs, and advantages of drug-free macromolecular therapeutics. Recent developments of novel therapeutic systems for B-cell lymphomas are discussed, as well as relevant approaches for other diseases. We conclude by pointing out various potential future directions in this exciting new field.
Collapse
Affiliation(s)
- Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
22
|
Francica JR, Lynn GM, Laga R, Joyce MG, Ruckwardt TJ, Morabito KM, Chen M, Chaudhuri R, Zhang B, Sastry M, Druz A, Ko K, Choe M, Pechar M, Georgiev IS, Kueltzo LA, Seymour LW, Mascola JR, Kwong PD, Graham BS, Seder RA. Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjug Chem 2016; 27:2372-2385. [PMID: 27583777 DOI: 10.1021/acs.bioconjchem.6b00370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Rajoshi Chaudhuri
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kiyoon Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Non-covalent modification of granulocyte-colony stimulating factor (G-CSF) by coiled-coil technology. Int J Pharm 2016; 511:98-103. [PMID: 27363936 DOI: 10.1016/j.ijpharm.2016.06.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 11/21/2022]
Abstract
We present here an approach to non-covalently combine an engineered model protein with a PEGylated peptide via coiled-coil binding. To this end a fusion protein of G-CSF and the peptide sequence (JunB) was created-one sequence of JunB was expressed at the N-terminal of GCSF. JunB is able to bind to the peptide sequence cFos, which was in turn covalently linked to a chain of poly(ethylene glycol) (PEG). The selected peptide sequences are leucine zipper motives from transcription factors and are known to bind to each other specifically by formation of a super secondary structure called coiled-coil. The binding between PEGylated peptides of various molecular weights and the modified protein was assessed by isothermal calorimetry (ITC), dynamic light scattering (DLS), circular dichroism (CD), and fluorescence anisotropy. Our findings show that the attachment of 2 and 5kDa PEG does not interfere with coiled-coil formation and thus binding of peptide to fusion protein. With this work we successfully demonstrate the non-covalent binding of a model moiety (PEG) to a protein through coiled-coil interaction.
Collapse
|
24
|
Wu Y, Collier JH. α-Helical coiled-coil peptide materials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27597649 DOI: 10.1002/wnan.1424] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
Abstract
Self-assembling coiled coils, which occur commonly in native proteins, have received significant interest for the design of new biomaterials-based medical therapies. Considerable effort over recent years has led to a detailed understanding of the self-assembly process of coiled coils, and a diverse collection of strategies have been developed for designing functional materials using this motif. The ability to engineer the interface between coiled coils allows one to achieve variously connected components, leading to precisely defined structures such as nanofibers, nanotubes, nanoparticles, networks, gels, and combinations of these. Currently these materials are being developed for a range of biotechnological and medical applications, including drug delivery systems for controlled release, targeted nanomaterials, 'drug-free' therapeutics, vaccine delivery systems, and others. WIREs Nanomed Nanobiotechnol 2017, 9:e1424. doi: 10.1002/wnan.1424 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Howard CB, Fletcher N, Houston ZH, Fuchs AV, Boase NRB, Simpson JD, Raftery LJ, Ruder T, Jones ML, de Bakker CJ, Mahler SM, Thurecht KJ. Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Adv Healthc Mater 2016; 5:2055-68. [PMID: 27283923 DOI: 10.1002/adhm.201600263] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.
