1
|
Wong S, Brown AD, Abrahams AB, Nurzak AN, Eltaher HM, Sykes DA, Veprintsev DB, Fone KCF, Dixon JE, King MV. A Modified Cell-Penetrating Peptide Enhances Insulin and Oxytocin Delivery across an RPMI 2650 Nasal Epithelial Cell Barrier In Vitro. Pharmaceutics 2024; 16:1267. [PMID: 39458599 PMCID: PMC11510563 DOI: 10.3390/pharmaceutics16101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Peptide-based treatments represent an expanding area and require innovative approaches to enhance bioavailability. Combination with cell-penetrating peptides (CPPs) is an attractive strategy to improve non-invasive delivery across nasal epithelial barriers for systemic and direct nose-to-brain transport. We previously developed a modified CPP system termed Glycosaminoglycan-binding Enhanced Transduction (GET) that improves insulin delivery across gastrointestinal epithelium. It contains a membrane docking sequence to promote cellular interactions (P21), a cationic polyarginine domain to stimulate uptake (8R) and an endosomal escaping sequence to maximize availability for onward distribution (LK15). It is synthesized as a single 44-residue peptide (P21-LK15-8R; PLR). METHODS The current research used in vitro assays for a novel exploration of PLR's ability to improve the transport of two contrasting peptides, insulin (51 residues, net negative charge) and oxytocin (9 residues, weak positive charge) across an RPMI 2650 human nasal epithelial cell barrier cultured at the air-liquid interface. RESULTS PLR enhanced insulin transcytosis over a 6 h period by 7.8-fold when used at a 2:1 molar ratio of insulin/PLR (p < 0.0001 versus insulin alone). Enhanced oxytocin transcytosis (5-fold) occurred with a 1:10 ratio of oytocin/PLR (p < 0.01). Importantly, these were independent of any impact on transepithelial electrical resistance (TEER) or cell viability (p > 0.05). CONCLUSIONS We advocate the continued evaluation of insulin-PLR and oxytocin-PLR formulations, including longer-term assessments of ciliotoxicity and cytotoxicity in vitro followed by in vivo assessments of systemic and nose-to-brain delivery.
Collapse
Affiliation(s)
- Sara Wong
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - Alexander D. Brown
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - Abigail B. Abrahams
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - An Nisaa Nurzak
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute (BDI), University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; (A.N.N.); (H.M.E.); (J.E.D.)
| | - Hoda M. Eltaher
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute (BDI), University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; (A.N.N.); (H.M.E.); (J.E.D.)
| | - David A. Sykes
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - Dmitry B. Veprintsev
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - Kevin C. F. Fone
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| | - James E. Dixon
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute (BDI), University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; (A.N.N.); (H.M.E.); (J.E.D.)
| | - Madeleine V. King
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (S.W.); (A.D.B.); (A.B.A.); (D.A.S.); (D.B.V.); (K.C.F.F.)
| |
Collapse
|
2
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Zoe LH, David SR, Rajabalaya R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol Rep 2023; 11:83-106. [PMID: 38187113 PMCID: PMC10767636 DOI: 10.1016/j.toxrep.2023.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 01/09/2024] Open
Abstract
Topic definition This literature review aims to update the current knowledge on toxicity of chitosan nanoparticles, compare the recent findings and identify the gaps with knowledge that is present for the chitosan nanoparticles. Methods The publications between 2010 and 2020 were searched in Science Direct, Pubmed.gov, Google Scholar, Research Gate, and ClinicalTrials.gov, according to the inclusion and exclusion criteria. 30 primary research studies were obtained from the literature review to compare the in vitro in vivo toxicity profiles among the chitosan nanoparticles. Major highlights Chitosan nanoparticles and other types of nanoparticles show cytotoxic effects on cancer cells while having minimal toxicity on normal cells. This apparent effect poses some considerations for use in incorporating cancer therapeutics into chitosan nanoparticles as an administration form. The concentration, duration of exposure, and pH of the solution can influence nanoparticle cytotoxicity, particularly in zebrafish. Different cell lines exhibit varying degrees of toxicity when exposed to nanoparticles, and of note are liver cells that show toxicity under exposure as indicated by increased alanine transaminase (ALT) levels. Aside from ALT, platelet aggregation can be considered a toxicity induced by chitosan nanoparticles. In addition, zebrafish cells experience the most toxicity, including organ damage, neurobehavioral impairment, and developmental abnormalities, when exposed to nanoparticles. However, nanoparticles may exhibit different toxicity profiles in different organisms, with brain toxicity and liver toxicity being present in zebrafish but not rats. Different organs exhibit varying degrees of toxicity, with the eye and mouth apparently having the lowest toxicity, while the brain, intestine, muscles and lung showing mixed results. Cardiotoxicity induced by chitosan nanoparticles was not observed in zebrafish embryos, and nanoparticles may reduce cardiotoxicity when delivering drug. Toxicity found in an organ may not necessarily mean that it is toxic towards all the cells found in that organ, as muscle toxicity was present when tested in zebrafish but not in C2C12 myoblast cells. Some of the studies conducted may have limitations that need to be reconsidered to account for differing results, with some examples being two experiments done on HeLa cells where one study concluded chitosan nanoparticles were toxic to the cells while the other seems to have no toxicity present. With regards to LD50, one study has stated the concentration of 64.21 mg/ml was found. Finally, smaller nanoparticles generally exhibit higher toxicity in cells compared to larger nanoparticles. Scope for future work This literature review did not uncover any published clinical trials with available results. Subsequent research endeavors should prioritize conducting clinical trials involving human volunteers to directly assess toxicity, rather than relying on cell or animal models.
