1
|
Rachwalski K, Madden SJ, Ritchie N, French S, Bhando T, Girgis-Gabardo A, Tu M, Gordzevich R, Ives R, Guo AB, Johnson JW, Xu Y, Kapadia SB, Magolan J, Brown ED. A screen for cell envelope stress uncovers an inhibitor of prolipoprotein diacylglyceryl transferase, Lgt, in Escherichia coli. iScience 2024; 27:110894. [PMID: 39376497 PMCID: PMC11456916 DOI: 10.1016/j.isci.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The increasing prevalence of antibiotic resistance demands the discovery of antibacterial chemical scaffolds with unique mechanisms of action. Phenotypic screening approaches, such as the use of reporters for bacterial cell stress, offer promise to identify compounds while providing strong hypotheses for follow-on mechanism of action studies. From a collection of ∼1,800 Escherichia coli GFP transcriptional reporter strains, we identified a reporter that is highly induced by cell envelope stress-pProm rcsA -GFP. After characterizing pProm rcsA -GFP induction, we assessed a collection of bioactive small molecules for reporter induction, identifying 24 compounds of interest. Spontaneous suppressors to one compound in particular, MAC-0452936, mapped to the gene encoding the essential prolipoprotein diacylglyceryl transferase, lgt. Lgt inhibition by MAC-0452936 inhibition was confirmed through genetic, phenotypic, and biochemical approaches. The oxime ester, MAC-0452936, represents a useful small molecule inhibitor of Lgt and highlights the potential of using pProm rcsA -GFP as a phenotypic screening tool.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J. Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole Ritchie
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Timsy Bhando
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rowan Ives
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amelia B.Y. Guo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W. Johnson
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Jakob Magolan
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D. Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Zhang H, Yang Z, Liu J. Genetic Analysis of the Plasmid-Based Temperature-Lethal Mutant pa1792|lpxH(Ts) in Pseudomonas aeruginosa. Genes (Basel) 2024; 15:784. [PMID: 38927720 PMCID: PMC11202943 DOI: 10.3390/genes15060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential in P. aeruginosa. However, genetic analysis of lpxH in P. aeruginosa has not been carried out, partly because the conditional alleles of essential genes are not readily constructed. In this study, we first constructed a plasmid-based temperature-sensitive mutant ΔlpxH/pTS-lpxH or lpxH(Ts) in P. aeruginosa PAO1. Spot-plating assay indicated that lpxH(Ts) was lethal at a restrictive temperature, confirming its essentiality for growth. Microscopic analysis revealed that lpxH(Ts) exhibited an oval-shaped morphology, suggesting that lpxH was required for rod-shape formation. SDS-PAGE and Western blotting analysis showed that lpxH(Ts) failed to synthesize lipid A, consistent with its function in lipid A biosynthesis. Strong expression of lpxH but not the non-homologous isoenzyme lpxI or lpxG impeded growth and caused cell lysis, implying that lpxH-specific cofactors were required for this toxic effect in P. aeruginosa. Together, our results demonstrate that lpxH is essential for lipid A biosynthesis, rod-shaped growth, and viability in P. aeruginosa. We propose that this plasmid-based conditional allele is a useful tool for the genetic study of essential genes in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Jianhua Liu
- Systems Biology, School for Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (Z.Y.)
| |
Collapse
|
3
|
Rahman A, Sardar S, Niaz Z, Khan A, Sheheryar S, Alrefaei AF, Hamayun M, Ali S. Lipase and Protease Production Ability of Multi-drug Resistant Bacteria Worsens the Outcomes of Wound Infections. Curr Pharm Des 2024; 30:1307-1316. [PMID: 38629357 DOI: 10.2174/0113816128302189240402043330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/05/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.
Collapse
Affiliation(s)
- Attaur Rahman
- Laboratório de Hanseníase, Department of Parasitology, Institute Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Saiqa Sardar
- Malaria Research Laboratory, Departament of Parasitology, Institute Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Asif Khan
- Laboratory of Phytochemistry, Department of Botany, University of São Paulo, São Paulo, Brazil
| | - Sheheryar Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
4
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
5
|
Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119507. [PMID: 37268022 DOI: 10.1016/j.bbamcr.2023.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
7
|
Romano K, Hung D. Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119407. [PMID: 36543281 PMCID: PMC9922520 DOI: 10.1016/j.bbamcr.2022.119407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria pose a major threat to human health in an era fraught with multi-drug resistant bacterial infections. Despite extensive drug discovery campaigns over the past decades, no new antibiotic target class effective against gram-negative bacteria has become available to patients since the advent of the carbapenems in 1985. Antibiotic discovery efforts against gram-negative bacteria have been hampered by limited intracellular accumulation of xenobiotics, in large part due to the impermeable cell envelope comprising lipopolysaccharide (LPS) in the outer leaflet of the outer membrane, as well as a panoply of efflux pumps. The biosynthesis and transport of LPS are essential to the viability and virulence of most gram-negative bacteria. Thus, both LPS biosynthesis and transport are attractive pathways to target therapeutically. In this review, we summarize the LPS biosynthesis and transport pathways and discuss efforts to find small molecule inhibitors against targets within these pathways.