Collapse
Affiliation(s)
- Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Nicholas Fletcher
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Zachary H. Houston
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Adrian V. Fuchs
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Nathan R. B. Boase
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Joshua D. Simpson
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Lyndon J. Raftery
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Tim Ruder
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Christopher J. de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
26
|
Xiao X, Agris PF, Hall CK. Designing peptide sequences in flexible chain conformations to bind RNA: a search algorithm combining Monte Carlo, self-consistent mean field and concerted rotation techniques. J Chem Theory Comput 2016; 11:740-52. [PMID: 26579605 DOI: 10.1021/ct5008247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A search algorithm combining Monte Carlo, self-consistent mean field, and concerted rotation techniques was developed to discover peptide sequences that are reasonable HIV drug candidates due to their exceptional binding to human tRNAUUU(Lys3), the primer of HIV replication. The search algorithm allows for iteration between sequence mutations and conformation changes during sequence evolution. Searches conducted for different classes of peptides identified several potential peptide candidates. Analysis of the energy revealed that the asparagine and cysteine at residues 11 and 12 play important roles in "recognizing" tRNA(Lys3) via van der Waals interactions, contributing to binding specificity. Arginines preferentially attract the phosphate linkage via charge-charge interaction, contributing to binding affinity. Evaluation of the RNA/peptide complex's structure revealed that adding conformation changes to the search algorithm yields peptides with better binding affinity and specificity to tRNA(Lys3) than a previous mutation-only algorithm.
Collapse
Affiliation(s)
- Xingqing Xiao
- Chemical and Biomolecular Engineering Department, North Carolina State University , Raleigh, North Carolina 27695-7905, United States
| | - Paul F Agris
- The RNA Institute, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Carol K Hall
- Chemical and Biomolecular Engineering Department, North Carolina State University , Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
27
|
Oude Blenke EE, van den Dikkenberg J, van Kolck B, Kros A, Mastrobattista E. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. NANOSCALE 2016; 8:8955-65. [PMID: 27073992 DOI: 10.1039/c6nr00711b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.
Collapse
Affiliation(s)
- Erik E Oude Blenke
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
29
|
|
30
|
Abstract
This overview intends to demonstrate the close relationship between the design of smart biomaterials and water-soluble polymer-drug conjugates. First, the discovery and systematic studies of hydrogels based on crosslinked poly(meth)acrylic acid esters and substituted amides is described. Then, the lessons learned for the design of water-soluble polymers as drug carriers are highlighted. The current state-of-the-art in water-soluble, mainly poly[N-(2-hydroxypropyl)methacylamide (HPMA), polymer-drug conjugates is shown including the design of backbone degradable HPMA copolymer carriers. In the second part, the modern design of hybrid hydrogels focuses on the self-assembly of hybrid copolymers composed from the synthetic part (backbone) and biorecognizable grafts (coiled-coil forming peptides or morpholino oligonucleotides) is shown. The research of self-assembling hydrogels inspired the invention and design of drug-free macromolecular therapeutics - a new paradigm in drug delivery where crosslinking of non-internalizating CD20 receptors results in apoptosis in vitro and in vivo. The latter is mediated by biorecognition of complementary motifs; no low molecular weight drug is needed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
31
|
Laga R, Janoušková O, Ulbrich K, Pola R, Blažková J, Filippov SK, Etrych T, Pechar M. Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules 2015; 16:2493-505. [PMID: 26153904 DOI: 10.1021/acs.biomac.5b00764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective chemotherapy for neoplastic diseases requires the use of drugs that can reach the site of action at a therapeutically efficacious concentration and maintain it at a constant level over a sufficient period of time with minimal side effects. Currently, conjugates of high-molecular-weight hydrophilic polymers or biocompatible nanoparticles with stimuli-releasable anticancer drugs are considered to be some of the most promising systems capable of fulfilling these criteria. In this work, conjugates of thermoresponsive diblock copolymers with the covalently bound cancerostatic drug pirarubicin (PIR) were synthesized as a reversible micelle-forming drug delivery system combining the benefits of the above-mentioned carriers. The diblock copolymer carriers were composed of hydrophilic poly[N-(2-hydroxypropyl)methacrylamide]-based block containing a small amount (∼ 5 mol %) of comonomer units with reactive hydrazide groups and a thermoresponsive poly[2-(2-methoxyethoxy)ethyl methacrylate] block. PIR was attached to the hydrophilic block of the copolymer through the pH-sensitive hydrazone bond designed to be stable in the bloodstream at pH 7.4 but to be degraded in an intratumoral/intracellular environment at pH 5-6. The temperature-induced conformation change of the thermoresponsive block (coil-globule transition), followed by self-assembly of the copolymer into a micellar structure, was controlled by the thermoresponsive block length and PIR content. The cytotoxicity and intracellular transport of the conjugates as well as the release of PIR from the conjugates inside the cells, followed by its accumulation in the cell nuclei, were evaluated in vitro using human colon adenocarcinoma (DLD-1) cell lines. It was demonstrated that the studied conjugates have a great potential to become efficacious in vivo pharmaceuticals.