Collapse
Affiliation(s)
- Liaw Hui Zoe
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba R. David
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
5
|
Chakraborty G, Meher M, Dash S, Rout RN, Pradhan S, Sahoo D. Strategies for Targeted Delivery via Structurally Variant Polymeric Nanocarriers. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe last decade has seen a meteoric rise in studies investigating polymeric aggregates as nanocarriers. When it comes to morphology, size, functionality, and immunostability, polymeric nanocarriers (PNCs) are unparalleled. With characteristics such as large surface area to volume ratio, amphiphilic nano‐environment, non‐toxic components, chemically modifiable composition, external surface alteration potential, uniform particle size, and stimuli‐dependent self‐assembly, PNCs have emerged as strong candidates for therapeutic applications. The article reviews the latest research on different challenges and strategies for targeted drug delivery and shall serve as guide to the researchers in designing site‐specific nanocarriers for application in future. The review systematically discusses the fundamental structural variation of the nanocarriers with emphasis on the influence of chemical alterations and the resulting effects on functionality; addresses the difficulties encountered with modes of administration; target selectivity and stimulus response.
Collapse
Affiliation(s)
- Gulmi Chakraborty
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Minakshi Meher
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Sanjay Dash
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Rudra Narayan Rout
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Sibananda Pradhan
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Dipanjali Sahoo
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| |
Collapse
|
6
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Negi A, Kesari KK. Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils. MICROMACHINES 2022; 13:mi13081265. [PMID: 36014186 PMCID: PMC9415589 DOI: 10.3390/mi13081265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 05/09/2023]
Abstract
Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups. The presence of NH2 groups allows for the facile grafting of functionalized molecules onto the chitosan surface, resulting in multifunctional materialistic applications. Quaternization of chitosan's free amino is one of the typical chemical modifications commonly achieved under acidic conditions. This quaternization improves its ionic character, making it ready for ionic-ionic surface modification. Although the cationic nature of chitosan alone exhibits antibacterial activity because of its interaction with negatively-charged bacterial membranes, the nanoscale size of chitosan further amplifies its antibiofilm activity. Additionally, the researcher used chitosan nanoparticles as polymeric materials to encapsulate antibiofilm agents (such as antibiotics and natural phytochemicals), serving as an excellent strategy to combat biofilm-based secondary infections. This paper provided a summary of available carbohydrate-based biopolymers as antibiofilm materials. Furthermore, the paper focuses on chitosan nanoparticle-based encapsulation of basil essential oil (Ocimum basilicum), mandarin essential oil (Citrus reticulata), Carum copticum essential oil ("Ajwain"), dill plant seed essential oil (Anethum graveolens), peppermint oil (Mentha piperita), green tea oil (Camellia sinensis), cardamom essential oil, clove essential oil (Eugenia caryophyllata), cumin seed essential oil (Cuminum cyminum), lemongrass essential oil (Cymbopogon commutatus), summer savory essential oil (Satureja hortensis), thyme essential oil, cinnamomum essential oil (Cinnamomum zeylanicum), and nettle essential oil (Urtica dioica). Additionally, chitosan nanoparticles are used for the encapsulation of the major essential components carvacrol and cinnamaldehyde, the encapsulation of an oil-in-water nanoemulsion of eucalyptus oil (Eucalyptus globulus), the encapsulation of a mandarin essential oil nanoemulsion, and the electrospinning nanofiber of collagen hydrolysate-chitosan with lemon balm (Melissa officinalis) and dill (Anethum graveolens) essential oil.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.)
