1
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Xue Y, Wang Y, Wang S, Yan M, Huang J, Yang X. Label-Free and Regenerable Aptasensor for Real-Time Detection of Cadmium(II) by Dual Polarization Interferometry. Anal Chem 2020; 92:10007-10015. [PMID: 32618180 DOI: 10.1021/acs.analchem.0c01710] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, numerous aptamer-based biosensors have been developed to detect heavy metal ions. Most of aptamer-based biosensors only can be used to get some quantitative information. The mechanism of the interaction between aptamer and metal ions, however, is rarely studied. In this work, a label-free and regenerable aptamer-based biosensor was constructed using dual polarization interferometry (DPI). This aptasensor was used to investigate the real-time interaction process between cadmium(II) and its aptamer. According to the information on mass, thickness, and density obtained by DPI, a Cd2+ concentration-dependent interaction mechanism and conformation of aptamer was proposed. At low Cd2+ concentration, Cd2+ mainly interacted with phosphate groups on aptamer, resulting in the stretched ssDNA and a few vertical hairpin structures. When adding the high concentration of Cd2+, Cd2+ primarily bound with bases of DNA by coordination interaction and the conformation of aptamer transferred to a tight and short hairpin structure. In addition, the association rate constant (ka), dissociation rate constant (kd) and disassociation constant (KD) between Cd2+ and its aptamer were calculated to be 96 M-1 S-1, 2.11 × 10-5 S-1, and 220 nM, respectively. The proposed aptasensor showed high sensitivity for Cd2+ detection with the detection limit of 0.61 μg/L, which was far below the 5.0 μg/L ranked by the U.S. Environmental Protection Agency. The biosensor also exhibited excellent regenerability and could be used for three cycles without obvious change in response signal. Therefore, the developed method could not only provide quantitative information, but also offered the information on conformation and kinetics for molecular interaction. This method can facilely extend to study the interaction of DNA with other ions, small molecules, or biomacromolecules.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Poltorak L, Verheijden ML, Bosma D, Jonkheijm P, de Smet LC, Sudhölter EJ. Lipid bilayers cushioned with polyelectrolyte-based films on doped silicon surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2669-2680. [DOI: 10.1016/j.bbamem.2018.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
4
|
Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Innovation in Layer-by-Layer Assembly. Chem Rev 2016; 116:14828-14867. [PMID: 27960272 DOI: 10.1021/acs.chemrev.6b00627] [Citation(s) in RCA: 451] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.
Collapse
Affiliation(s)
- Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Manufacturing, CSIRO , Clayton, Victoria 3168, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Julia A Braunger
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Hirotaka Ejima
- Institute of Industrial Science, The University of Tokyo , Tokyo 153-8505, Japan
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Su Q, Nöll G. A sandwich-like strategy for the label-free detection of oligonucleotides by surface plasmon fluorescence spectroscopy (SPFS). Analyst 2016; 141:5784-5791. [PMID: 27484040 PMCID: PMC5166564 DOI: 10.1039/c6an01129b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutting surface-bound optical molecular beacons results in a sandwich-like detection strategy with lower background fluorescence.
For the detection of oligonucleotides a sandwich-like detection strategy has been developed by which the background fluorescence is significantly lowered in comparison with surface-bound molecular beacons. Surface bound optical molecular beacons are DNA hairpin structures comprising a stem and a loop. The end of the stem is modified with a fluorophore and a thiol anchor for chemisorption on gold surfaces. In the closed state the fluorophore is in close proximity to the gold surface, and most of the fluorescence is quenched. After hybridization with a target the hairpin opens, the fluorophore and surface become separated, and the fluorescence drastically increases. Using this detection method the sensitivity is limited by the difference in the fluorescence intensity in the closed and open state. As the background fluorescence is mainly caused by non-quenched fluorophores, a strategy to reduce the background fluorescence is to cut the beacon in two halves. First a thiolated ssDNA capture probe strand (first half) is chemisorbed to a gold surface together with relatively short thiol spacers. Next the target is hybridized by one end to the surface-anchored capture probe and by the other to a fluorophore-labeled reporter probe DNA (second half). The signal readout is done by surface plasmon fluorescence spectroscopy (SPFS). Using this detection strategy the background fluorescence can be significantly lowered, and the detection limit is lowered by more than one order of magnitude. The detection of a target takes only a few minutes and the sensor chips can be used for multiple detection steps without a significant decrease in performance.