Collapse
Affiliation(s)
- K.P. Romano
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA,The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - D.T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA,Corresponding author at: The Broad Institute of MIT and Harvard, Cambridge, MA, USA. (D.T. Hung)
| |
Collapse
|
8
|
Khan RJ, Singh E, Jha RK, Kumar A, Bhati SK, Zia MP, Jain M, Singh RP, Muthukumaran J, Singh AK. Identification and prioritization of potential therapeutic molecules against LpxA from Acinetobacter baumannii - A computational study. Curr Res Struct Biol 2023; 5:100096. [PMID: 36895415 PMCID: PMC9988473 DOI: 10.1016/j.crstbi.2023.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
A. baumannii is a ubiquitously found gram-negative, multi-drug resistant bacterial species from the ESKAPE family of pathogens known to be the causative agent for hospital-acquired infections such as pneumonia, meningitis, endocarditis, septicaemia and urinary tract infections. A. baumannii is implicated as a contributor to bloodstream infections in approximately 2% of all worldwide infections. Hence, exploring novel therapeutic agents against the bacterium is essential. LpxA or UDP-N-acetylglucosamine acetyltransferase is an essential enzyme important in Lipid A biosynthesis which catalyses the reversible transfer of an acetyl group on the glucosamine 3-OH of the UDP-GlcNAc which is a crucial step in the biosynthesis of the protective Lipopolysaccharides (LPS) layer of the bacteria which upon disruption can lead to the elimination of the bacterium which delineates LpxA as an appreciable drug target from A. baumannii. The present study performs high throughput virtual screening of LpxA against the enamine-HTSC-large-molecule library and performs toxicity and ADME screening to identify the three promising lead molecules subjected to molecular dynamics simulations. Global and essential dynamics analysis of LpxA and its complexes along with FEL and MM/PBSA based binding free energy delineate Z367461724 and Z219244584 as potential inhibitors against LpxA from A. baumannii.
Collapse
Affiliation(s)
- Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ankit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Saurabh Kumar Bhati
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Mahrukh Parveez Zia
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| |
Collapse
|
9
|
Essential Paralogous Proteins as Potential Antibiotic Multitargets in Escherichia coli. Microbiol Spectr 2022; 10:e0204322. [PMID: 36445138 PMCID: PMC9769728 DOI: 10.1128/spectrum.02043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance threatens our current standards of care for the treatment and prevention of infectious disease. Antibiotics that have multiple targets have a lower propensity for the development of antibiotic resistance than those that have single targets and therefore represent an important tool in the fight against antimicrobial resistance. In this work, groups of essential paralogous proteins were identified in the important Gram-negative pathogen Escherichia coli that could represent novel targets for multitargeting antibiotics. These groups include targets from a broad range of essential macromolecular and biosynthetic pathways, including cell wall synthesis, membrane biogenesis, transcription, translation, DNA replication, fatty acid biosynthesis, and riboflavin and isoprenoid biosynthesis. Importantly, three groups of clinically validated antibiotic multitargets were identified using this method: the two subunits of the essential topoisomerases, DNA gyrase and topoisomerase IV, and one pair of penicillin-binding proteins. An additional eighteen protein groups represent potentially novel multitargets that could be explored in drug discovery efforts aimed at developing compounds having multiple targets in E. coli and other bacterial pathogens. IMPORTANCE Many types of bacteria have gained resistance to existing antibiotics used in medicine today. Therefore, new antibiotics with novel mechanisms must continue to be developed. One tool to prevent the development of antibiotic resistance is for a single drug to target multiple processes in a bacterium so that more than one change must arise for resistance to develop. The work described here provides a comprehensive search for proteins in the bacterium Escherichia coli that could be targets for such multitargeting antibiotics. Several groups of proteins that are already targets of clinically used antibiotics were identified, indicating that this approach can uncover clinically relevant antibiotic targets. In addition, eighteen currently unexploited groups of proteins were identified, representing new multitargets that could be explored in antibiotic research and development.