| |
Collapse
|
9
|
Applicability of RPMI 2650 and Calu-3 Cell Models for Evaluation of Nasal Formulations. Pharmaceutics 2022; 14:pharmaceutics14020369. [PMID: 35214101 PMCID: PMC8877043 DOI: 10.3390/pharmaceutics14020369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
The RPMI 2650 and Calu-3 cell lines have been previously evaluated as models of the nasal and airway epithelial barrier, and they have demonstrated the potential to be used in drug permeation studies. However, limited data exist on the utilization of these two cell models for the assessment of nasal formulations. In our study, we tested these cell lines for the evaluation of in vitro permeation of intranasally administered drugs having a local and systemic effect from different solution- and suspension-based formulations to observe how the effects of formulations reflect on the measured in vitro drug permeability. Both models were shown to be sufficiently discriminative and able to reveal the effect of formulation compositions on drug permeability, as they demonstrated differences in the in vitro drug permeation comparable to the in vivo bioavailability. Good correlation with the available bioavailability data was also established for a limited number of drugs formulated as intranasal solutions. The investigated cell lines can be applied to the evaluation of in vitro permeation of intranasally administered drugs with a local and systemic effect from solution- and suspension-based formulations.
Collapse
|
10
|
Tomono T, Yagi H, Kanemoto S, Ukawa M, Miyata K, Shigeno K, Sakuma S. Acquisition of Absorption-enhancing Abilities of Cationic Oligopeptides with Short Chain Arginine Residues through Conjugation to Hyaluronic Acid. Int J Pharm 2022; 616:121519. [DOI: 10.1016/j.ijpharm.2022.121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
11
|
Yi C, Li Y, Zhang S, Fan H, Cheng Z. CSH/SBE-β-CD nanoparticles: controlled synthesis and application for loading and pH-responsive drug release. NEW J CHEM 2022. [DOI: 10.1039/d2nj01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CSH and SBE-β-CD were assembled via electrostatic interaction and hydrogen bonding for the loading and pH-responsive release of BSA.
Collapse
Affiliation(s)
- Chunrong Yi
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Shuxin Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Hai Fan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| |
Collapse
|
12
|
Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv Transl Res 2022; 12:2865-2874. [PMID: 35303273 PMCID: PMC9512864 DOI: 10.1007/s13346-022-01150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Nanocapsules (NCs) are drug delivery nanosystems that contain an oily core, stabilized by a surfactant, and surrounded by a polymeric shell. The assembling of the components is based on physical and physicochemical forces, and, hence, usually, only a fraction of each component is finally part of the NCs' structure, while the remaining amount might be solubilized or forming micelles in the NCs' suspending medium. Usually, reports on the characterization of nanostructures simply indicate the association efficiency of the loaded drugs instead of their complete final composition. In this work, we have developed a liquid chromatography (LC) mass spectrometry (MS) methodology that allows the quantification of all the components of a series of NCs prepared by different techniques, namely DL-α-tocopherol; D-α-tocopherol polyethylene glycol 1000 succinate; benzethonium; lecithin; hexadecyltrimethylammonium; 1,2-dioleoyl-3-trimethylammoniumpropane; caprylic/capric triglycerides; macrogol 15-hydroxystearate; polysorbate 80; polysialic acid; hyaluronic acid; and polyethylene glycol polyglutamic acid. The LC-MS method was validated in terms of linearity (0.9383 < r2 < 0.9997), quantification limits, and recoveries of the isolated NCs' and waste fractions. The final composition of the isolated NCs was found to strongly depend on their composition and preparation technique. In our view, the rigorous quantification of the exact composition of nanosystems is essential for the progress of nanotechnology. This quantitative analysis will allow researchers to draw more accurate conclusions about the influence of the nanosystems' composition on their biological performance.
Collapse
|
13
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
14
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
15
|
Sibinovska N, Božič D, Bošković Ribarski M, Kristan K. Prediction of pharmacokinetic studies outcome for locally acting nasal sprays by using different in vitro methods. Int J Pharm 2021; 601:120569. [PMID: 33812972 DOI: 10.1016/j.ijpharm.2021.120569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Demonstration of bioequivalence of locally acting nasal spray formulations is a challenging task and the regulatory agencies have different approach towards this goal. The pharmacokinetic bioequivalence studies are recognized as necessary for assessment of equivalent systemic exposure. We utilized three different in vitro methods for nasal spray evaluation and compared those results with the results of pharmacokinetic studies of different formulations of four intranasal corticosteroids, in order to evaluate their in vivo relevance. Two cell lines, RPMI 2650 and Calu-3, Transwell® polycarbonate membranes with different pore size and lipid-oil-lipid tri-layer membrane in the parallel artificial membrane permeability assay (PAMPA) system were used for this purpose. The in vitro results correlated with the results of pharmacokinetic studies and correctly predicted (non)equivalence of the nasal sprays, showing that in vitro methods are good indicator of the in vivo outcome. The Transwell® and PAMPA in vitro methods were additionally implemented for testing batch-to-batch variability of reference nasal spray formulations. The results from the Transwell® assay for the two poorly soluble corticosteroids are possibly over-discriminatory in showing differences between batches of reference nasal sprays. Overall, the three in vitro methods have potential to predict the results of bioequivalence testing of nasal spray products.
