1
|
Research Progress of NMR in Natural Product Quantification. Molecules 2021; 26:molecules26206308. [PMID: 34684890 PMCID: PMC8541192 DOI: 10.3390/molecules26206308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
In the fields of medicine and health, traditional high-performance liquid chromatography or UV-visible spectrophotometry is generally used for substance quantification. However, over time, nuclear magnetic resonance spectroscopy (NMR) has gradually become more mature. Nuclear magnetic resonance spectroscopy has certain advantages in the quantitative analysis of substances, such as being nondestructive, having a high flux and short analysis time. Nuclear magnetic resonance spectroscopy has been included in the pharmacopoeiae of various countries. In this paper, the principle of nuclear magnetic resonance spectroscopy and the recent progress in the quantitative study of natural products by NMR are reviewed, and its application in the quantitative study of natural products is proposed. At the same time, the problems of using NMR alone to quantify natural products are summarized and corresponding suggestions are put forward.
Collapse
|
2
|
Chrissian C, Camacho E, Fu MS, Prados-Rosales R, Chatterjee S, Cordero RJB, Lodge JK, Casadevall A, Stark RE. Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility. J Biol Chem 2020; 295:1815-1828. [PMID: 31896575 DOI: 10.1074/jbc.ra119.011949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10033; Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - Subhasish Chatterjee
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016.
| |
Collapse
|
3
|
Camacho E, Chrissian C, Cordero RJB, Liporagi-Lopes L, Stark RE, Casadevall A. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. MICROBIOLOGY-SGM 2017; 163:1540-1556. [PMID: 29043954 DOI: 10.1099/mic.0.000552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Chrissian
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.,Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Livia Liporagi-Lopes
- Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruth E Stark
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.,Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Hu L, Rychlik M. Biosynthesis of 15N3-labeled enniatins and beauvericin and their application to stable isotope dilution assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7129-7136. [PMID: 22734473 DOI: 10.1021/jf3015602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The first stable isotope dilution assay for the determination of enniatins A, A1, B, and B1 and beauvericin was developed. The (15)N(3)-labeled enniatins and beauvericin were biosynthesized by feeding two Fusarium strains Na(15)NO(3) and subsequently isolated from the fungal culture. The chemical structures of the biosynthesized products were characterized by LC-MS/MS and (1)H NMR. Standard solutions of (15)N(3)-labeled beauvericin, enniatin A, and enniatin A1 were accurately quantitated by quantitative NMR. On the basis of the use of the labeled products as internal standards, stable isotope dilution assays were developed and applied to various food samples using LC-MS/MS. The sample extracts were directly injected without any tedious cleanup procedures. The limits of detection were 3.9, 2.6, 3.7, 1.9, and 4.4 μg/kg for enniatins A, A1, B, and B1 and beauvericin, respectively. Limits of quantitation were 11.5 (enniatin A), 7.6 (enniatin A1), 10.9 (enniatin B), 5.8 (enniatin B1), and 13.1 μg/kg (beauvericin). Recoveries were within the range between 90 and 120%, and good intraday and interday precisions with coefficients of variation between 1.35 and 8.61% were obtained. Thus, the stable isotope dilution assay presented here is similarly sensitive and precise but more accurate than assays reported before. Analyses of cereals and cereal products revealed frequent contaminations of barley, wheat, rye, and oats with enniatins B and B1, whereas beauvericin was not quantifiable.
Collapse
Affiliation(s)
- Ling Hu
- Chair of Analytical Food Chemistry, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Alte Akademie 10, D-85354 Freising, Germany
| | | |
Collapse
|
5
|
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
6
|
Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 2010; 8:1567-636. [PMID: 20559489 PMCID: PMC2885081 DOI: 10.3390/md8051567] [Citation(s) in RCA: 539] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/30/2010] [Accepted: 04/27/2010] [Indexed: 12/22/2022] Open
Abstract
Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.
Collapse
Affiliation(s)
- Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Małgorzata Czerwicka
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Anna Bychowska
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Krzysztof Brzozowski
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Jorg Thöming
- UFT-Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen, Germany; E-Mail:
(J.T.)
| | - Piotr Stepnowski
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| |
Collapse
|