Collapse
|
10
|
Luo X, Zhang T, Tang H, Liu J. Novel electrochemical and electrochemiluminescence dual-modality sensing platform for sensitive determination of antimicrobial peptides based on probe encapsulated liposome and nanochannel array electrode. Front Nutr 2022; 9:962736. [PMID: 36046128 PMCID: PMC9421287 DOI: 10.3389/fnut.2022.962736] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023] Open
Abstract
With the increasing application of antimicrobial peptides (AMPs) to replace antibiotics in medicine, food and agriculture, it is highly desired to develop a fast, reliable, and convenient strategy for sensitive detection of AMPs. Herein, a novel electrochemical (EC) and electrochemiluminescence (ECL) dual-modality sensing platform was developed based on probe encapsulated liposomes and nanochannel array modified electrodes, which enables sensitive determination of nisin in food samples. The bifunctional probe with both EC and ECL signals, tris(2,2-bipyridyl) dichlororuthenium (II) (Ru(bpy)32+), was chosen to be easily encapsulated in liposomes (Ru(bpy)32+@liposome). Based on the unique sterilization mechanism that AMPs can disrupt cell membranes, Ru(bpy)32+@liposome can be destroyed by nisin and release a large number of Ru(bpy)32+ probes. Vertically-ordered mesoporous silica-nanochannel film (VMSF) modified ITO electrodes (VMSF/ITO) prepared by electrochemically assisted self-assembly (EASA) method were applied as the sensing electrode. Due to the efficient enrichment of Ru(bpy)32+ by the negatively charged nanochannel arrays, VMSF/ITO enables detection of the EC/ECL signals of the released Ru(bpy)32+ probes with ultrahigh sensitivity. In consequence, sensitive dual-modality detection of nisin was achieved by the combination of Ru(bpy)32+@liposome and VMSF/ITO. The developed sensing system can realize sensitive determination of nisin in ECL mode in the concentration range of 10 ng/ml to 50 μg/ml with a limit of detection (LOD) of 9.3 ng/ml, or in EC mode from 800 ng/ml to 100 μg/ml with a LOD of 70 ng/ml. Combined with the excellent anti-fouling and anti-interference performance of VMSF, rapid and sensitive detection of nisin in milk or egg white was also achieved by the sensor.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
11
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
12
|
Fereshteh S, Kalhor H, Sepehr A, Rahimi H, Zafari M, Ahangari Cohan R, Badmasti F. Rational design of inhibitors against LpxA protein of Acinetobacter baumannii using a virtual screening method. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
14
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Troudi A, Pagès JM, Brunel JM. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses. J Med Chem 2021; 64:1816-1834. [PMID: 33538159 DOI: 10.1021/acs.jmedchem.0c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria provides an efficient barrier against external noxious compounds such as antimicrobial agents. Associated with drug target modification, it contributes to the overall failure of chemotherapy. In the complex OM architecture, Lipid A plays an essential role by anchoring the lipopolysaccharide in the membrane and ensuring the spatial organization between lipids, proteins, and sugars. Currently, the targets of almost all antibiotics are intracellularly located and require translocation across membranes. We report herein an integrated view of Lipid A synthesis, membrane assembly, a structure comparison at the molecular structure level of numerous Gram-negative bacterial species, as well as its recent use as a target for original antibacterial molecules. This review paves the way for a new vision of a key membrane component that acts during bacterial adaptation to environmental stresses and for the development of new weapons against microbial resistance to usual antibiotics.