Collapse
Affiliation(s)
- Nadica Sibinovska
- University of Ljubljana, Faculty of Pharmacy, Chair of Biopharmaceutics and Pharmacokinetics, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dane Božič
- Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Marija Bošković Ribarski
- Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Katja Kristan
- Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, Verovškova 57, 1526 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:821. [PMID: 33806968 PMCID: PMC8005131 DOI: 10.3390/nano11030821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form-chitosan-becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
17
|
Duguay BA, Lu L, Arizmendi N, Unsworth LD, Kulka M. The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. THE JOURNAL OF IMMUNOLOGY 2020; 204:2021-2032. [PMID: 32253270 DOI: 10.4049/jimmunol.1800658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
Mast cells are tissue-resident immune cells that are involved in inflammation and fibrosis but also serve beneficial roles, including tissue maintenance, angiogenesis, pathogen clearance, and immunoregulation. Their multifaceted response and the ability of their mediators to target multiple organs and tissues means that mast cells play important roles in numerous conditions, including asthma, atopic dermatitis, drug sensitivities, ischemic heart disease, Alzheimer disease, arthritis, irritable bowel syndrome, infections (parasites, bacteria and viruses), and cancer. As a result, mast cells have become an important target for drug discovery and diagnostic research. Recent work has focused on applying novel nanotechnologies to explore cell biology. In this brief review, we will highlight the use of nanomaterials to modify mast cell functions and will discuss the potential of these technologies as research tools for understanding mast cell biology.
Collapse
Affiliation(s)
- Brett A Duguay
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; and
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
18
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm 2020; 585:119484. [PMID: 32485216 DOI: 10.1016/j.ijpharm.2020.119484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The Calu-3 cell line has been largely investigated as a physiological and pharmacological model of the airway epithelial barrier. Its suitability for prediction of drug permeability across the airway epithelia, however, has not been yet evaluated by using large enough set of model drugs. We evaluated two Calu-3 cell models (air-liquid and liquid-liquid) for drug permeability prediction based on the recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. Bidirectional permeability assays using 22 model drugs and several zero permeability markers, as well as using ABC transporter substrates were conducted. Functional activity of P-gp, but not of BCRP was revealed. The potential of the Calu-3 cells to be used as a model of the nasal epithelial barrier, despite their different anatomical origin, has been demonstrated by the obtained excellent correlation with the fully differentiated 3D human nasal epithelial model (MucilAir™) for 11 model drugs, as well as by the good correlation obtained with the human nasal epithelial cell line RPMI 2650. In addition, the permeability values determined in the two Calu-3 models correlated well with the intestinal permeability model Caco-2.
Collapse
|
20
|
Liu H, Shan X, Yu J, Li X, Hu L. Recent Advances in Inhaled Formulations and Pulmonary Insulin Delivery Systems. Curr Pharm Biotechnol 2020; 21:180-193. [PMID: 31612824 DOI: 10.2174/1389201020666191011152248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
Insulin (INS) therapy played a great role in patients with type 1 and type 2 diabetes to regulate
blood glucose levels. Although hypodermic injection was commonly used for insulin delivery, it
had some disadvantages such as pain, needle phobia and the risk of infection. Therefore, pulmonary
insulin delivery had been developed as an alternative method to overcome the therapeutic challenges in
recent years since pulmonary insulin administration showed great improvements in rapid action and
circumvention of first-pass hepatic metabolism. This review described the most recent developments in
pulmonary insulin administration. Firstly, the structure and physiology of the lung cavity were introduced.
Next, the advantages and disadvantages of pulmonary administration were discussed. Then
some new dosage forms for pulmonary insulin were investigated including carriers based on surfactants
and carriers based on polymers. Finally, innovate insulin inhalers and formulations were also described.
