1
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
2
|
Ziegler EW, Brown AB, Nesnas N, Chouinard CD, Mehta AK, Palmer AG. β-Cyclodextrin Encapsulation of Synthetic AHLs: Drug Delivery Implications and Quorum-Quenching Exploits. Chembiochem 2020; 22:1292-1301. [PMID: 33238068 DOI: 10.1002/cbic.202000773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/23/2020] [Indexed: 12/22/2022]
Abstract
Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l-homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for β-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of β-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.
Collapse
Affiliation(s)
- Eric W Ziegler
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Alan B Brown
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Christopher D Chouinard
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Anil K Mehta
- National High Magnetic Field Laboratory, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Andrew G Palmer
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA.,Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
3
|
Folcik AM, Cutshaw K, Haire T, Goode J, Shah P, Zaidi F, Richardson B, Palmer A. Quorum Sensing Behavior in the Model Unicellular Eukaryote Chlamydomonas reinhardtii. iScience 2020; 23:101714. [PMID: 33196031 PMCID: PMC7644740 DOI: 10.1016/j.isci.2020.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 10/25/2022] Open
Abstract
Microbial communities display behavioral changes in response to variable environmental conditions. In some bacteria, motility increases as a function of cell density, allowing for population dispersal before the onset of nutrient scarcity. Utilizing automated particle tracking, we now report on a population-dependent increase in the swimming speeds of the photosynthetic unicellular eukaryotes Chlamydomonas reinhardtii and C. moewussi. Our findings confirm that this acceleration in swimming speed arises as a function of culture density, rather than with age and/or nutrient availability. Furthermore, this phenomenon depends on the synthesis and detection of a low-molecular-weight compound which can be transferred between cultures and stimulates comparable effects across both species, supporting the existence of a conserved phenomenon, not unlike bacterial quorum sensing, among members of this genus. The potential expansion of density-dependent phenomena to a new group of unicellular eukaryotes provides important insight into how microbial populations evolve and regulate "social" behaviors.
Collapse
Affiliation(s)
- Alexandra M Folcik
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Kirstin Cutshaw
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Timothy Haire
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Joseph Goode
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Pooja Shah
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Faizan Zaidi
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Brianna Richardson
- Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Andrew Palmer
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA.,Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA.,Aldrin Space Institute, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
4
|
Yoshihara A, Shimatani M, Sakata M, Takemura C, Senuma W, Hikichi Y, Kai K. Quorum Sensing Inhibition Attenuates the Virulence of the Plant Pathogen Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:3050-3059. [PMID: 33172253 DOI: 10.1021/acschembio.0c00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) cause "bacterial wilt" on a wide range of plant species and thus lead to marked economic losses in agriculture. Quorum sensing (QS), a bacterial cell-cell communication mechanism, controls the virulence of RSSC strains by regulating the production of extracellular polysaccharide (EPS) and secondary metabolites, biofilm formation, and cellular motility. R. solanacearum strain OE1-1 employs (R)-methyl 3-hydroxymyristate (3-OH MAME) as a QS signal, which is synthesized by the PhcB methyltransferase and sensed by the PhcS/PhcRQ two-component system. We describe the design, synthesis, and biological evaluation of inhibitors of the phc QS system. Initial screening of a small set of QS signal analogues revealed that methyl 3-hydroxy-8-phenyloctanoate, named, PQI-1 (phc quorum sensing inhibitor-1), inhibited biofilm formation by strain OE1-1. To improve its inhibitory activity, the derivatives of PQI-1 were synthesized, and their QS inhibition activities were evaluated. PQIs-2-5 evolved from PQI-1 more strongly inhibited not only biofilm formation but also the production of ralfuranone and EPS. Furthermore, RNA-Seq analysis revealed that the PQIs effectively inhibited QS-dependent gene expression and repression in strain OE1-1. On the other hand, the PQIs did not affect the canonical QS systems of the representative reporter bacteria. These antagonists, especially PQI-5, reduced wilting symptoms of the tomato plants infected with strain OE1-1. Taken together, we suggest that targeting the phc QS system has potential for the development of chemicals that protect agricultural crops from bacterial wilt disease.