Collapse
Affiliation(s)
- Qiang Su
- Nöll Junior Research Group, Organic Chemistry, Chem. Biol. Dept., Faculty IV, Siegen University, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | |
Collapse
|
6
|
Vogt S, Su Q, Gutiérrez-Sánchez C, Nöll G. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes. Anal Chem 2016; 88:4383-90. [PMID: 26990929 DOI: 10.1021/acs.analchem.5b04814] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Electrochemical or faradaic impedance spectroscopy (EIS) using the ferri/ferrocyanide couple as a redox probe at gold working electrodes was evaluated with respect to its ability to monitor consecutive surface modification steps. As a model reaction, the reversible hybridization and dehybridization of DNA was studied. Thiol-modified single stranded DNA (ssDNA, 20 bases, capture probe) was chemisorbed to a gold electrode and treated with a solution of short thiols to release nonspecifically adsorbed DNA before hybridization with complementary ssDNA (20 bases, target) was carried out. Reversible dehybridization was achieved by intense rinsing with pure water. The experimental procedures were optimized by kinetic surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) measurements to maximize the increase in reflectivity or decrease in frequency upon hybridization before hybridization/dehybridization was also monitored by EIS. In contrast to SPR and QCM-D, repeatable EIS measurements were not possible at first. Combined SPR/EIS and QCM-D/EIS measurements revealed that during EIS the gold surface is seriously damaged due to the presence of CN(-) ions, which are released from the ferri/ferrocyanide redox probe. Even at optimized experimental conditions, etching the gold electrodes could not be completely suppressed and the repeatability of the EIS measurements was limited. In three out of four experimental runs, only two hybridization/dehybridization steps could be monitored reversibly by EIS. Thereafter etching the gold electrode significantly contributed to the EIS spectra whereas the QCM-D response was still repeatable. Hence great care has to be taken when this technique is used to monitor surface modification at gold electrodes.
Collapse
Affiliation(s)
- Stephan Vogt
- Nöll Junior Research Group, Organic Chemistry, Chemistry and Biology Department, Faculty IV, Siegen University , Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Qiang Su
- Nöll Junior Research Group, Organic Chemistry, Chemistry and Biology Department, Faculty IV, Siegen University , Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Cristina Gutiérrez-Sánchez
- Nöll Junior Research Group, Organic Chemistry, Chemistry and Biology Department, Faculty IV, Siegen University , Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Gilbert Nöll
- Nöll Junior Research Group, Organic Chemistry, Chemistry and Biology Department, Faculty IV, Siegen University , Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| |
Collapse
|
7
|
Cao Z, Gordiichuk PI, Loos K, Sudhölter EJR, de Smet LCPM. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers. SOFT MATTER 2016; 12:1496-505. [PMID: 26658499 DOI: 10.1039/c5sm01655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3(-) interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4(-) compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4(-), the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4(-) sensors and ion separation/recovery systems.
Collapse
Affiliation(s)
- Zheng Cao
- Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Liwinska W, Symonowicz M, Stanislawska I, Lyp M, Stojek Z, Zabost E. Environmentally sensitive nanohydrogels decorated with a three-strand oligonucleotide helix for controlled loading and prolonged release of intercalators. RSC Adv 2016. [DOI: 10.1039/c6ra16592c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible nanohydrogels modified with three-segment oligonucleotide hybrids were used for controlled loading and prolonged release of anticancer intercalators in hyperthermia treatment.
