1
|
Aristov VV, Karnaukhov AV, Buchelnikov AS, Levchenko VF, Nechipurenko YD. The Degradation and Aging of Biological Systems as a Process of Information Loss and Entropy Increase. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1067. [PMID: 37510014 PMCID: PMC10378089 DOI: 10.3390/e25071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The problem of the degradation and aging of bioorganisms is herein considered from the viewpoint of statistical physics. Two typical timescales in biological systems-the time of metabolic processes and the time of the life cycle-are used. A kinetic equation describing the small timescales of the systems' characteristic processes in is proposed. Maintaining a biosystem in a time-stable state requires a constant inflow of negative entropy (negentropy). Ratios are proposed to evaluate the aging and degradation of systems in terms of entropy. As an example, the aging of the epithelium is studied. The connection of our approach to the information theory of aging is discussed, as well as theoretical constructions related to the concept of cooperon and its changing with time.
Collapse
Affiliation(s)
- Vladimir V Aristov
- Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Vavilova Str. 40, 119333 Moscow, Russia
| | - Alexey V Karnaukhov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Moskovskaya obl., Institutskaya Str. 3, 142290 Pushchino, Russia
| | - Anatoly S Buchelnikov
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Universitetskaya Str. 33, 299053 Sevastopol, Russia
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Vladimir F Levchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Russian Federation, Thorez 44, 194223 St. Petersburg, Russia
| | - Yury D Nechipurenko
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
2
|
Pajalunga D, Crescenzi M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021; 10:cells10102753. [PMID: 34685732 PMCID: PMC8534385 DOI: 10.3390/cells10102753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Terminal differentiation is an ill-defined, insufficiently characterized, nonproliferation state. Although it has been classically deemed irreversible, it is now clear that at least several terminally differentiated (TD) cell types can be brought back into the cell cycle. We are striving to uncover the molecular bases of terminal differentiation, whose fundamental understanding is a goal in itself. In addition, the field has sought to acquire the ability to make TD cells proliferate. Attaining this end would probe the very molecular mechanisms we are trying to understand. Equally important, it would be invaluable in regenerative medicine, for tissues depending on TD cells and devoid of significant self-repair capabilities. The skeletal muscle has long been used as a model system to investigate the molecular foundations of terminal differentiation. Here, we summarize more than 50 years of studies in this field.
Collapse
Affiliation(s)
- Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
4
|
Schaub C, Rose M, Frasch M. Yorkie and JNK revert syncytial muscles into myoblasts during Org-1-dependent lineage reprogramming. J Cell Biol 2019; 218:3572-3582. [PMID: 31591186 PMCID: PMC6829659 DOI: 10.1083/jcb.201905048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
The formation and differentiation of syncytial muscles is typically considered an irreversible developmental process. Schaub et al. describe molecular events that dedifferentiate syncytial muscle into mononucleate myoblasts during a naturally occurring lineage reprogramming process. Lineage reprogramming has received increased research attention since it was demonstrated that lineage-restricted transcription factors can be used in vitro for direct reprogramming. Recently, we reported that the ventral longitudinal musculature of the adult Drosophila heart arises in vivo by direct lineage reprogramming from larval alary muscles, a process that starts with the dedifferentiation and fragmentation of syncytial muscle cells into mononucleate myoblasts and depends on Org-1 (Drosophila Tbx1). Here, we shed light on the events occurring downstream of Org-1 in this first step of transdifferentiation and show that alary muscle lineage-specific activation of Yorkie plays a key role in initiating the dedifferentiation and fragmentation of these muscles. An additional necessary input comes from active dJNK signaling, which contributes to the activation of Yorkie and furthermore activates dJun. The synergistic activities of the Yorkie/Scalloped and dJun/dFos transcriptional activators subsequently initiate alary muscle fragmentation as well as up-regulation of Myc and piwi, both crucial for lineage reprogramming.