Collapse
Affiliation(s)
- Ayaka Yoshihara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chika Takemura
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
6
|
Ziegler EW, Brown AB, Nesnas N, Palmer AG. Abiotic Hydrolysis Kinetics ofN-Acyl-L-homoserine Lactones: Natural Silencing of Bacterial Quorum Sensing Signals. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eric W. Ziegler
- Chemistry Program; Department of Biological & Chemical Engineering and Sciences; 150 W. University Blvd 32901 FL USA
| | - Alan B. Brown
- Chemistry Program; Department of Biological & Chemical Engineering and Sciences; 150 W. University Blvd 32901 FL USA
| | - Nasri Nesnas
- Chemistry Program; Department of Biological & Chemical Engineering and Sciences; 150 W. University Blvd 32901 FL USA
| | - Andrew G. Palmer
- Chemistry Program; Department of Biological & Chemical Engineering and Sciences; 150 W. University Blvd 32901 FL USA
- Department of Ocean Engineering and Marine Sciences; 150 W. University Blvd, Melbourne 32901 FL USA
| |
Collapse
|
7
|
Zhou JW, Ruan LY, Chen HJ, Luo HZ, Jiang H, Wang JS, Jia AQ. Inhibition of Quorum Sensing and Virulence in Serratia marcescens by Hordenine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:784-795. [PMID: 30609368 DOI: 10.1021/acs.jafc.8b05922] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Serratia marcescens NJ01 is a pathogenic bacterium isolated from diseased tomato leaves. Here, we report on the development of a tomato- S. marcescens host-pathogen system as a model to evaluate the effects of hordenine on quorum sensing (QS)-mediated pathogenicity under native conditions. Exposure to hordenine at 25, 50, and 100 μg/mL significantly inhibited the production of acyl-homoserine lactones and the formation of biofilms. Hordenine treatment notably enhanced the susceptibility of the preformed biofilms to ciprofloxacin by reducing the production of extracellular polysaccharides, destroying the architecture of biofilms, and changing the permeability of membranes, as evidenced by the scattered appearance and dominant red fluorescence in the combination-treated biofilms. Furthermore, the addition of hordenine affected the production of virulence factors, influenced the intracellular metabolites, and downregulated the expressions of QS- and biofilm-related genes. The plant infection model indicated that hordenine could significantly attenuate the pathogenicity of S. marcescens NJ01 in tomato plants. Thus, hordenine could act as a potential pesticide or pesticide accelerant in treating crop infections.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education , Hainan University , Haikou , Hainan 570228 , People's Republic of China
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| | - Ling-Yu Ruan
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| | - Hong-Juan Chen
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Huai-Zhi Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education , Hainan University , Haikou , Hainan 570228 , People's Republic of China
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| | - Huan Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education , Hainan University , Haikou , Hainan 570228 , People's Republic of China
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| | - Jun-Song Wang
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| | - Ai-Qun Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education , Hainan University , Haikou , Hainan 570228 , People's Republic of China
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , People's Republic of China
| |
Collapse
|
8
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Palmer AG, Senechal AC, Haire TC, Mehta NP, Valiquette SD, Blackwell HE. Selection of Appropriate Autoinducer Analogues for the Modulation of Quorum Sensing at the Host-Bacterium Interface. ACS Chem Biol 2018; 13:3115-3122. [PMID: 30296049 PMCID: PMC6239973 DOI: 10.1021/acschembio.8b00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria regulate a variety of phenotypes in response to their population density using quorum sensing (QS). This phenomenon is regulated by small molecule or peptide signals, the best characterized of which are the N-acyl l-homoserine lactones (AHLs) utilized by Gram-negative bacteria. As many QS-controlled phenotypes, notably pathogenicity and symbiosis, can profoundly impact host eukaryotes, there is significant interest in developing methods for modulating QS signaling and either ameliorating or augmenting these phenotypes. One strategy has been the use of non-native AHL analogues to agonize or antagonize specific AHL receptors. This approach is complicated, however, by the potential for prospective hosts to respond to both native AHLs and synthetic analogues. Accordingly, identifying AHL analogues with little or no activity toward eukaryotes is important in developing QS modulation as a strategy for the regulation of prokaryotic behaviors. Herein, we utilize the model plant Arabidopsis thaliana to characterize eukaryotic responses to a variety of synthetic AHL analogues to identify structural elements of existing scaffolds that may elicit responses in prospective hosts. Our results indicate that, while many of these compounds have no discernible effect on A. thaliana, some elicit strong phenotypes similar to those produced by auxin, a hormone involved in almost all aspects of plant development. We outline concentrations and chemical scaffolds that are ideal for deployment on plant hosts for the regulation of QS. This approach should be exportable to other eukaryotes for the selection of optimal AHL tools for the study of QS at the host-microbe interface.
Collapse
Affiliation(s)
- Andrew G. Palmer
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901
| | - Amanda C. Senechal
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706
| | - Timothy C. Haire
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901
| | - Nidhi P. Mehta
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901
| | - Sara D. Valiquette
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706
| |
Collapse
|
10
|
The role of LasR active site amino acids in the interaction with the Acyl Homoserine Lactones (AHLs) analogues: A computational study. J Mol Graph Model 2018; 86:113-124. [PMID: 30352386 DOI: 10.1016/j.jmgm.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/13/2018] [Indexed: 01/29/2023]
Abstract
The present work combines molecular docking calculations, 3D-QSAR, molecular dynamics simulations and free binding energy calculations (MM/PBSA and MM/GBSA) in a set of 28 structural analogues of acyl homoserine lactones with Quorum Sensing antagonist activity. The aim of this work is to understand how ligand binds and is affected by the molecular microenvironment in the active site of the LasR receptor for pseudomonas aeruginosa. We also study the stability of the interaction to find key structural characteristics that explain the antagonist activities of this set of ligands. This information is relevant for the rational modification or design of molecules and their identification as powerful LasR modulators. The analysis of molecular docking simulations shows that the 28 analogues have a similar binding mode compared to the native ligand. The carbonyl groups belonging to the lactone ring and the amide group of the acyl chain are oriented towards the amino acids forming hydrogen bond like interactions. The difference in antagonist activity is due to location and orientation of the LasR side chains within the hydrophobic pocket in its binding site. Additionally, we carried out molecular dynamics simulations to understand the conformational changes in the ligand-receptor interaction and the stability of each complex. Results show a direct relationship among the interaction energies of the ligands and the activities as an antagonist of the LasR receptor.