Collapse
Affiliation(s)
| | | | | | - Marek Lyp
- College of Rehabilitation
- Warsaw
- Poland
| | | | - Ewelina Zabost
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| |
Collapse
|
9
|
Zheng X, Wang N, Yang Y, Chen Y, Liu X, Zheng J. Insight into the inhibition mechanism of kukoamine B against CpG DNA via binding and molecular docking analysis. RSC Adv 2016. [DOI: 10.1039/c6ra11646a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The binding and inhibition mechanism of kukoamine B against CpG DNA is proposed.
Collapse
Affiliation(s)
- Xinchuan Zheng
- Medical Research Center
- The First Affiliated Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Ning Wang
- Medical Research Center
- The First Affiliated Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Yongjun Yang
- Medical Research Center
- The First Affiliated Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Yingchun Chen
- Department of Medicinal Chemistry
- College of Pharmacy
- Third Military Medical University
- Chongqing
- China
| | - Xin Liu
- Medical Research Center
- The First Affiliated Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Jiang Zheng
- Medical Research Center
- The First Affiliated Hospital
- Third Military Medical University
- Chongqing 400038
- China
| |
Collapse
|
10
|
Liao WC, Lu CH, Hartmann R, Wang F, Sohn YS, Parak WJ, Willner I. Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules. ACS NANO 2015; 9:9078-9086. [PMID: 26266334 DOI: 10.1021/acsnano.5b03223] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The synthesis of stimuli-responsive DNA microcapsules acting as carriers for different payloads, and being dissociated through the formation of aptamer-ligand complexes is described. Specifically, stimuli-responsive anti-adenosine triphosphate (ATP) aptamer-cross-linked DNA-stabilized microcapsules loaded with tetramethylrhodamine-modified dextran (TMR-D), CdSe/ZnS quantum dots (QDs), or microperoxidase-11 (MP-11) are presented. In the presence of ATP as trigger, the microcapsules are dissociated through the formation of aptamer-ATP complexes, resulting in the release of the respective loads. Selective unlocking of the capsules is demonstrated, and CTP, GTP, or TTP do not unlock the pores. The ATP-triggered release of MP-11 from the microcapsules enables the MP-11-catalyzed oxidation of Amplex UltraRed by H2O2 to the fluorescent product resorufin.
Collapse
Affiliation(s)
- Wei-Ching Liao
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Chun-Hua Lu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Raimo Hartmann
- Fachbereich Physik, Philipps-Universität Marburg , Renthof 7, 35037 Marburg, Germany
| | - Fuan Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg , Renthof 7, 35037 Marburg, Germany
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
11
|
Su Q, Wesner D, Schönherr H, Nöll G. Molecular beacon modified sensor chips for oligonucleotide detection with optical readout. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14360-14367. [PMID: 25363421 DOI: 10.1021/la504105x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three different surface bound molecular beacons (MBs) were investigated using surface plasmon fluorescence spectroscopy (SPFS) as an optical readout technique. While MB1 and MB2, both consisting of 36 bases, differed only in the length of the linker for surface attachment, the significantly longer MB3, consisting of 56 bases, comprised an entirely different sequence. For sensor chip preparation, the MBs were chemisorbed on gold via thiol anchors together with different thiol spacers. The influence of important parameters, such as the length of the MBs, the length of the linker between the MBs and the gold surface, the length and nature of the thiol spacers, and the ratio between the MBs and the thiol spacers was studied. After hybridization with the target, the fluorophore of the longer MB3 was oriented close to the surface, and the shorter MBs were standing more or less upright, leading to a larger increase in fluorescence intensity. Fluorescence microscopy revealed a homogeneous distribution of the MBs on the surface. The sensor chips could be used for simple and fast detection of target molecules with a limit of detection in the larger picomolar range. The response time was between 5 and 20 min. Furthermore, it was possible to distinguish between fully complementary and singly mismatched targets. While rinsing with buffer solution after hybridization with target did not result in any signal decrease, complete dehybridization could be carried out by intense rinsing with pure water. The MB modified sensor chips could be prepared in a repeatable manner and reused many times without significant decrease in performance.