Collapse
Affiliation(s)
- Christoph Schaub
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Marcel Rose
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| |
Collapse
|
5
|
A novel indirubin derivative that increases somatic cell plasticity and inhibits tumorigenicity. Bioorg Med Chem 2019; 27:2923-2934. [DOI: 10.1016/j.bmc.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/16/2019] [Indexed: 01/26/2023]
|
6
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
7
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
8
|
Cheng L, Wang H, Guo K, Wang Z, Zhang Z, Shen C, Chen L, Lin J. Reversine, a substituted purine, exerts an inhibitive effect on human renal carcinoma cells via induction of cell apoptosis and polyploidy. Onco Targets Ther 2018. [PMID: 29520153 PMCID: PMC5833753 DOI: 10.2147/ott.s158198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Human renal cell carcinoma (RCC) is the most common type of kidney cancer that arises from the renal epithelium. Up to 33.3% of RCC patients treated with local tumor resections will subsequently develop recurrence or metastases. Thus, optimized therapeutic regimes are urgently needed to improve the prognosis of RCC. Reversine was recently reported to exert critical roles in cancer therapy. Materials and methods This study evaluated the anti-tumor effects of reversine on cell viability, colony formation, apoptosis, and cell cycle in 786-O and ACHN cell lines. Results It was demonstrated that reversine significantly inhibited the proliferation of both cell lines in time- and dose-dependent manners. Polyploidy formation was observed under high-concentration reversine treatment. In addition, reversine induced cell death via caspase-dependent apoptotic pathways, which could be partially inhibited by Z-VAD-FMK, a pan-caspase inhibitor. Conclusion Reversine could effectively suppress the proliferation of human RCC cells, and may serve as a novel therapeutic regimen for RCC in clinical practice.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Kecun Guo
- Department of Urology, The Second People's Hospital of Liaocheng, Shandong, China
| | - Zicheng Wang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| |
Collapse
|
9
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
10
|
Um J, Jung DW, Williams DR. Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals. Clin Transl Med 2017; 6:13. [PMID: 28332147 PMCID: PMC5362566 DOI: 10.1186/s40169-017-0143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.
Collapse
Affiliation(s)
- JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea.
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Yang Z, Liu Q, Mannix RJ, Xu X, Li H, Ma Z, Ingber DE, Allen PD, Wang Y. Mononuclear cells from dedifferentiation of mouse myotubes display remarkable regenerative capability. Stem Cells 2015; 32:2492-501. [PMID: 24916688 DOI: 10.1002/stem.1742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, postmitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here, we show that ectopic expression of Msx1 reprograms postmitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated.
Collapse
Affiliation(s)
- Zhong Yang
- College of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China; Department of Anesthesia Perioperative and Pain Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang H, Lööf S, Borg P, Nader GA, Blau HM, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun 2015; 6:7916. [PMID: 26243583 PMCID: PMC4765497 DOI: 10.1038/ncomms8916] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023] Open
Abstract
The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of ‘undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation. Newts can regenerate amputated limbs via unknown mechanism involving dedifferentiation of cells in the stump into progenitors that contribute to the new appendages. Here the authors show that skeletal muscle dedifferentiation in regenerating newt limbs relies on a diverted programmed cell death response by myofibers.
Collapse
Affiliation(s)
- Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Sara Lööf
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Paula Borg
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Gustavo A Nader
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California 94305, United States
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
13
|
Jung DW, Hong YJ, Kim SY, Kim WH, Seo S, Lee JE, Shen H, Kim YC, Williams DR. 5-Nitro-5'hydroxy-indirubin-3'oxime is a novel inducer of somatic cell transdifferentiation. Arch Pharm (Weinheim) 2014; 347:806-18. [PMID: 25363410 DOI: 10.1002/ardp.201400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Patient-derived cell transplantation is an attractive therapy for regenerative medicine. However, this requires effective strategies to reliably differentiate patient cells into clinically useful cell types. Herein, we report the discovery that 5-nitro-5'hydroxy-indirubin-3'oxime (5'-HNIO) is a novel inducer of cell transdifferentiation. 5'-HNIO induced muscle transdifferentiation into adipogenic and osteogenic cells. 5'-HNIO was shown to inhibit aurora kinase A, which is a known cell fate regulator. 5'-HNIO produced a favorable level of transdifferentiation compared to other aurora kinase inhibitors and induced transdifferentiation across cell lineage boundaries. Significantly, 5'-HNIO treatment produced direct transdifferentiation without up-regulating potentially oncogenic induced pluripotent stem cell (iPSC) reprogramming factors. Thus, our results demonstrate that 5'-HNIO is an attractive molecular tool for cell transdifferentiation and cell fate research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Twist reverses muscle cell differentiation through transcriptional down-regulation of myogenin. Biosci Rep 2013; 33:BSR20130068. [PMID: 24188104 PMCID: PMC3848576 DOI: 10.1042/bsr20130068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Some higher vertebrates can display unique muscle regenerative abilities through dedifferentiation. Research evidence suggests that induced dedifferentiation can be achieved in mammalian cells. TWIST is a bHLH (basic helix-loop-helix) transcription factor that is expressed during embryonic development and plays critical roles in diverse developmental systems including myogenesis. Several experiments demonstrated its role in inhibition of muscle cell differentiation. We have previously shown that overexpression of TWIST can reverse muscle cell differentiation in the presence of growth factors. Here we show that TWIST reverses muscle cell differentiation through binding and down-regulation of myogenin. Moreover, it can reverse cellular morphology in the absence of growth factors.