Collapse
Affiliation(s)
- Azza Troudi
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France.,Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1008, Tunisia
| | - Jean Marie Pagès
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
16
|
Ma X, Prathapam R, Wartchow C, Chie-Leon B, Ho CM, De Vicente J, Han W, Li M, Lu Y, Ramurthy S, Shia S, Steffek M, Uehara T. Structural and Biological Basis of Small Molecule Inhibition of Escherichia coli LpxD Acyltransferase Essential for Lipopolysaccharide Biosynthesis. ACS Infect Dis 2020; 6:1480-1489. [PMID: 31402665 DOI: 10.1021/acsinfecdis.9b00127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LpxD, acyl-ACP-dependent N-acyltransferase, is the third enzyme of lipid A biosynthesis in Gram-negative bacteria. A recent probe-based screen identified several compounds, including 6359-0284 (compound 1), that inhibit the enzymatic activity of Escherichia coli (E. coli) LpxD. Here, we use these inhibitors to chemically validate LpxD as an attractive antibacterial target. We first found that compound 1 was oxidized in solution to the more stable aromatized tetrahydro-pyrazolo-quinolinone compound 1o. From the Escherichia coli strain deficient in efflux, we isolated a mutant that was less susceptible to compound 1o and had an lpxD missense mutation (Gly268Cys), supporting the cellular on-target activity. Using surface plasma resonance, we showed direct binding to E. coli LpxD for compound 1o and other reported LpxD inhibitors in vitro. Furthermore, we determined eight cocrystal structures of E. coli LpxD/inhibitor complexes. These costructures pinpointed the 4'-phosphopantetheine binding site as the common ligand binding hotspot, where hydrogen bonds to Gly269 and/or Gly287 were important for inhibitor binding. In addition, the LpxD/compound 1o costructure rationalized the reduced activity of compound 1o in the LpxDGly268Cys mutant. Moreover, we obtained the LpxD structure in complex with a previously reported LpxA/LpxD dual targeting peptide inhibitor, RJPXD33, providing structural rationale for the unique dual targeting properties of this peptide. Given that the active site residues of LpxD are conserved in multidrug resistant Enterobacteriaceae, this work paves the way for future LpxD drug discovery efforts combating these Gram-negative pathogens.
Collapse
|
17
|
Han W, Ma X, Balibar CJ, Baxter Rath CM, Benton B, Bermingham A, Casey F, Chie-Leon B, Cho MK, Frank AO, Frommlet A, Ho CM, Lee PS, Li M, Lingel A, Ma S, Merritt H, Ornelas E, De Pascale G, Prathapam R, Prosen KR, Rasper D, Ruzin A, Sawyer WS, Shaul J, Shen X, Shia S, Steffek M, Subramanian S, Vo J, Wang F, Wartchow C, Uehara T. Two Distinct Mechanisms of Inhibition of LpxA Acyltransferase Essential for Lipopolysaccharide Biosynthesis. J Am Chem Soc 2020; 142:4445-4455. [DOI: 10.1021/jacs.9b13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wooseok Han
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaolei Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Carl J. Balibar
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | | | - Bret Benton
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Fergal Casey
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Barbara Chie-Leon
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Min-Kyu Cho
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreas O. Frank
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alexandra Frommlet
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Chi-Min Ho
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Patrick S. Lee
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Min Li
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sylvia Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Hanne Merritt
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Elizabeth Ornelas
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Ramadevi Prathapam
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Katherine R. Prosen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alexey Ruzin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - William S. Sawyer
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Steven Shia
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Micah Steffek
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sharadha Subramanian
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jason Vo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Feng Wang
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Charles Wartchow
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Tsuyoshi Uehara
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
18
|
MacNair CR, Tsai CN, Brown ED. Creative targeting of the Gram-negative outer membrane in antibiotic discovery. Ann N Y Acad Sci 2019; 1459:69-85. [PMID: 31762048 DOI: 10.1111/nyas.14280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
The rising threat of multidrug-resistant Gram-negative bacteria is exacerbated by the scarcity of new antibiotics in the development pipeline. Permeability through the outer membrane remains one of the leading hurdles in discovery efforts. However, the essentiality of a robust outer membrane makes itself an intriguing antimicrobial target. Herein, we review drug discovery efforts targeting the outer membrane and the prospective antimicrobial leads identified.
Collapse
Affiliation(s)
- Craig R MacNair
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caressa N Tsai
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Kroeck KG, Sacco MD, Smith EW, Zhang X, Shoun D, Akhtar A, Darch SE, Cohen F, Andrews LD, Knox JE, Chen Y. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci Rep 2019; 9:15450. [PMID: 31664082 PMCID: PMC6820557 DOI: 10.1038/s41598-019-51844-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 11/09/2022] Open
Abstract
The lipid A biosynthesis pathway is essential in Pseudomonas aeruginosa. LpxA and LpxD are the first and third enzymes in this pathway respectively, and are regarded as promising antibiotic targets. The unique structural similarities between these two enzymes make them suitable targets for dual-binding inhibitors, a characteristic that would decrease the likelihood of mutational resistance and increase cell-based activity. We report the discovery of multiple small molecule ligands that bind to P. aeruginosa LpxA and LpxD, including dual-binding ligands. Binding poses were determined for select compounds by X-ray crystallography. The new structures reveal a previously uncharacterized magnesium ion residing at the core of the LpxD trimer. In addition, ligand binding in the LpxD active site resulted in conformational changes in the distal C-terminal helix-bundle, which forms extensive contacts with acyl carrier protein (ACP) during catalysis. These ligand-dependent conformational changes suggest a potential allosteric influence of reaction intermediates on ACP binding, and vice versa. Taken together, the novel small molecule ligands and their crystal structures provide new chemical scaffolds for ligand discovery targeting lipid A biosynthesis, while revealing structural features of interest for future investigation of LpxD function.