Collapse
Affiliation(s)
- Qiang Su
- Nöll Junior Research Group, Organic Chemistry, Department of Chemistry and Biology, Faculty IV, Siegen University , Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | | | | | | |
Collapse
|
12
|
Xu H, Huang F, Liang H. Adsorption of polyethylenimine and its interaction with a genomic DNA on a silicon oxynitride surface characterized by dual polarization interferometry. RSC Adv 2014. [DOI: 10.1039/c4ra05840b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Mokhtari T, Pham QD, Hirst C, O'Driscoll BMD, Nylander T, Edler KJ, Sparr E. Controlling interfacial film formation in mixed polymer-surfactant systems by changing the vapor phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9991-10001. [PMID: 25084476 DOI: 10.1021/la5010825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we show that transport-generated phase separation at the air-liquid interface in systems containing self-assembling amphiphilic molecules and polymers can be controlled by the relative humidity (RH) of the air. We also show that our observations can be described quantitatively with a theoretical model describing interfacial phase separation in a water gradient that we published previously. These phenomena arises from the fact that the water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential in the open aqueous solution. This implies nonequilibrium conditions at the air-water interface, which in turn can have consequences on the molecular organization in this layer. The experimental setup is such that we can control the boundary conditions in RH and thereby verify the predictions from the theoretical model. The polymer-surfactant systems studied here are composed of polyethylenimine (PEI) and hexadecyltrimethylammonium bromide (CTAB) or didecyldimethylammonium bromide (DDAB). Grazing-incidence small-angle X-ray scattering results show that interfacial phases with hexagonal or lamellar structure form at the interface of dilute polymer-surfactant micellar solutions. From spectroscopic ellipsometry data we conclude that variations in RH can be used to control the growth of micrometer-thick interfacial films and that reducing RH leads to thicker films. For the CTAB-PEI system, we compare the phase behavior of the interfacial phase to the equilibrium bulk phase behavior. The interfacial film resembles the bulk phases formed at high surfactant to polymer ratio and reduced water contents, and this can be used to predict the composition of interfacial phase. We also show that convection in the vapor phase strongly reduces film formation, likely due to reduction of the unstirred layer, where diffusive transport is dominating.
Collapse
Affiliation(s)
- Tahereh Mokhtari
- Division of Physical Chemistry, Chemistry Department, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Borges J, Mano JF. Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem Rev 2014; 114:8883-942. [DOI: 10.1021/cr400531v] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- João Borges
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Lee L, Johnston APR, Caruso F. Programmed degradation of DNA multilayer films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2902-2909. [PMID: 24664540 DOI: 10.1002/smll.201303321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 06/03/2023]
Abstract
The design and assembly of DNA multilayer films with programmable degradation properties are reported. The nanostructured DNA films are assembled through the layer-by-layer (LbL) assembly technique and can be programmed to degrade by subsequently introducing DNA strands of specific sequences. The strands preferentially hybridize to the building blocks that stabilize the film structure, causing the film to rearrange and degrade. The rate of degradation is influenced by both the availability and accessibility of the complementary DNA binding sites within the film, as well as the degree of crosslinking within the film. Similar results are obtained for DNA multilayer films assembled on planar and particle supports. This approach offers an avenue to tailor degradability features into DNA-based materials that may find application in the biosciences, in areas such as biosensing and drug delivery.