Collapse
Affiliation(s)
- Haofan Liu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiaosong Shan
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiaojiao Yu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Xin Li
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Liandong Hu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
21
|
Doostmohammadi M, Ameri A, Mohammadinejad R, Dehghannoudeh N, Banat IM, Ohadi M, Dehghannoudeh G. Hydrogels For Peptide Hormones Delivery: Therapeutic And Tissue Engineering Applications. Drug Des Devel Ther 2019; 13:3405-3418. [PMID: 31579238 PMCID: PMC6770672 DOI: 10.2147/dddt.s217211] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides are the most abundant biological compounds in the cells that act as enzymes, hormones, structural element, and antibodies. Mostly, peptides have problems to move across the cells because of their size and poor cellular penetration. Therefore, a carrier that could transfer peptides into cells is ideal and would be effective for disease treatment. Until now, plenty of polymers, e.g., polysaccharides, polypeptides, and lipids were used in drug delivery. Hydrogels made from polysaccharides showed significant development in targeted delivery of peptide hormones because of their natural characteristics such as networks, pore sizes, sustainability, and response to external stimuli. The main aim of the present review was therefore, to gather the important usages of the hydrogels as a carrier in peptide hormone delivery and their application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Negar Dehghannoudeh
- Faculty of Arts and Science, University of Toronto, TorontoM5S3G3, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, ColeraineBT52 1SA, Northern Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Lu L, Armstrong EA, Yager JY, Unsworth LD. Sustained Release of Dexamethasone from Sulfobutyl Ether β-cyclodextrin Modified Self-Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia-Ischemia. Adv Healthc Mater 2019; 8:e1900083. [PMID: 30977596 DOI: 10.1002/adhm.201900083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Indexed: 11/10/2022]
Abstract
Inflammation plays a critical role in the development of hypoxia-ischemia (HI) induced newborn brain damage. A localized, sustained delivery of dexamethasone (Dex) through an intracerebral injection could reduce the inflammatory response in the injured perinatal brain while avoiding unnecessary side effects. Herein, investigated using anionic sulfobutyl ether β-cyclodextrin (SBE-β-CD) to load Dex in the (RADA)4 nanofiber networks as a means of reducing the inflammatory response to HI injury is investigated. The ionic interaction between SBE-β-CD and (RADA)4 dramatically affects nanofiber formation and the stability of the nanoscaffold is highly dependent on the SBE-β-CD/(RADA)4 ratio. It is observed that the Dex release rate is affected by the concentration of SBE-β-CD and (RADA)4 peptide. A higher concentration of SBE-β-CD or (RADA)4 results in a higher drug encapsulation efficiency and slower release rate of Dex. This phenomenon may be related to the structure of fiber bundles. Animal studies show that nanoscaffold loaded with Dex inhibits both microglia activation and glial scar formation compared to controls (Dex alone or nanoscaffold alone) within 2 days of injury. It is thought that this is a step toward building a multifaceted nanoscaffold that can be used to treat HI events in perinates.
Collapse
Affiliation(s)
- Lei Lu
- School of Life Science and EngineeringSouthwest Jiaotong University Chengdu Sichuan 611756 China
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Edward A. Armstrong
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Jerome Y. Yager
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
23
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Yang M, Zhang Q, Wang Q, Sørensen KK, Boesen JT, Ma SY, Jensen KJ, Kwan KM, Ngo JCK, Chan HYE, Zuo Z. Brain-Targeting Delivery of Two Peptidylic Inhibitors for Their Combination Therapy in Transgenic Polyglutamine Disease Mice via Intranasal Administration. Mol Pharm 2018; 15:5781-5792. [PMID: 30392378 DOI: 10.1021/acs.molpharmaceut.8b00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 μmol/kg) and L1P3V8 (6 μmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.
Collapse
Affiliation(s)
- Mengbi Yang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qian Zhang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qianwen Wang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Kasper K Sørensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Josephine T Boesen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Sum Yi Ma
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Knud J Jensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Kin Ming Kwan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Partner State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Jacky Chi Ki Ngo
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Ho Yin Edwin Chan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Gerald Choa Neuroscience Centre , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Zhong Zuo
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| |
Collapse
|
25
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
26
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Muankaew C, Loftsson T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin Pharmacol Toxicol 2017; 122:46-55. [PMID: 29024354 DOI: 10.1111/bcpt.12917] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Cyclodextrins (CDs) are recognized as promising pharmaceutical excipients due to their unique ability to form water-soluble inclusion complexes with various poorly soluble compounds. The numerous investigations on CDs and their use in nanomedicine have received considerable attention in the last three decades, leading to the rapid development of new CD-containing formulations that significantly facilitate targeted drug delivery and controlled drug release, with consequent improvements in drug bioavailability. This MiniReview highlights the efficacy and recent uses of CDs for non-invasive drug delivery. Using ophthalmic and nasal drug delivery as examples, an overview of chemical properties, mechanisms of CDs on drug solubilization, stabilization and permeation, along with their toxicological profiles relevant to nasal and ocular administration, are provided and discussed. The recent development and application of CD-based nanocarrier systems for targeted drug delivery are summarized.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
28
|
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules 2017; 22:E1975. [PMID: 29140285 PMCID: PMC6150374 DOI: 10.3390/molecules22111975] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria has highlighted the urgent need of alternative therapeutic approaches for human and animal health. Targeting virulence factors that are controlled by bacterial quorum sensing (QS), seems a promising approach. The aims of this study were to generate novel nanoparticles (NPs) composed of chitosan (CS), sulfo-butyl-ether-β-cyclodextrin (Captisol®) and/or pentasodium tripolyphosphate using ionotropic gelation technique, and to evaluate their potential capacity to arrest QS in bacteria. The resulting NPs were in the size range of 250-400 nm with CS70/5 and 330-600 nm with CS70/20, had low polydispersity index (<0.25) and highly positive zeta potential ranging from ζ ~+31 to +40 mV. Quercetin, a hydrophobic model flavonoid, could be incorporated proportionally with increasing amounts of Captisol® in the NPs formualtion, without altering significantly its physicochemical properties. Elemental analysis and FTIR studies revealed that Captisol® and quercetin were effectively integrated into the NPs. These NPs were stable in M9 bacterial medium for 7 h at 37 °C. Further, NPs containing Captisol® seem to prolong the release of associated drug. Bioassays against an E. coli Top 10 QS biosensor revealed that CS70/5 NPs could inhibit QS up to 61.12%, while CS70/20 NPs exhibited high antibacterial effects up to 88.32%. These results suggested that the interaction between NPs and the bacterial membrane could enhance either anti-QS or anti-bacterial activities.