Collapse
Affiliation(s)
- Kyle G Kroeck
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Michael D Sacco
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Daniel Shoun
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Sophie E Darch
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Frederick Cohen
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - Logan D Andrews
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - John E Knox
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States.
| |
Collapse
|
20
|
Zhang X, Li Y, Wang W, Zhang J, Lin Y, Hong B, You X, Song D, Wang Y, Jiang J, Si S. Identification of an anti-Gram-negative bacteria agent disrupting the interaction between lipopolysaccharide transporters LptA and LptC. Int J Antimicrob Agents 2018; 53:442-448. [PMID: 30476569 DOI: 10.1016/j.ijantimicag.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The emergence of drug-resistant Gram-negative bacteria is a serious clinical problem that causes increased morbidity and mortality. However, the slow discovery of new antibiotics is unable to meet the need for treating bacterial infections caused by drug-resistant strains. Lipopolysaccharide (LPS) is synthesized in the cytoplasm and transported to the cell envelope by the LPS transport (Lpt) system. LptA and LptC form a complex that transports LPS from the inner membrane to the outer membrane. METHODS This study performed a screen for agents that disrupt the transport of LPS in Gram-negative bacteria Escherichia coli. It established a yeast two-hybrid system to detect LptA-LptC interaction and used this system to identify a compound, IMB-881, that blocks this interaction and shows antibacterial activity. RESULTS This study demonstrated that the IMB-881 compound specifically binds to LptA to disrupt LptA-LptC interaction using surface plasmon resonance assay. Overproduction of LptA protein but not that of LptC lowered the antibacterial activity of IMB-881. Strikingly, Escherichia coli cells accumulated 'extra' membrane material in the periplasm and exhibited filament morphology after treatment with IMB-881. CONCLUSION This study successfully identified, by using a yeast two-hybrid system, an antibacterial agent that likely blocks LPS transport in Gram-negative bacteria.
Collapse
Affiliation(s)
- Xuelian Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyi Si
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
González-Bello C. The Inhibition of Lipid A Biosynthesis-The Antidote Against Superbugs? ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
22
|
Richie DL, Wang L, Chan H, De Pascale G, Six DA, Wei JR, Dean CR. A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii. PLoS One 2018; 13:e0193851. [PMID: 29505586 PMCID: PMC5837183 DOI: 10.1371/journal.pone.0193851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Daryl L. Richie
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Lisha Wang
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Helen Chan
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - David A. Six
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| |
Collapse
|
23
|
Bohl HO, Shi K, Lee JK, Aihara H. Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nat Commun 2018; 9:377. [PMID: 29371662 PMCID: PMC5785501 DOI: 10.1038/s41467-017-02712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Most Gram-negative bacteria are surrounded by a glycolipid called lipopolysaccharide (LPS), which forms a barrier to hydrophobic toxins and, in pathogenic bacteria, is a virulence factor. During LPS biosynthesis, a membrane-associated glycosyltransferase (LpxB) forms a tetra-acylated disaccharide that is further acylated to form the membrane anchor moiety of LPS. Here we solve the structure of a soluble and catalytically competent LpxB by X-ray crystallography. The structure reveals that LpxB has a glycosyltransferase-B family fold but with a highly intertwined, C-terminally swapped dimer comprising four domains. We identify key catalytic residues with a product, UDP, bound in the active site, as well as clusters of hydrophobic residues that likely mediate productive membrane association or capture of lipidic substrates. These studies provide the basis for rational design of antibiotics targeting a crucial step in LPS biosynthesis.
Collapse
Affiliation(s)
- Heather O Bohl
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
- Bristol-Myers Squibb, Redwood City, CA, 94063, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Zhou P, Zhao J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1424-1438. [PMID: 27940308 DOI: 10.1016/j.bbalip.2016.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Research Drive, DUMC 3711, Durham, NC 27710, USA.