Collapse
Affiliation(s)
- Lillian Lee
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria, 3010, Australia
| | | | | |
Collapse
|
16
|
Structural Behavior of Au-Calf Thymus DNA Interface Estimated Through an Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance Study. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zheng Y, Yang C, Yang F, Yang X. Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry. Anal Chem 2014; 86:3849-55. [PMID: 24611666 DOI: 10.1021/ac403992r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The real-time conformational changes of cytosine (C)-rich ssDNA oligonucleotides upon binding with silver ions (Ag(+)) were studied using dual polarization interferometry (DPI). Upon the addition of Ag(+), Ag(+) selectively bound to cytosine-cytosine mismatches and formed C-Ag(+)-C complexes, inducing change of the structure of the C-rich ssDNA from random coil conformation to duplex conformation, whereas the control ssDNA without cytosine-cytosine mismatches had no such signal, which was consistent with circular dichroism (CD) characterization. The conformational change of DNA was reflected on the changes of the mass, thickness, and density values resolved by DPI. The calibration curves showed that as the concentration of Ag(+) increased from 10 nM to 8 μM, the thickness and mass values increased linearly while the density values decreased linearly. Other metal ions such as K(+), Ca(2+), Na(+), Mg(2+), Zn(2+), Mn(2+), Ni(2+), and Pb(2+) did not interfere with the interaction between Ag(+) and C-rich ssDNA, indicating that this method had a good selectivity. The practical application of this biosensor was also investigated in real samples such as drinking water. Besides, cysteine could specifically capture Ag(+) from C-Ag(+)-C complexes and transformed the structure of the C-rich DNA back from rigid double-stranded conformation to random coil conformation, which allowed cysteine to be detected selectively as well. It is expected that this biosensing strategy may be utilized to study the interaction of DNA with other molecules.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
18
|
Nöll G, Su Q, Heidel B, Yu Y. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy. Adv Healthc Mater 2014; 3:42-6. [PMID: 23788367 DOI: 10.1002/adhm.201300056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/19/2013] [Indexed: 01/07/2023]
Abstract
The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.
Collapse
Affiliation(s)
- Gilbert Nöll
- Nöll Junior Research Group for Nanotechnology, Siegen University, Faculty IV, Department of Chemistry-Biology, Organic Chemistry, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | | | |
Collapse
|
19
|
Lee L, Johnston APR, Caruso F. Probing the dynamic nature of DNA multilayer films using Förster resonance energy transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12527-12535. [PMID: 22889012 DOI: 10.1021/la302587t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA films are of interest for use in a number of areas, including sensing, diagnostics, and as drug/gene delivery carriers. The specific base pairing of DNA materials can be used to manipulate their architecture and degradability. The programmable nature of these materials leads to complex and unexpected structures that can be formed from solution assembly. Herein, we investigate the structure of DNA multilayer films using Förster resonance energy transfer (FRET). The DNA films are assembled on silica particles by depositing alternating layers of homopolymeric diblocks (polyA(15)G(15) and polyT(15)C(15)) with fluorophore (polyA(15)G(15)-TAMRA) and quencher (polyT(15)C(15)-BHQ2) layers incorporated at predesigned locations throughout the films. Our results show that DNA films are dynamic structures that undergo rearrangement. This occurs when the multilayer films are perturbed during new layer formation through hybridization but can also take place spontaneously when left over time. These films are anticipated to be useful in drug delivery applications and sensing applications.
Collapse
Affiliation(s)
- Lillian Lee
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
20
|
Giménez-Romero D, González-Martíne MA, Bañuls MJ, Monzó IS, Puchades R, Maquieira Á. Modeling of the role of conformational dynamics in kinetics of the antigen-antibody interaction in heterogeneous phase. J Phys Chem B 2012; 116:5679-88. [PMID: 22524596 DOI: 10.1021/jp301953z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach that may potentially be used to study biomolecular interactions including the simultaneous determination of structural and kinetic binding parameters is described in this Article for the first time. It allows a rigid distinction between the possible reaction mechanisms of biomolecular recognition, induced fit and conformational selection. The relative importance of the two pathways is determined not by comparing rate constants but the structural aspects of the interaction instead. So the exact location of antigen molecules with respect to the capture antibody is depicted experimentally, avoiding the use of X-ray crystallography. The proposed pattern is applied to study the anti-BSA Immunoglobulin G (IgG)-free Bovine Serum Albumin (BSA) interaction, in which IgG is anchored on a silicon chip sensing surface in an oriented manner. The exact location of the receptor with respect to the ligand was monitored during the binding process, thus drawing the full reaction scheme. IgG forms an asymmetric (FabBSA)2 complex with BSA molecules, even though it has two identical fragment antigen binding arms. This is thought to be due to steric hindrance caused by the binding of the first BSA molecule. Furthermore, the proposed model allows one to characterize reaction intermediates without the need of isolating them. These intermediates not characterized in situ so far are the keystone to understand how antibodies are able to identify antigens.