Collapse
|
11
|
Styles MJ, Blackwell HE. Non-native autoinducer analogs capable of modulating the SdiA quorum sensing receptor in Salmonella enterica serovar Typhimurium. Beilstein J Org Chem 2018; 14:2651-2664. [PMID: 30410627 PMCID: PMC6204753 DOI: 10.3762/bjoc.14.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Quorum sensing (QS) allows many common bacterial pathogens to coordinate group behaviors such as virulence factor production, host colonization, and biofilm formation at high population densities. This cell–cell signaling process is regulated by N-acyl L-homoserine lactone (AHL) signals, or autoinducers, and LuxR-type receptors in Gram-negative bacteria. SdiA is an orphan LuxR-type receptor found in Escherichia, Salmonella, Klebsiella, and Enterobacter genera that responds to AHL signals produced by other species and regulates genes involved in several aspects of host colonization. The inhibition of QS using non-native small molecules that target LuxR-type receptors offers a non-biocidal approach for studying, and potentially controlling, virulence in these bacteria. To date, few studies have characterized the features of AHLs and other small molecules capable of SdiA agonism, and no SdiA antagonists have been reported. Herein, we report the screening of a set of AHL analogs to both uncover agonists and antagonists of SdiA and to start to delineate structure–activity relationships (SARs) for SdiA:AHL interactions. Using a cell-based reporter of SdiA in Salmonella enterica serovar Typhimurium, several non-natural SdiA agonists and the first set of SdiA antagonists were identified and characterized. These compounds represent new chemical probes for exploring the mechanisms by which SdiA functions during infection and its role in interspecies interactions. Moreover, as SdiA is highly stable when produced in vitro, these compounds could advance fundamental studies of LuxR-type receptor:ligand interactions that engender both agonism and antagonism.
Collapse
Affiliation(s)
- Matthew J Styles
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
12
|
Gregor R, David S, Meijler MM. Chemical strategies to unravel bacterial-eukaryotic signaling. Chem Soc Rev 2018; 47:1761-1772. [PMID: 29260158 DOI: 10.1039/c7cs00606c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The common language of bacteria and higher life forms is a lexicon of small molecules that the research community is only beginning to decipher. While many new signaling molecules have been discovered in recent years, the identification of their targets is mostly lagging. This review will focus on the latest chemical-probe based research aimed at understanding how bacteria interact chemically with mammals and plants. In general, chemical biology strategies remain under-utilized in this complex field of research, with a few key exceptions, and we hope that this review encourages others to implement these techniques in their research. Specifically, we highlight the chemical biology techniques used in recent studies, especially activity-based protein profiling, that have been applied to unravel the chemical mechanisms of interkingdom interactions.
Collapse
Affiliation(s)
- R Gregor
- Department of Chemistry and National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | | | | |
Collapse
|
13
|
Burns JL, Jariwala PB, Rivera S, Fontaine BM, Briggs L, Weinert EE. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum. ACS Chem Biol 2017; 12:2070-2077. [PMID: 28612602 DOI: 10.1021/acschembio.7b00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O2-dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.
Collapse
Affiliation(s)
- Justin L. Burns
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Parth B. Jariwala
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Laura Briggs
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Palmer AG, Mukherjee A, Stacy DM, Lazar S, Ané JM, Blackwell HE. Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume-Rhizobia Symbiosis. Chembiochem 2016; 17:2199-2205. [DOI: 10.1002/cbic.201600373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Andrew G. Palmer
- Department of Biological Sciences; Florida Institute of Technology; 150 West University Melbourne FL 32904 USA
| | - Arijit Mukherjee
- Department of Biology; University of Central Arkansas; 201 Donaghey Conway AK 72035 USA
| | - Danielle M. Stacy
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephen Lazar
- Department of Biological Sciences; Florida Institute of Technology; 150 West University Melbourne FL 32904 USA
| | - Jean-Michel Ané
- Department of Agronomy; University of Wisconsin-Madison; 1575 Linden Drive Madison WI 53706 USA
- Department of Bacteriology; University of Wisconsin-Madison; 1550 Linden Drive Madison WI 53706 USA
| | - Helen E. Blackwell
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
15
|
Scott RA, Lindow SE. Transcriptional control of quorum sensing and associated metabolic interactions inPseudomonas syringaestrain B728a. Mol Microbiol 2016; 99:1080-98. [DOI: 10.1111/mmi.13289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Russell A. Scott
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| |
Collapse
|
16
|
Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola. Appl Environ Microbiol 2015; 82:268-78. [PMID: 26497457 DOI: 10.1128/aem.02525-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022] Open
Abstract
Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.
Collapse
|
17
|
Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y. Methyl 3-Hydroxymyristate, a Diffusible Signal MediatingphcQuorum Sensing inRalstonia solanacearum. Chembiochem 2015; 16:2309-18. [DOI: 10.1002/cbic.201500456] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Mitsuaki Tabuchi
- Faculty of Agriculture; Kagawa University; 2393 Ikenobe Miki-cho Kagawa 761-0795 Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| |
Collapse
|
18
|
Eibergen NR, Moore JD, Mattmann ME, Blackwell HE. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa. Chembiochem 2015; 16:2348-56. [PMID: 26460240 DOI: 10.1002/cbic.201500357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa uses N-acylated L-homoserine lactone signals and a triumvirate of LuxR-type receptor proteins--LasR, RhlR, and QscR--for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small-molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti-infective therapy.