Collapse
Affiliation(s)
- Hao Thanh Nguyen
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- Department of Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Hanoi 100000, Vietnam.
| | - Francisco M Goycoolea
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
29
|
Kaiser M, Pohl L, Ketelhut S, Kastl L, Gorzelanny C, Götte M, Schnekenburger J, Goycoolea FM, Kemper B. Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers. PLoS One 2017; 12:e0187497. [PMID: 29107993 PMCID: PMC5673207 DOI: 10.1371/journal.pone.0187497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem’s influence on migration and morphology of Madin Darby canine kidney (MDCK-C7) epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cell migration, we applied label-free digital holographic microscopy (DHM) and single-cell tracking. Moreover, quantitative DHM phase images were used as novel stain-free assay to quantify the temporal course of global cellular morphology changes in confluent cell layers. Cytoskeleton alterations and tight junction protein redistributions were complementary analyzed by fluorescence microscopy. Calcium influx measurements were conducted to characterize the influence of the nanoformulations and capsaicin on ion channel activities. We found that both, capsaicin-loaded and unloaded chitosan nanocapsules, and also free capsaicin, have a significant impact on directed cell migration and cellular motility. Increase of velocity and directionality of cell migration correlates with changes in the cell layer surface roughness, tight junction integrity and cytoskeleton alterations. Calcium influx into cells occurred only after nanoformulation treatment but not upon addition of free capsaicin. Our results pave the way for further studies on the biological significance of these findings and potential biomedical applications, e.g. as drug and gene carriers.
Collapse
Affiliation(s)
- Mathias Kaiser
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, Germany
| | - Luisa Pohl
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Lena Kastl
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, Department of Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, Mannheim, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Francisco M. Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, Germany
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
- * E-mail: (FMG); (BK)
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
- * E-mail: (FMG); (BK)
| |
Collapse
|
30
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Designing of spherical chitosan nano-shells with micellar cores for solvation and safeguarded delivery of strongly lipophilic drugs. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polym 2017; 170:43-51. [PMID: 28522002 DOI: 10.1016/j.carbpol.2017.04.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Recently nanoparticle-based vaginal drug delivery formulations have been acquiring great attention for the administration of peptide based-vaccines or microbicides to prevent or treat sexually transmitted diseases. In this work, a straightforward and efficient strategy for the vaginal application and release of peptide-loaded mucoadhesive nanoparticles was developed. This essentially consists of chitosan nanoparticles encapsulated in suitable hydrophilic freeze-dried cylinders. Chitosan nanoparticles are responsible for carrying the peptide drug and allowing adhesion to the vaginal mucosal epithelium. Hydrophilic freeze-dried cylinders facilitate the application and quick release of the nanoparticles to the vaginal zone. Upon contact with the aqueous vaginal medium, the excipients constituting these sponge-like systems are quickly dissolved enabling the release of their content. In vitro release studies showed the ability of the sponge-like systems and chitosan nanoparticles to deliver the mucoadhesive nanoparticles and peptide respectively. CLSM micrographs proved the nanoparticles ability promoting the peptide penetration inside the vaginal mucosa.