Collapse
Affiliation(s)
- David Giménez-Romero
- Instituto de Reconocimiento Molecular & Desarrollo Tecnológico, Universidad Politécnica de Valencia , Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Vandeventer PE, Lin JS, Zwang TJ, Nadim A, Johal MS, Niemz A. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J Phys Chem B 2012; 116:5661-70. [PMID: 22537288 DOI: 10.1021/jp3017776] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible interactions between DNA and silica are utilized in the solid phase extraction and purification of DNA from complex samples. Chaotropic salts commonly drive DNA binding to silica but inhibit DNA polymerase amplification. We studied DNA adsorption to silica using conditions with or without chaotropic salts through bulk depletion and quartz crystal microbalance (QCM) experiments. While more DNA adsorbed to silica using chaotropic salts, certain buffer conditions without chaotropic salts yielded a similar amount of eluted DNA. QCM results indicate that under stronger adsorbing conditions the adsorbed DNA layer is initially rigid but becomes viscoelastic within minutes. These results qualitatively agreed with a mathematical model for a multiphasic adsorption process. Buffer conditions that do not require chaotropic salts can simplify protocols for nucleic acid sample preparation. Understanding how DNA adsorbs to silica can help optimize nucleic acid sample preparation for clinical diagnostic and research applications.
Collapse
Affiliation(s)
- Peter E Vandeventer
- Keck Graduate Institute of Applied Life Sciences , 535 Watson Drive, Claremont, California 91711, United States
| | | | | | | | | | | |
Collapse
|
22
|
Malinin AS, Kalashnikova IV, Rakhnyanskaya AA, Yaroslavov AA. Adsorption of cationic polymers on the surfaces of anionic glass microspheres. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x1201004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012; 41:6103-24. [DOI: 10.1039/c2cs35088b] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Qi A, Chan P, Ho J, Rajapaksa A, Friend J, Yeo L. Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. ACS NANO 2011; 5:9583-9591. [PMID: 22059733 DOI: 10.1021/nn202833n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The encapsulation of therapeutic molecules within multiple layers of biocompatible and biodegradable polymeric excipients allows exquisite design of their release profile, to the extent the drug can be selectively delivered to a specific target location in vivo. Here, we develop a novel technique for the assembly of multilayer polyelectrolyte nanocarriers based on surface acoustic wave atomization as a rapid and efficient alternative to conventional layer-by-layer assembly, which requires the use of a sacrificial colloidal template over which consecutive polyelectrolyte layers are deposited. Polymer nanocarriers are synthesized by atomizing a polymer solution and suspending them within a complementary polymer solution of opposite charge subsequent to their solidification in-flight as the solvent evaporates; reatomizing this suspension produces nanocarriers with a layer of the second polymer deposited over the initial polymer core. Successive atomization-suspension layering steps can then be repeated to produce as many additional layers as desired. Specifically, we synthesize nanocarriers comprising two and three, and up to eight, alternating layers of chitosan (or polyethyleneimine) and carboxymethyl cellulose within which plasmid DNA is encapsulated and show in vitro DNA release profiles over several days. Evidence that the plasmid's viability is preserved and hence the potential of the technique for gene delivery is illustrated through efficient in vitro transfection of the encapsulated plasmid in human mesenchymal progenitor and COS-7 cells.