Collapse
Affiliation(s)
- Nora R Eibergen
- Dow Microbial Control, The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Joseph D Moore
- Dow Microbial Control, The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Helen E Blackwell
- Department of Chemistry, The University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Gerdt JP, McInnis CE, Schell TL, Blackwell HE. Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Org Biomol Chem 2015; 13:1453-62. [PMID: 25474181 DOI: 10.1039/c4ob02252a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) via the synthesis and detection of N-acyl L-homoserine lactone (AHL) signals regulates important pathogenic and mutualistic phenotypes in many bacteria. Over the past two decades, the development of non-native molecules that modulate this cell-cell signaling process has become an active area of research. The majority of these compounds were designed to block binding of the native AHL signal to its cognate LuxR-type receptor, and much effort has focused on LasR in the opportunistic pathogen Pseudomonas aeruginosa. Despite a small set of reported LasR structural data, it remains unclear which polar interactions are most important for either (i) activation of the LasR receptor by its native AHL signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL), or (ii) activation or inhibition of LasR by related AHL analogs. Herein, we report our investigations into the activity of OdDHL and five synthetic analogs in wild-type LasR and in nine LasR mutants with modifications to key polar residues in their ligand binding sites. Our results allowed us to rank, for the first time, the relative importance of each LasR:OdDHL hydrogen bond for LasR activation and provide strong evidence for the five synthetic ligands binding LasR in a very similar orientation as OdDHL. By delineating the specific molecular interactions that are important for LasR modulation by AHLs, these findings should aid in the design of new synthetic modulators of LasR (and homologous LuxR-type receptors) with improved potencies and selectivities.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | | | |
Collapse
|
20
|
Kratochvil MJ, Tal-Gan Y, Yang T, Blackwell HE, Lynn DM. Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus. ACS Biomater Sci Eng 2015; 1:1039-1049. [PMID: 26501126 PMCID: PMC4604486 DOI: 10.1021/acsbiomaterials.5b00313] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
![]()
Materials and coatings that inhibit
bacterial colonization are
of interest in a broad range of biomedical, environmental, and industrial
applications. In view of the rapid increase in bacterial resistance
to conventional antibiotics, the development of new strategies that
target nonessential pathways in bacterial pathogens—and that
thereby limit growth and reduce virulence through nonbiocidal means—has
attracted considerable attention. Bacterial quorum sensing (QS) represents
one such target, and is intimately connected to virulence in many
human pathogens. Here, we demonstrate that the properties of nanoporous,
polymer-based superhydrophobic coatings can be exploited to host and
subsequently sustain the extended release of potent and water-labile
peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released
into surrounding media for periods of at least 8 months, and that
they strongly inhibit agr-based QS in S. aureus for
at least 40 days. These results also suggest that these extremely
nonwetting coatings can confer protection against the rapid hydrolysis
of these water-labile peptides, thereby extending their useful lifetimes.
Finally, we demonstrate that these peptide-loaded superhydrophobic
coatings can strongly modulate the QS-controlled formation of biofilm
in wild-type S. aureus. These nanoporous superhydrophobic
films provide a new, useful, and nonbiocidal approach to the design
of coatings that attenuate bacterial virulence. This approach has
the potential to be general, and could prove suitable for the encapsulation,
protection, and release of other classes of water-sensitive agents.
We anticipate that the materials, strategies, and concepts reported
here will enable new approaches to the long-term attenuation of QS
and associated bacterial phenotypes in a range of basic research and
applied contexts.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Yftah Tal-Gan
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States ; Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. MOLECULAR PLANT PATHOLOGY 2015; 16:316-29. [PMID: 25113857 PMCID: PMC6638422 DOI: 10.1111/mpp.12180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.
Collapse
Affiliation(s)
- Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
22
|
Singh RP. Attenuation of quorum sensing-mediated virulence in Gram-negative pathogenic bacteria: implications for the post-antibiotic era. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00363b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quorum quenching compounds blocked quorum sensing system of bacteria by several mechanisms (a, b, c and d).
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Kyushu University
- Fukuoka-shi
- Japan
| |
Collapse
|
23
|
Palmer AG, Senechal AC, Mukherjee A, Ané JM, Blackwell HE. Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem Biol 2014; 9:1834-45. [PMID: 24918118 PMCID: PMC4136694 DOI: 10.1021/cb500191a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Many
bacteria use quorum sensing (QS) to regulate phenotypes that
ultimately benefit the bacterial population at high cell densities.
These QS-dependent phenotypes are diverse and can have significant
impacts on the bacterial host, including virulence factor production,
motility, biofilm formation, bioluminescence, and root nodulation.
As bacteria and their eukaryotic hosts have coevolved over millions
of years, it is not surprising that certain hosts appear to be able
to sense QS signals, potentially allowing them to alter QS outcomes.
Recent experiments have established that eukaryotes have marked responses
to the N-acyl l-homoserine lactone (AHL)
signals used by Gram-negative bacteria for QS, and the responses of
plants to AHLs have received considerable scrutiny to date. However,
the molecular mechanisms by which plants, and eukaryotes in general,
sense bacterial AHLs remain unclear. Herein, we report a systematic
analysis of the responses of the model plants Arabidopsis
thaliana and Medicago truncatula to a series
of native AHLs and byproducts thereof. Our results establish that
AHLs can significantly alter seedling growth in an acyl-chain length
dependent manner. Based upon A. thaliana knockout
studies and in vitro biochemical assays, we conclude
that the observed growth effects are dependent upon AHL amidolysis
by a plant-derived fatty acid amide hydrolase (FAAH) to yield l-homoserine. The accumulation of l-homoserine appears
to encourage plant growth at low concentrations by stimulating transpiration,
while higher concentrations inhibit growth by stimulating ethylene
production. These results offer new insights into the mechanisms by
which plant hosts can respond to QS signals and the potential role
of QS in interkingdom associations.