Collapse
|
33
|
Braz L, Grenha A, Ferreira D, Rosa da Costa AM, Gamazo C, Sarmento B. Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. Int J Biol Macromol 2016; 96:786-797. [PMID: 28049014 DOI: 10.1016/j.ijbiomac.2016.12.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/11/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023]
Abstract
This work proposes the design of nanoparticles based on locus bean gum (LBG) and chitosan to be used as oral immunoadjuvant for vaccination purposes. LBG-based nanoparticles were prepared by mild polyelectrolyte complexation between chitosan (CS) and a synthesized LBG sulfate derivative (LBGS). Morphological characterization suggested that nanoparticles present a solid and compact structure with spherical-like shape. Sizes around 180-200nm and a positive surface charge between +9mV and +14mV were obtained. CS/LBGS nanoparticles did not affect cell viability of Caco-2 cells after 3h and 24h of exposure when tested at concentrations up to 1.0mg/mL. Two model antigens (a particulate acellular extract HE of Salmonella enterica serovar Enteritidis, and ovalbumin as soluble antigen) were associated to CS/LBGS nanoparticles with efficiencies around 26% for ovalbumin and 32% for HE, which resulted in loading capacities up to 12%. The process did not affect the antigenicity of the associated antigens. BALB/c mice were orally immunized with ovalbumin-loaded nanoparticles (100μg), and results indicate an adjuvant effect of the CS/LBGS nanoparticles, eliciting a balanced Th1/Th2 immune response. Thus, CS/LBGS nanoparticles are promising as antigen mucosal delivery strategy, with particular interest for oral administration.
Collapse
Affiliation(s)
- Luis Braz
- CIQA-Centre of Research in Chemistry of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal; School of Health-University of Algarve, Avenida Dr. Adelino da Palma Carlos, 8000-510 Faro, Portugal; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal; CBMR-Centre for Biomedical Research, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Ana Grenha
- CBMR-Centre for Biomedical Research, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal; CCMAR-Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana M Rosa da Costa
- CIQA-Centre of Research in Chemistry of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carlos Gamazo
- Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
34
|
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016; 39:1181-92. [PMID: 27352214 DOI: 10.1007/s12272-016-0782-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Over the past few years, nasal drug delivery has attracted more and more attentions, and been recognized as the most promising alternative route for the systemic medication of drugs limited to intravenous administration. Many experiments in animal models have shown that nanoscale carriers have the ability to enhance the nasal delivery of peptide/protein drugs and vaccines compared to the conventional drug solution formulations. However, the rapid mucociliary clearance of the drug-loaded nanoparticles can cause a reduction in bioavailability percentage after intranasal administration. Thus, research efforts have considerably been directed towards the development of hydrogel nanosystems which have mucoadhesive properties in order to maximize the residence time, and hence increase the period of contact with the nasal mucosa and enhance the drug absorption. It is most certain that the high viscosity of hydrogel-based nanosystems can efficiently offer this mucoadhesive property. This update review discusses the possible benefits of using hydrogel polymer-based nanoparticles and hydrogel nanocomposites for drug/vaccine delivery through the intranasal administration.
Collapse
Affiliation(s)
- Sara Salatin
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Mailbox 51664, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Mailbox 51664, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Mailbox 51664, Tabriz, Iran
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Alami Milani
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Mailbox 51664, Tabriz, Iran.
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Al-Qadi S, Alatorre-Meda M, Martin-Pastor M, Taboada P, Remuñán-López C. The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 141:223-232. [DOI: 10.1016/j.colsurfb.2016.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
|
36
|
Kalashnikova I, Albekairi N, Ali S, Al Enazy S, Rytting E. Cell Culture Models for Drug Transport Studies. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Lu L, Unsworth LD. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds. Biomacromolecules 2016; 17:1425-36. [PMID: 26938197 DOI: 10.1021/acs.biomac.6b00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-assembling peptide based hydrogels have a wide range of applications in the field of tissue repair and tissue regeneration. Because of its physicochemical properties, (RADA)4 has been studied as a potential platform for 3D cell culture, drug delivery, and tissue engineering. Despite some small molecule and protein release studies with this system, there is a lack of work investigating the controlled release of hydrophobic compounds (i.e., anti-inflammatory, anticancer, antibacterial drugs, etc.) that are important for many clinical therapies. Attempts to incorporate hydrophobic compounds into self-assembling matrices usually inhibited nanofiber formation, rather resulting in a peptide-drug complex or microcrystal formation. Herein, a self-assembling chitosan/carboxymethyl-β-cyclodextrin nanoparticle system was used to load dexamethasone, which formed within a self-assembling (RADA)4 nanoscaffold matrix. Nanoparticles dispersed within the matrix were stabilized by the nanofibers within. The in vitro release of dexamethasone from the hybrid system was observed to be pH sensitive. At pH 7, release was observed for more than 8 days, with three distinct kinetic domains in the first 6 days. Data suggest that the deprotonation of chitosan at a solution pH > 6.8 leads to nanoparticle dissociation and ultimately the release of dexamethasone from the hybrid system. This system has the potential to form a multifunctional scaffold that can self-assemble with the ability to control the release of hydrophobic drugs for a wide variety of applications.