Collapse
Affiliation(s)
- Aisha Qi
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Wang J, Yang F, Yang X. Probing Biomolecular Interactions with Dual Polarization Interferometry: Real-Time and Label-Free Coralyne Detection by Use of Homoadenine DNA Oligonucleotide. Anal Chem 2011; 84:924-30. [DOI: 10.1021/ac2019443] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Juan Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Fan Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| | - Xiurong Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| |
Collapse
|
26
|
Lomas H, Johnston APR, Such GK, Zhu Z, Liang K, van Koeverden MP, Alongkornchotikul S, Caruso F. Polymersome-loaded capsules for controlled release of DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2109-2119. [PMID: 21726043 DOI: 10.1002/smll.201100744] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/31/2011] [Indexed: 05/31/2023]
Abstract
The formation of a novel drug-delivery carrier for the controlled release of plasmid DNA that comprises layer-by-layer polymer capsules subcompartmentalized with pH-sensitive nanometer-sized polymersomes is reported. The amphiphilic diblock copolymer poly(oligoethylene glycol methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) forms polymersomes at physiological pH, but transitions to unimeric polymer chains upon acidification to cellular endocytic pH. These polymersomes can thus release an encapsulated payload in response to a change in pH from physiological to endocytic conditions. Multicomponent layer-by-layer capsules are formed by exploiting the ability of tannic acid to act as an efficient hydrogen-bond donor for both the polymersomes and poly(N-vinyl pyrrolidone) at physiological pH. These capsules show release of a plasmid DNA payload encapsulated within the polymersome subcompartments in response to changes in pH between physiological and endocytic conditions.
Collapse
Affiliation(s)
- Hannah Lomas
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Hosta-Rigau L, Lomas H, Caruso F. Nanostructured polymer assemblies formed at interfaces: applications from immobilization and encapsulation to stimuli-responsive release. Phys Chem Chem Phys 2011; 13:4782-801. [DOI: 10.1039/c0cp02287j] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Singh A, Snyder S, Lee L, Johnston APR, Caruso F, Yingling YG. Effect of oligonucleotide length on the assembly of DNA materials: molecular dynamics simulations of layer-by-layer DNA films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17339-17347. [PMID: 20939494 DOI: 10.1021/la102762t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA strand length has been found to be an important factor in many DNA-based nanoscale systems. Here, we apply molecular dynamics simulations in a synergistic effort with layer-by-layer experimental data to understand the effect of DNA strand length on the assembly of DNA films. The results indicate that short (less than 10 bases) and long (more than 30 bases) single-stranded DNAs do not exhibit optimal film growth, and this can be associated with the limited accessibility of the bases on the surface due to formation of self-protected interactions that prevent efficient hybridization. Interestingly, the presence of a duplex attached to a single strand significantly alters the persistence length of the polyT strands. Our study suggests that restrained polyT, compared to labile suspensions of free polyT, are more capable of hybridization and hence DNA-based assembly.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
29
|
Becker AL, Johnston APR, Caruso F. Peptide nucleic acid films and capsules: assembly and enzymatic degradation. Macromol Biosci 2010; 10:488-95. [PMID: 20127668 DOI: 10.1002/mabi.200900347] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sequence-directed hybridization of nucleic acids provides a high level of control for the bottom-up assembly of nanostructured materials. Altering the DNA sequence affords control and versatility over the film structure, but is limited by the chemical and physical properties of DNA. Here, we use DNA analogues, peptide nucleic acids (PNAs), to introduce new properties to multilayered thin films and retain the advantages of sequence-directed assembly. Thin films, formed by the layer-by-layer (LbL) assembly of PNA strands, were assembled from short PNA sequences on planar and colloidal substrates. In the case of PNA-coated particles, hollow capsules were obtained following removal of the sacrificial particle template. The PNA films were stable to both nuclease and protease degradation, and the nuclease degradation rate could be tuned by varying the amount of DNA incorporated into the films. These thin films may find use in biomedical applications.