Collapse
Affiliation(s)
- Andrew G. Palmer
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin−Madison, Madison Wisconsin 53706, United States
| | - Amanda C. Senechal
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin−Madison, Madison Wisconsin 53706, United States
| | - Arijit Mukherjee
- Department
of Agronomy, 1575 Linden
Drive, University of Wisconsin−Madison, Madison Wisconsin 53706, United States
| | - Jean-Michel Ané
- Department
of Agronomy, 1575 Linden
Drive, University of Wisconsin−Madison, Madison Wisconsin 53706, United States
| | - Helen E. Blackwell
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin−Madison, Madison Wisconsin 53706, United States
| |
Collapse
|
24
|
Li J, Wang N. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. PHYTOPATHOLOGY 2014; 104:134-142. [PMID: 23901828 DOI: 10.1094/phyto-04-13-0100-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Citrus canker caused by the bacterium Xanthomonas citri subsp. citri is an economically important disease of citrus worldwide. Biofilm formation plays an important role in early infection of X. citri subsp. citri on host leaves. In this study, we assessed the hypothesis that small molecules inhibiting biofilm formation reduce X. citri subsp. citri infection and enhance the control of citrus canker disease. D-leucine and 3-indolylacetonitrile (IAN) were found to prevent biofilm formation by X. citri subsp. citri on different abiotic surfaces and host leaves at a concentration lower than the minimum inhibitory concentration (MIC). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated that IAN repressed expression of chemotaxis/motility-related genes in X. citri subsp. citri. In laboratory experiments, planktonic and biofilm cells of X. citri subsp. citri treated with D-leucine and IAN, either alone or in combination, were more susceptible to copper (CuSO4) than those untreated. In greenhouse assays, D-leucine and IAN applied alone or combined with copper reduced both the number of canker lesions and bacterial populations of X. citri subsp. citri on citrus host leaves. This study provides the basis for the use of foliar-applied biofilm inhibitors for the control of citrus canker alone or combined with copper-based bactericides.
Collapse
|
25
|
Mandabi A, Ganin H, Krief P, Rayo J, Meijler MM. Karrikins from plant smoke modulate bacterial quorum sensing. Chem Commun (Camb) 2013; 50:5322-5. [PMID: 24327106 DOI: 10.1039/c3cc47501h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery that plant smoke contains germination stimuli has led to the identification of a new class of signaling molecules named karrikins. Here we report a potential second role for these molecules: in various bacterial species -A. tumefaciens, P. aeruginosa and V. harveyi- they modulate bacterial quorum-sensing (QS), with very different outcomes.
Collapse
Affiliation(s)
- Aviad Mandabi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
26
|
Studer SV, Schwartzman JA, Ho JS, Geske GD, Blackwell HE, Ruby EG. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ Microbiol 2013; 16:2623-2634. [PMID: 24191970 DOI: 10.1111/1462-2920.12322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022]
Abstract
Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.
Collapse
Affiliation(s)
- Sarah V Studer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706
| | - Julia A Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706
| | - Jessica S Ho
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706
| | - Grant D Geske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison WI 53706
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison WI 53706
| | - Edward G Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706
| |
Collapse
|
27
|
McInnis CE, Blackwell HE. Non-native N-aroyl L-homoserine lactones are potent modulators of the quorum sensing receptor RpaR in Rhodopseudomonas palustris. Chembiochem 2013; 15:87-93. [PMID: 24281952 DOI: 10.1002/cbic.201300570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Quorum sensing (QS) is a process by which bacteria use low-molecular-weight signaling molecules (or autoinducers) to assess their local population densities and alter gene expression levels at high cell numbers. Many Gram-negative bacteria use N-acyl L-homoserine lactones (AHLs) with aliphatic acyl groups as signaling molecules for QS. However, bacteria that utilize AHLs with aroyl acyl groups have been recently discovered; they include the metabolically versatile soil bacterium Rhodopseudomonas palustris, which uses p-coumaroyl HL (p-cAHL) as its QS signal. This autoinducer is especially unusual because its acyl group is believed to originate from a monolignol (i.e., p-coumarate) produced exogenously by plants in the R. palustris environment, rather than through the endogenous fatty acid biosynthesis pathway like other native AHLs. As such, p-cAHL could signal not only bacterial density, but also the availability of an exogenous plant-derived substrate and might even constitute an interkingdom signal. Like other Gram-negative bacteria, QS in R. palustris is controlled by the p-cAHL signal binding its cognate LuxR-type receptor, RpaR. We sought to determine if non-native aroyl HLs (ArHLs) could potentially activate or inhibit RpaR in R. palustris, and thereby modulate QS in this bacterium. Herein, we report the testing of a set of synthetic ArHLs for RpaR agonism and antagonism by using a R. palustris reporter strain. Several potent non-native RpaR agonists and antagonists were identified. Additionally, the screening data revealed that lower concentrations of ArHL are required to strongly agonize RpaR than to antagonize it. Structure-activity relationship analyses of the active ArHLs indicated that potent RpaR agonists tend to have sterically small substituents on their aryl groups, most notably in the ortho position. In turn, the most potent RpaR antagonists were based on either the phenylpropionyl HL (PPHL) or the phenoxyacetyl HL (POHL) scaffold, and many contained an electron-withdrawing group at either the meta or para positions of the aryl ring. To our knowledge, the compounds reported herein represent the first abiotic chemical modulators of RpaR, and more generally, the first abiotic ligands capable of intercepting QS in bacteria that utilize native ArHL signals. In view of the origins of the p-cAHL signal in R. palustris, the largely unknown role of QS in this bacterium, and R. palustris' unique environmental lifestyles, we anticipate that these compounds could be valuable as chemical probes to study QS in R. palustris in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Christine E McInnis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706 (USA); Current address: Dow Microbial Control, The Dow Chemical Company, 727 Norristown Rd., P. O. Box 904, Spring House, PA 19477 (USA)
| | | |
Collapse
|
28
|
Abstract
Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Collapse
|
29
|
des Essarts YR, Sabbah M, Comte A, Soulère L, Queneau Y, Dessaux Y, Hélias V, Faure D. N,N'-alkylated Imidazolium-derivatives act as quorum-sensing inhibitors targeting the Pectobacterium atrosepticum-induced symptoms on potato tubers. Int J Mol Sci 2013; 14:19976-86. [PMID: 24108370 PMCID: PMC3821598 DOI: 10.3390/ijms141019976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N′-bisalkylated imidazolium salts were identified as QSIs; they were active at the μM range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease.