Collapse
|
16
|
Synergistic antitumor activity of reversine combined with aspirin in cervical carcinoma in vitro and in vivo. Cytotechnology 2013; 65:643-53. [PMID: 23475158 DOI: 10.1007/s10616-012-9520-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/18/2012] [Indexed: 02/07/2023] Open
Abstract
A recent report showed that reversine treatment could induce murine myoblasts dedifferentiation into multipotent progenitor cells and inhibit proliferation of some tumors, and other reports showed that apoptosis of lung adenocarcinoma cells could be induced by aspirin. The aim of the present study was to evaluate the synergistic antitumor effects of reversine and aspirin on cervical cancer. The inhibition rate of reversine and aspirin on cervical cancer cell lines' (HeLa and U14) was determined by MTT method, cell cycle of HeLa and U14 cells was analyzed by FACS, mitochondrial membrane potential of HeLa and U14 was detected using a JC-1 kit. HeLa and U14 colony formation was analyzed by soft agar colony formation assay. The expression of caspase-3, Bcl-2/Bax, cyclin D1 and p21 was detected by qRT-PCR and Western Blotting. Moreover, tumor weight and tumor volume was assessed using a murine model of cervical cancer with U14 cells subcutaneously (s.c.) administered into the neck, separately or combined with drug administration via the intraperitoneal (i.p.) route. The inhibition rate of cells in the combination group (10 μmol/L reversine, 10 mmol/L aspirin) increased significantly in comparison to that when the drugs were used alone (P < 0.05); moreover, this combination could synergistically inhibit the proliferation of five cervical cancer cell lines (HeLa, U14, Siha, Caski and C33A). In the therapeutic mouse model, tumor weight and tumor volume of cervical cancer bearing mice was more reduced when compared with the control agents (P < 0.05) in tumor-bearing mice. The combination of reversine and aspirin exerts synergistic growth inhibition and apoptosis induction on cervical cancers cells.
Collapse
|
17
|
Jung DW, Williams DR. Reawakening atlas: chemical approaches to repair or replace dysfunctional musculature. ACS Chem Biol 2012; 7:1773-90. [PMID: 23043623 DOI: 10.1021/cb3003368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Muscle diseases are major health concerns. For example, ischemic heart disease is the third most common cause of death. Cell therapy is an attractive approach for treating muscle diseases, although this is hampered by the need to generate large numbers of functional muscle cells. Small molecules have become established as attractive tools for modulating cell behavior and, in this review, we discuss the recent, rapid research advances made in the development of small molecule methods to facilitate the production of functional cardiac, skeletal, and smooth muscle cells. We also describe how new developments in small molecule strategies for muscle disease aim to induce repair and remodelling of the damaged tissues in situ. Recent progress has been made in developing small molecule cocktails that induce skeletal muscle regeneration, and these are discussed in a broader context, because a similar phenomenon occurs in the early stages of salamander appendage regeneration. Although formidable technical hurdles still remain, these new advances in small molecule-based methodologies should provide hope that cell therapies for patients suffering from muscle disease can be developed in the near future.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
18
|
Lu CH, Liu YW, Hua SC, Yu HI, Chang YP, Lee YR. Autophagy induction of reversine on human follicular thyroid cancer cells. Biomed Pharmacother 2012; 66:642-7. [PMID: 23089471 DOI: 10.1016/j.biopha.2012.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023] Open
Abstract
The incurable differentiated thyroid cancer (DTC), poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are the most aggressive in all of the thyroid cancers. Unfortunately, there are almost no effective therapies. A novel and effective treatment is urgently needed to develop. Recently, reversine, a small synthetic purine analogue, has been reported to be effective in human thyroid cancer suppression through cell cycle arrest and apoptosis induction. In this study, we performed an in vitro evaluation of reversine on autophagy activation, one of the programmed cell death, and the related mechanisms in human follicular thyroid cancer cell line WRO. Incubation of WRO cells with reversine induced autophagosome formation in a short time treatment. LC3-II overexpression in a dosage-dependent manner with reversine treatment was demonstrated in the autophagy activation. Moreover, reversine suppressed Akt/mTOR related signaling pathway activation, a major pathway for autophagy activation, was also revealed in WRO cells. Our data demonstrated that reversine is effective to induce autophagy. Moreover, the LC3-II overexpression and the p62 protein were degraded in a time-dependent manner, indicating that the autophagic flux has happened in the reversine treated WRO cells. In addition, the activation of Akt/mTOR/p70S6K related pathways were shown to be reduced, suggesting these pathways may involve in the reversine mediated autophagy induction. Reversine is therefore worthy of further investigation in clinical therapeutics.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer 2012; 21:358-69. [PMID: 22926505 DOI: 10.1007/s12282-012-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study. RESULTS Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment. CONCLUSIONS In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.