Collapse
Affiliation(s)
- Alisa L Becker
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Centre for Nanoscience and Nanotechnology, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
30
|
Lee L, Cavalieri F, Johnston APR, Caruso F. Influence of salt concentration on the assembly of DNA multilayer films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3415-3422. [PMID: 19891451 DOI: 10.1021/la9032145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA multilayer films are promising candidates for a plethora of applications, including sensing, diagnostics, and drug/gene delivery. Fabricated solely from DNA, the use of salt in forming DNA multilayers is crucial in promoting and maintaining hybridization of complementary base pairs by minimizing the repulsive forces between the oligonucleotides and preventing disassembly of the layers once formed. Herein, we examine the role of salt on the assembly of DNA films assembled from oligonucleotides composed of two homopolymeric diblocks (polyA(n)G(n) and polyT(n)C(n)) in salt concentrations ranging from 0.1 to 2 M. Using quartz crystal microgravimetry (QCM) and flow cytometry, we show that films assembled at high salt concentrations (2 M salt) exhibit a different morphology and are denser than those assembled from lower (1 M salt) salt solutions. Formation of the T x A*T triplex in solution and within the DNA film was also studied using circular dichroism (CD) and QCM, respectively. DNA films assembled using oligonucleotides of various lengths (20- to 60-mer) at high salt concentration (2 M salt) showed no significant influence on the film growth. This work shows that salt plays an important role in the assembly and final morphology of DNA multilayer films, hence enabling films with different properties to be tailored.
Collapse
Affiliation(s)
- Lillian Lee
- Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
31
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
32
|
Erdmann M, David R, Fornof A, Gaub HE. Electrically controlled DNA adhesion. NATURE NANOTECHNOLOGY 2010; 5:154-159. [PMID: 20023647 DOI: 10.1038/nnano.2009.377] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 11/06/2009] [Indexed: 05/28/2023]
Abstract
The ability to control the interaction of polyelectrolytes, such as DNA or proteins, with charged surfaces is of pivotal importance for a multitude of biotechnological applications. Previously, we measured the desorption forces of single polymers on charged surfaces using an atomic force microscope. Here, we show that the adhesion of DNA on gold electrodes modified with self-assembled monolayers can be biased by the composition of the monolayer and externally controlled by means of the electrode potential. Positive potentials induced DNA adsorption onto OH-terminated electrodes with adhesion forces up to 25 pN (at +0.5 V versus Ag/AgCl), whereas negative potentials suppressed DNA adsorption. The measured contributions of the DNA backbone phosphate charges and the doubly charged terminal phosphate on adsorption agreed with a model based on the Gouy-Chapman theory. Experiments on an NH(2)-terminated electrode revealed a similar force modulation range of the coulomb component of the desorption force. These findings are important for the development of new DNA-based biochips or supramolecular structures.
Collapse
Affiliation(s)
- Matthias Erdmann
- Chair for Applied Physics and Center for NanoScience, Ludwigs-Maximilians-Universität Munich, Amalienstrasse 54, 80799 Munich, Germany
| | | | | | | |
Collapse
|
33
|
Manna U, Bharani S, Patil S. Layer-by-Layer Self-Assembly of Modified Hyaluronic Acid/Chitosan Based on Hydrogen Bonding. Biomacromolecules 2009; 10:2632-9. [DOI: 10.1021/bm9005535] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uttam Manna
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India
| | - Sri Bharani
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
34
|
Johnston APR, Lee L, Wang Y, Caruso F. Controlled degradation of DNA capsules with engineered restriction-enzyme cut sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1418-1421. [PMID: 19296555 DOI: 10.1002/smll.200900075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Angus P R Johnston
- Centre for Nanoscience and Nanotechnology Department of Chemical and Biomolecular Engineering The University of Melbourne Victoria 3010, Australia
| | | | | | | |
Collapse
|
35
|
Wang J, Xu X, Zhang Z, Yang F, Yang X. Real-Time Study of Genomic DNA Structural Changes upon Interaction with Small Molecules Using Dual-Polarization Interferometry. Anal Chem 2009; 81:4914-21. [DOI: 10.1021/ac900591k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Xiaowen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Zhanxia Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|