Collapse
Affiliation(s)
- Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Jana Blažková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Department of Biomedical Polymers, Heyrovský square 2, 162 06 Prague, Czech Republic
| |
Collapse
|
32
|
Assal Y, Mizuguchi Y, Mie M, Kobatake E. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery. Bioconjug Chem 2015; 26:1672-7. [PMID: 26079837 DOI: 10.1021/acs.bioconjchem.5b00266] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.
Collapse
Affiliation(s)
- Yasmine Assal
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8052, Japan
| | - Yoshinori Mizuguchi
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8052, Japan
| | - Masayasu Mie
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8052, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8052, Japan
| |
Collapse
|
33
|
Zhang R, Yang J, Chu TW, Hartley JM, Kopeček J. Multimodality imaging of coiled-coil mediated self-assembly in a "drug-free" therapeutic system. Adv Healthc Mater 2015; 4:1054-65. [PMID: 25612325 DOI: 10.1002/adhm.201400679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Indexed: 01/23/2023]
Abstract
Two complementary coiled-coil peptides CCE/CCK are used to develop a "drug free" therapeutic system, which can specifically kill cancer cells without a drug. CCE is attached to the Fab' fragment of anti-CD20 1F5 antibody (Fab'-CCE), and CCK is conjugated in multiple grafts to poly[N-(2-hydroxypropyl)methacrylamide] (P-(CCK)x ). Two conjugates are consecutively administered: First, Fab'-CCE coats peptide CCE at CD20 antigen of lymphoma cell surface; second, CCE/CCK biorecognition between Fab'-CCE and P-(CCK)x leads to coiled-coil formation, CD20 crosslinking, membrane reorganization, and ultimately cell apoptosis. To prove that two conjugates can assemble at cell surface, multiple fluorescence imaging studies are performed, including 2-channel FMT, 3D confocal microscopy, and 4-color FACS. Confocal microscopy shows colocalization of two fluorescently labeled conjugates on non-Hodgkin's lymphoma (NHL) Raji cell surface, indicating "two-step" targeting specificity. The fluorescent images also reveal that these two conjugates can disrupt normal membrane lipid distribution and form lipid raft clusters, leading to cancer cell apoptosis. This "two-step" biorecognition capacity is further demonstrated in a NHL xenograft model, using fluorescent images at whole-body, tissue and cell levels. It is also found that delaying injection of P-(CCK)x can significantly enhance targeting efficacy. This high-specificity therapeutics provide a safe option to treat NHL and other B cell malignancies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jonathan M. Hartley
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
34
|
Xue X, Wang B, Xi X, Chu Q, Wei Y. Polymer decorated magnetite materials as smart protein separators to manipulate the high loading of heme proteins. NEW J CHEM 2015. [DOI: 10.1039/c5nj00677e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Polymer decorated magnetite materials using polyvinyl imidazole were successfully fabricated, which could separate high-abundance heme proteins from blood efficiently.
Collapse
Affiliation(s)
- Xue Xue
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Binghai Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xingjun Xi
- China National Institute of Standardization
- Beijing 100191
- P. R. China
| | - Qiao Chu
- China National Institute of Standardization
- Beijing 100191
- P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|