Collapse
Affiliation(s)
- Lei Lu
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada.,National Institute for Nanotechnology, National Research Council (Canada) , Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada.,National Institute for Nanotechnology, National Research Council (Canada) , Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
38
|
Fülöp Z, Balogh A, Saokham P, Jansook P, Loftsson T. Formation and stability assessment of self-assembled nanoparticles from large Mw chitosan and sulfobutylether-β-cyclodextrin. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
González-Aramundiz JV, Peleteiro Olmedo M, González-Fernández Á, Alonso Fernández MJ, Csaba NS. Protamine-based nanoparticles as new antigen delivery systems. Eur J Pharm Biopharm 2015; 97:51-9. [PMID: 26455338 DOI: 10.1016/j.ejpb.2015.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022]
Abstract
The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems.
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain; Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Mercedes Peleteiro Olmedo
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), Universidad de Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain.
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), Universidad de Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain.
| | - María José Alonso Fernández
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
40
|
Witting M, Obst K, Friess W, Hedtrich S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol Adv 2015; 33:1355-69. [PMID: 25687276 DOI: 10.1016/j.biotechadv.2015.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
Abstract
Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.
Collapse
Affiliation(s)
- Madeleine Witting
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Obst
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany
| | - Wolfgang Friess
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sarah Hedtrich
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany.
| |
Collapse
|
41
|
Coué G, Engbersen JFJ. Cationic Polymers for Intracellular Delivery of Proteins. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering cell transdifferentiation processes, within other curative applications. However, several hurdles have to be overcome. For this purpose the use of polymers, with their ease of modification in physical and chemical properties, is attractive in protein drug carriers. They can protect their therapeutic protein cargo from degradation and enhance their bioavailability at targeted sites. In this chapter, potential and currently used polymers for fabrication of protein delivery systems and their applications for intracellular administration are discussed. Special attention is given to the use of cationic polymers for their ability to promote the cellular uptake of therapeutic proteins.
Collapse
Affiliation(s)
- Grégory Coué
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Johan F. J. Engbersen
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| |
Collapse
|
42
|
Elmowafy E, Osman R, El-Shamy AH, Awad GA. Nanocomplexes of an insulinotropic drug: optimization, microparticle formation, and antidiabetic activity in rats. Int J Nanomedicine 2014; 9:4449-65. [PMID: 25258534 PMCID: PMC4173756 DOI: 10.2147/ijn.s66876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of the present work was to test the ability of two non-diabetogenic carbohydrates to intranasally deliver the insulinotropic drug repaglinide (REP) for controlling blood glucose level. REP was loaded onto chitosan/alginate nanocomplexes (NCs) suitable for mucosal delivery and uptake. Improved stability and delivery characteristics were obtained by spray drying the selected NCs, yielding microparticles. A statistical experimental design was adopted to investigate the effects of the formulations’ variables on two critical responses: NC size and drug entrapment efficiency. Physicochemical characterizations of the network’s structures were done, and in vitro cytotoxicity and histopathological studies were conducted. The potential of the developed system to prolong the drug effect was tested on diabetic rats. The results showed that to attain particles suitable for nasal delivery, alginate should be used at its lowest level used in this study (0.6 mg/mL). A low level of chitosan (0.5 mg/mL) was needed when the drug was cation-loaded, while the high chitosan level (1 mg/mL) was more suitable when REP was anion-loaded. The best entrapment efficiency was achieved at a theoretical drug loading of 0.025 mg/mL. Discrete NCs could be rapidly recovered from the spray-dried microparticles. The cytotoxicity and histopathological studies indicated that such formulations were well tolerated. The antihyperglycemic activity of the nasally administered formulae was gradual but was significantly sustained over 24 hours, suggesting NC mucosal uptake. Nasal delivery of such dry powders achieved better glycemic control compared with the conventional oral tablets.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel Hameed El-Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehanne As Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10:1491-508. [DOI: 10.1517/17425255.2014.956080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190:189-200. [DOI: 10.1016/j.jconrel.2014.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
|
45
|
Fülöp Z, Saokham P, Loftsson T. Sulfobutylether-β-cyclodextrin/chitosan nano- and microparticles and their physicochemical characteristics. Int J Pharm 2014; 472:282-7. [DOI: 10.1016/j.ijpharm.2014.06.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/18/2022]
|
46
|
A micro- and nano-structured drug carrier based on biocompatible, hybrid polymeric nanoparticles for potential application in dry powder inhalation therapy. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
48
|
Rotoli BM, Gatti R, Movia D, Bianchi MG, Di Cristo L, Fenoglio I, Sonvico F, Bergamaschi E, Prina-Mello A, Bussolati O. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Nanotoxicology 2014; 9:230-41. [PMID: 24873759 DOI: 10.3109/17435390.2014.918203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials not readily detected at cell population level.
Collapse
|
49
|
Du AW, Stenzel MH. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014; 15:1097-114. [PMID: 24661025 DOI: 10.1021/bm500169p] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
50
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|