Collapse
|
20
|
Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem Biol 2012; 7:732-43. [PMID: 22270490 DOI: 10.1021/cb200532v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Seung Yong Hwang
- Department of Biochemistry, Hanyang University and GenoCheck Co., Ltd., Sa-Dong, Sangrok-Gu, Ansan, Gyeonggi-Do, 426-791,
Republic of Korea
| | | |
Collapse
|
21
|
Kim WH, Lee J, Jung DW, Williams DR. Visualizing sweetness: increasingly diverse applications for fluorescent-tagged glucose bioprobes and their recent structural modifications. SENSORS 2012; 12:5005-27. [PMID: 22666073 PMCID: PMC3355456 DOI: 10.3390/s120405005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 01/23/2023]
Abstract
Glucose homeostasis is a fundamental aspect of life and its dysregulation is associated with important diseases, such as cancer and diabetes. Traditionally, glucose radioisotopes have been used to monitor glucose utilization in biological systems. Fluorescent-tagged glucose analogues were initially developed in the 1980s, but it is only in the past decade that their use as a glucose sensor has increased significantly. These analogues were developed for monitoring glucose uptake in blood cells, but their recent applications include tracking glucose uptake by tumor cells and imaging brain cell metabolism. This review outlines the development of fluorescent-tagged glucose analogues, describes their recent structural modifications and discusses their increasingly diverse biological applications.
Collapse
Affiliation(s)
| | | | - Da-Woon Jung
- Authors to whom correspondence should be addressed; E-Mails: (D.-W.J.); (D.R.W.); Tel.: +82-62-715-2509; Fax: +82-62-715-2484
| | - Darren R. Williams
- Authors to whom correspondence should be addressed; E-Mails: (D.-W.J.); (D.R.W.); Tel.: +82-62-715-2509; Fax: +82-62-715-2484
| |
Collapse
|
22
|
Hua SC, Chang TC, Chen HR, Lu CH, Liu YW, Chen SH, Yu HI, Chang YP, Lee YR. Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and undifferentiated thyroid cancer cells. Pharm Res 2012; 29:1990-2005. [PMID: 22477067 DOI: 10.1007/s11095-012-0727-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/27/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE A novel and effective treatment is urgently needed to deal with the current treatment dilemma in incurable differentiated thyroid cancer (DTC), poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). Reversine, a small synthetic purine analogue (2,6-disubstituted purine), has been shown to be effective in tumor suppression. METHODS We performed in vitro evaluation of anti-tumor effects of reversine on proliferation, cell cycle, and apoptosis in human PDTC, ATC, and follicular thyroid cancer cell lines, respectively. RESULTS Treatment of these three lines with reversine inhibited proliferation in a time- and dose-dependent manner. G2/M accumulation was demonstrated in cell cycle analysis. Reversine induced apoptosis in PDTC cells with caspase-3 and caspase-8 activation, but not caspase-9. Use of a pan-caspase inhibitor before treatment with reversine attenuated cell death. Reversine also showed in vivo growth inhibitory effects on ATC cells in a xenograft nude mice model. CONCLUSIONS Data demonstrated that reversine is effective in inhibiting the growth of thyroid cancer cells by cell cycle arrest or apoptosis, especially with the more aggressive ATC and PDTC. Apoptosis was induced by the mitochondria-independent pathway. Reversine is therefore worthy of further investigation in clinical therapeutics.