Collapse
Affiliation(s)
- Yannick Raoul des Essarts
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, Gif-sur-Yvette 91198, France; E-Mails: (Y.R.E.); (Y.D.)
- FN3PT/RD3PT, Fédération Nationale des Producteurs de Plants de Pomme de terre, 43-45 Rue de Naples, Paris F-75008, France; E-Mail:
| | - Mohamad Sabbah
- INSA Lyon, ICBMS, UMR 5246, CNRS, Université Lyon 1, INSA-Lyon, CPE-Lyon, Bât J. Verne, 20 av A. Einstein, 69621 Villeurbanne Cedex, France; E-Mails: (M.S.); (L.S.); (Y.Q.)
| | - Arnaud Comte
- Service de Chimiothèque, ICBMS, UMR 5246, CNRS, Université Lyon 1, INSA-Lyon, CPE-Lyon, Bât Curien, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France; E-Mail:
| | - Laurent Soulère
- INSA Lyon, ICBMS, UMR 5246, CNRS, Université Lyon 1, INSA-Lyon, CPE-Lyon, Bât J. Verne, 20 av A. Einstein, 69621 Villeurbanne Cedex, France; E-Mails: (M.S.); (L.S.); (Y.Q.)
| | - Yves Queneau
- INSA Lyon, ICBMS, UMR 5246, CNRS, Université Lyon 1, INSA-Lyon, CPE-Lyon, Bât J. Verne, 20 av A. Einstein, 69621 Villeurbanne Cedex, France; E-Mails: (M.S.); (L.S.); (Y.Q.)
| | - Yves Dessaux
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, Gif-sur-Yvette 91198, France; E-Mails: (Y.R.E.); (Y.D.)
| | - Valérie Hélias
- FN3PT/RD3PT, Fédération Nationale des Producteurs de Plants de Pomme de terre, 43-45 Rue de Naples, Paris F-75008, France; E-Mail:
- Institut National de la Recherche Agronomique, UMR 1349IGEPP, Le Rheu F-35653, France
| | - Denis Faure
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, Gif-sur-Yvette 91198, France; E-Mails: (Y.R.E.); (Y.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-69-82-35-77; Fax: +33-1-69-82-36-95
| |
Collapse
|
30
|
Zhu J, Kaufmann GF. Quo vadis quorum quenching? Curr Opin Pharmacol 2013; 13:688-98. [DOI: 10.1016/j.coph.2013.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 01/27/2023]
|
31
|
Ren JL, Zhang E, Ye XW, Wang MM, Yu B, Wang WH, Guo YZ, Liu HM. Design, synthesis and antibacterial evaluation of novel AHL analogues. Bioorg Med Chem Lett 2013; 23:4154-6. [DOI: 10.1016/j.bmcl.2013.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/15/2022]
|
32
|
Tal-Gan Y, Stacy DM, Foegen MK, Koenig DW, Blackwell HE. Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide. J Am Chem Soc 2013; 135:7869-82. [PMID: 23647400 DOI: 10.1021/ja3112115] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methods to intercept bacterial quorum sensing (QS) have attracted significant attention as potential anti-infective therapies. Staphylococcus aureus is a major human pathogen that utilizes autoinducing peptide (AIP) signals to mediate QS and thereby regulate virulence. S. aureus strains are categorized into four groups (I-IV) according to their AIP signal and cognate extracellular receptor, AgrC. Each group is associated with a certain disease profile, and S. aureus group-III strains are responsible for toxic shock syndrome and have been underestimated in other infections to date. A limited set of non-native AIP analogs have been shown to inhibit AgrC receptors; such compounds represent promising tools to study QS pathways in S. aureus . We seek to expand this set of chemical probes and report herein the first design, synthesis, and biological testing of AIP-III mimetics. A set of non-native peptides was identified that can inhibit all four of the AgrC receptors (I-IV) with picomolar IC50 values in reporter strains. These analogs also blocked hemolysis by wild-type S. aureus group I-IV strains-a virulence trait under the control of QS-at picomolar concentrations. Moreover, four of the lead AgrC inhibitors were capable of attenuating the production of toxic shock syndrome toxin-1 (also under the control of QS) by over 80% at nanomolar concentrations in a wild-type S. aureus group-III strain. These peptides represent, to our knowledge, the most potent synthetic inhibitors of QS in S. aureus known, and constitute new and readily accessible chemical tools for the study of the AgrC system and virulence in this deadly pathogen.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
33
|
Majik MS, Naik D, Bhat C, Tilve S, Tilvi S, D'Souza L. Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg Med Chem Lett 2013; 23:2353-6. [PMID: 23489623 DOI: 10.1016/j.bmcl.2013.02.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/07/2023]
Abstract
(R)-Bgugaine is a natural pyrrolidine alkaloid from Arisarum vulgare, which shows antifungal and antibacterial activity. In this Letter, we have accomplished the simple synthesis of norbgugaine (demethylated form of natural bgugaine) employing Wittig olefination and cat. hydrogenation as the key steps and its biological studies are reported for the first time. The synthesized norbgugaine was evaluated for inhibition of quorum sensing mediated virulence factors (motility, biofilm formation, pyocyanin pigmentation, rhamnolipid production and LasA protease) in Pseudomonas aeruginosa wherein swarming motility is reduced by 95%, and biofilm formation by 83%.
Collapse
Affiliation(s)
- Mahesh S Majik
- Bio-organic Chemistry Laboratory, CSIR - National Institute of Oceanography, Dona-Paula, Goa 403 004, India.
| | | | | | | | | | | |
Collapse
|
34
|
Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, Givskov M, Nielsen TE, Blackwell HE. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem 2012; 11:938-54. [PMID: 23258305 DOI: 10.1039/c2ob27155a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many bacterial species are capable of assessing their local population densities through a cell-cell signaling mechanism termed quorum sensing (QS). This intercellular communication process is mediated by small molecule or peptide ligands and their cognate protein receptors. Numerous pathogens use QS to initiate virulence once they achieve a threshold cell number on a host. Consequently, approaches to intercept QS have attracted considerable attention as potential anti-infective therapies. Our interest in the development of small molecule tools to modulate QS pathways motivated us to evaluate triazole-containing analogs of natural N-acyl L-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(I)-catalyzed azide-alkyne couplings. These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens - LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii- using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly modulating the activity of LasR and AbaR. These compounds represent a new and synthetically accessible class of AHL analogs, and could find utility as chemical tools to study QS and its role in bacterial virulence.
Collapse
Affiliation(s)
- Danielle M Stacy
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Worthington RJ, Rogers SA, Huigens RW, Melander C, Ritchie DF. Foliar-Applied Small Molecule that Suppresses Biofilm Formation and Enhances Control of Copper-Resistant Xanthomonas euvesicatoria on Pepper. PLANT DISEASE 2012; 96:1638-1644. [PMID: 30727459 DOI: 10.1094/pdis-02-12-0190-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a small molecule additive, a member of the 2-aminoimidazole (2AI) group that is an analogue of the marine sponge natural product oroidin that suppresses resistance of Xanthomonas euvesicatoria to copper and decreases biofilm formation in an in vitro system. In laboratory experiments, 2AI combined with copper reduced both bacterial multiplication in broth and bacterial recovery on pepper leaf discs of a copper-resistant strain of X. euvesicatoria to a level close to that of a copper-sensitive strain. Compound 2AI used alone exhibited minimal bactericidal activity. In 3 years of field experiments, when combined with a copper-containing material, copper hydroxide (Kocide 3000), and other antibacterial materials, these spray mixtures resulted in decreased bacterial spot foliar disease and increased fruit yields using hybrid bell pepper (Capsicum annuum) cultivars and copper-resistant strains of X. euvesicatoria. This study demonstrates the concept for using small molecules as additives to antibacterial compounds at nonbactericidal concentrations under field conditions that, in the laboratory, were demonstrated to suppress bacterial biofilms and copper-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | - D F Ritchie
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
36
|
Stacy DM, Welsh MA, Rather PN, Blackwell HE. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem Biol 2012; 7:1719-28. [PMID: 22853441 DOI: 10.1021/cb300351x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many bacterial pathogens use quorum sensing (QS) to control virulence. As a result, the development of methods to intercept QS has attracted significant interest as a potential anti-infective therapy. Acinetobacter baumannii has emerged as a pan-drug-resistant pathogen and displays a remarkable ability to persist in hospital settings despite desiccation and antimicrobial treatment. Recent studies have shown that A. baumannii QS mutants have limited motility and fail to form mature biofilms; these phenotypes are linked to its ability to persist on biotic and abiotic surfaces and increase its pathogenicity. A. baumannii uses N-(3-hydroxydodecanoyl)-l-homoserine lactone (OH-dDHL) and its putative cognate receptor, AbaR, for QS. We sought to identify non-native ligands capable of blocking or promoting AbaR activity in A. baumannii for use as chemical probes to modulate QS phenotypes in this pathogen. We screened a focused library of synthetic, non-native N-acyl homoserine lactones (AHLs) to identify such compounds, and several highly potent antagonists and agonists were uncovered, with IC(50) and EC(50) values in the low micromolar range, respectively. The strongest AbaR antagonists largely contained aromatic acyl groups, whereas the AbaR agonists closely resembled OH-dDHL. Notably, the 10 most potent AbaR antagonists also strongly inhibited A. baumannii motility, and five antagonists reduced biofilm formation in A. baumannii by up to 40%. The discovery of these compounds is significant, as they represent, to our knowledge, the first non-native modulators of QS in A. baumannii to be reported and could find utility as new tools to study the role and timing of QS phenotypes in A. baumannii infections.