Collapse
Affiliation(s)
- Shih-Che Hua
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chemical biology in stem cell research. Arch Pharm Res 2012; 35:281-97. [PMID: 22370782 DOI: 10.1007/s12272-012-0208-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 10/28/2022]
Abstract
Stem cells are offering a considerable range of prospects to the biomedical research including novel platforms for disease models and drug discovery tools to cell transplantation and regenerative therapies. However, there are several obstacles to overcome to bring these potentials into reality. First, robust methods to maintain stem cells in the pluripotent state should be established and factors that are required to direct stem cell fate into a particular lineage should be elucidated. Second, both allogeneic rejection following transplantation and limited cell availability issues must be circumvented. These challenges are being addressed, at least in part, through the identification of a group of chemicals (small molecules) that possess novel activities on stem cell biology. For example, small molecules can be used both in vitro and/or in vivo as tools to promote proliferation of stem cells (self-renewal), to direct stem cells to a lineage specific patterns (differentiation), or to reprogram somatic cells to a more undifferentiated state (de-differentiation or reprogramming). These molecules, in turn, have provided new insights into the signaling mechanisms that regulate stem cell biology, and may eventually lead to effective therapies in regenerative medicine. In this review, we will introduce recent findings with regards to small molecules and their impact on stem cell self-renewal and differentiation.
Collapse
|
24
|
Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One 2012; 7:e29896. [PMID: 22235349 PMCID: PMC3250496 DOI: 10.1371/journal.pone.0029896] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/08/2011] [Indexed: 01/18/2023] Open
Abstract
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulation of myogenesis. Our current interest is to investigate whether down-regulation of MRFs in terminally differentiated mouse myotubes can induce reversal of muscle cell differentiation. Results from this work showed that reduction of myogenin levels in terminally differentiated mouse myotubes can reverse their differentiation state. Down-regulation of myogenin in terminally differentiated mouse myotubes induces cellular cleavage into mononucleated cells and cell cycle re-entry, as shown by re-initiation of DNA synthesis and increased cyclin D1 and cyclin E2 levels. Finally, we provide evidence that down-regulation of myogenin causes cell cycle re-entry (via down-regulation of MyoD) and cellularisation through separate pathways. These data reveal the important role of myogenin in maintaining terminal muscle cell differentiation and point to a novel mechanism by which muscle cells could be re-activated through its down-regulation.
Collapse
Affiliation(s)
| | - Paschalis Nicolaou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mustafa Anayasa
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - James B. Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
25
|
Milner DJ, Cameron JA. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr Top Microbiol Immunol 2012; 367:133-59. [PMID: 23224711 DOI: 10.1007/82_2012_292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a robust innate capability for repair of tissue damage. Natural repair of muscle damage is a stepwise process that requires the coordinated activity of a number of cell types, including infiltrating macrophages, resident myogenic and non-myogenic stem cells, and connective tissue fibroblasts. Despite the proficiency of this intrinsic repair capability, severe injuries that result in significant loss of muscle tissue overwhelm the innate repair process and require intervention if muscle function is to be restored. Recent advances in stem cell biology, regenerative medicine, and materials science have led to attempts at developing tissue engineering-based methods for repairing severe muscle defects. Muscle tissue also plays a role in the ability of tailed amphibians to regenerate amputated limbs through epimorphic regeneration. Muscle contributes adult stem cells to the amphibian regeneration blastema, but it can also contribute blastemal cells through the dedifferentiation of multinucleate myofibers into mononuclear precursors. This fascinating plasticity and its contributions to limb regeneration have prompted researchers to investigate the potential for mammalian muscle to undergo dedifferentiation. Several works have shown that mammalian myotubes can be fragmented into mononuclear cells and induced to re-enter the cell cycle, but mature myofibers are resistant to fragmentation. However, recent works suggest that there may be a path to inducing fragmentation of mature myofibers into proliferative multipotent cells with the potential for use in muscle tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Derek J Milner
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| | | |
Collapse
|