Collapse
Affiliation(s)
- Danielle M. Stacy
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| | - Michael A. Welsh
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| | - Philip N. Rather
- Department of Microbiology and
Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, Georgia 30322, United States
- Research Service, Veterans Affairs Medical Center, 1670 Clairmont Rd.,
Decatur, Georgia 30033, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Praneenararat T, Palmer AG, Blackwell HE. Chemical methods to interrogate bacterial quorum sensing pathways. Org Biomol Chem 2012; 10:8189-99. [PMID: 22948815 PMCID: PMC3480174 DOI: 10.1039/c2ob26353j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria frequently manifest distinct phenotypes as a function of cell density in a phenomenon known as quorum sensing (QS). This intercellular signalling process is mediated by "chemical languages" comprised of low-molecular weight signals, known as autoinducers, and their cognate receptor proteins. As many of the phenotypes regulated by QS can have a significant impact on the success of pathogenic or mutualistic prokaryotic-eukaryotic interactions, there is considerable interest in methods to probe and modulate QS pathways with temporal and spatial control. Such methods would be valuable for both basic research in bacterial ecology and in practical medicinal, agricultural, and industrial applications. Toward this goal, considerable recent research has been focused on the development of chemical approaches to study bacterial QS pathways. In this Perspective, we provide an overview of the use of chemical probes and techniques in QS research. Specifically, we focus on: (1) combinatorial approaches for the discovery of small molecule QS modulators, (2) affinity chromatography for the isolation of QS receptors, (3) reactive and fluorescent probes for QS receptors, (4) antibodies as quorum "quenchers," (5) abiotic polymeric "sinks" and "pools" for QS signals, and (6) the electrochemical sensing of QS signals. The application of such chemical methods can offer unique advantages for both elucidating and manipulating QS pathways in culture and under native conditions.
Collapse
Affiliation(s)
| | | | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA. Fax: +1 (608) 265-4534; Tel: +1 (608) 262-1503
| |
Collapse
|
38
|
Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 2012; 20:449-58. [PMID: 22771187 DOI: 10.1016/j.tim.2012.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 01/23/2023]
Abstract
Quorum sensing is a form of intercellular communication used by many species of bacteria that facilitates concerted interactions between the cells comprising a population. The phenotypes regulated by quorum sensing are extremely diverse, with many having a significant impact upon healthcare, agriculture, and the environment. Consequently there has been significant interest in developing methods to manipulate this signalling process and recent years have witnessed significant theoretical and practical developments. A wide range of small molecule modulators of quorum sensing systems has been discovered, providing an expansive chemical toolbox for the study and modulation of this signalling mechanism. In this review, a selection of recent case studies which illustrate the value of both activators and inhibitors of quorum sensing in Gram-negative bacteria are discussed.
Collapse
|
39
|
Frei R, Breitbach AS, Blackwell HE. 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 2012; 51:5226-9. [PMID: 22488868 DOI: 10.1002/anie.201109258] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Reto Frei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706-1322, USA
| | | | | |
Collapse
|
40
|
Frei R, Breitbach AS, Blackwell HE. 2-Aminobenzimidazole Derivatives Strongly Inhibit and DispersePseudomonas aeruginosaBiofilms. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 2011; 78:481-92. [PMID: 22081576 DOI: 10.1128/aem.06159-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of the quorum-sensing (QS) signals known as N-acylhomoserine lactones (AHL) by soil bacteria may be useful as a beneficial trait for protecting crops, such as potato plants, against the worldwide pathogen Pectobacterium. In this work, analytical chemistry and microbial and molecular approaches were combined to explore and compare biostimulation of native and introduced AHL-degrading Rhodococcus erythropolis populations in the rhizosphere of potato plants cultivated in farm greenhouses under hydroponic conditions. We first identified gamma-heptalactone (GHL) as a novel biostimulating agent that efficiently promotes plant root colonization by AHL-degrading R. erythropolis population. We also characterized an AHL-degrading biocontrol R. erythropolis isolate, R138, which was introduced in the potato rhizosphere. Moreover, root colonization by AHL-degrading bacteria receiving different combinations of GHL and R138 treatments was compared by using a cultivation-based approach (percentage of AHL-degrading bacteria), pyrosequencing of PCR-amplified rrs loci (total bacterial community), and quantitative PCR (qPCR) of the qsdA gene, which encodes an AHL lactonase in R. erythropolis. Higher densities of the AHL-degrading R. erythropolis population in the rhizosphere were observed when GHL treatment was associated with biocontrol strain R138. Under this condition, the introduced R. erythropolis population displaced the native R. erythropolis population. Finally, chemical analyses revealed that GHL, gamma-caprolactone (GCL), and their by-products, gamma-hydroxyheptanoic acid and gamma-hydroxycaproic acid, rapidly disappeared from the rhizosphere and did not accumulate in plant tissues. This integrative study highlights biostimulation as a potential innovative approach for improving root colonization by beneficial bacteria.
Collapse
|