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Research Drive, DUMC 3711, Durham, NC 27710, USA
| |
Collapse
|
25
|
Richie DL, Takeoka KT, Bojkovic J, Metzger LE, Rath CM, Sawyer WS, Wei JR, Dean CR. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606. PLoS One 2016; 11:e0160918. [PMID: 27526195 PMCID: PMC4985137 DOI: 10.1371/journal.pone.0160918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/27/2016] [Indexed: 12/05/2022] Open
Abstract
The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth.
Collapse
Affiliation(s)
- Daryl L. Richie
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Kenneth T. Takeoka
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jade Bojkovic
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Louis E. Metzger
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Christopher M. Rath
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - William S. Sawyer
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
27
|
Postma TM, Liskamp RMJ. Triple-targeting Gram-negative selective antimicrobial peptides capable of disrupting the cell membrane and lipid A biosynthesis. RSC Adv 2016. [DOI: 10.1039/c6ra11550k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A potent Gram-negative selective triple-targeting antimicrobial peptide was developed that attacks the membrane and inhibits two enzymes involved in early lipid A biosynthesis.
Collapse
Affiliation(s)
- T. M. Postma
- School of Chemistry
- Joseph Black Building
- University of Glasgow
- Glasgow
- UK
| | - R. M. J. Liskamp
- School of Chemistry
- Joseph Black Building
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
28
|
Characterization of an Acinetobacter baumannii lptD Deletion Strain: Permeability Defects and Response to Inhibition of Lipopolysaccharide and Fatty Acid Biosynthesis. J Bacteriol 2015; 198:731-41. [PMID: 26668262 DOI: 10.1128/jb.00639-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/04/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Lipid A on the Gram-negative outer membrane (OM) is synthesized in the cytoplasm by the Lpx pathway and translocated to the OM by the Lpt pathway. Some Acinetobacter baumannii strains can tolerate the complete loss of lipopolysaccharide (LPS) resulting from the inactivation of early LPS pathway genes such as lpxC. Here, we characterized a mutant deleted for lptD, which encodes an OM protein that mediates the final translocation of fully synthesized LPS to the OM. Cells lacking lptD had a growth defect comparable to that of an lpxC deletion mutant under the growth conditions tested but were more sensitive to hydrophobic antibiotics, revealing a more significant impact on cell permeability from impaired LPS translocation than from the loss of LPS synthesis. Consistent with this, ATP leakage and N-phenyl-1-naphthylamine (NPN) fluorescence assays indicated a more severe impact of lptD deletion than of lpxC deletion on inner and outer membrane permeability, respectively. Targeted liquid chromatography-mass spectrometry (LCMS) analysis of LPS intermediates from UDP-3-O-R-3-hydroxylauroyl-N-acetyl-α-d-glucosamine through lipid IV(A) showed that the loss of LptD caused an accumulation of lipid IV(A). This suggested that pathway intermediate accumulation or mislocalization caused by the blockage of later LPS pathway steps impacts envelope integrity. Supporting this notion, chemical inhibition of lipid A precursor enzymes, including LpxC and FabB/F, in the lptD deletion strain partially rescued growth and permeability defects. IMPORTANCE New antibiotics to treat Gram-negative bacterial infections are urgently needed. Inhibition of LPS biosynthesis is attractive because this would impact viability and cell permeability. Therefore, a better understanding of this pathway is important, especially in strains such as A. baumannii ATCC 19606, where LPS biosynthesis is not essential in vitro. We show that ATCC 19606 also survives the loss of the final translocation of LPS into the OM (lptD deletion). Intriguingly, this impaired cell envelope integrity more than the loss of LPS biosynthesis (lpxC deletion), presumably due to the accumulation of toxic intermediates. Supporting this, chemical inhibition of LPS biosynthesis partially reversed this permeability defect. This extends our understanding of the LPS machinery and provides insights into potential interrelationships of the target steps along this important pathway.
Collapse
|
29
|
Smith EW, Zhang X, Behzadi C, Andrews LD, Cohen F, Chen Y. Structures of Pseudomonas aeruginosa LpxA Reveal the Basis for Its Substrate Selectivity. Biochemistry 2015; 54:5937-48. [PMID: 26352800 DOI: 10.1021/acs.biochem.5b00720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gram-negative bacteria, the first step of lipid A biosynthesis is catalyzed by UDP-N-acetylglucosamine acyltransferase (LpxA) through the transfer of a R-3-hydroxyacyl chain from the acyl carrier protein (ACP) to the 3-hydroxyl group of UDP-GlcNAc. Previous studies suggest that LpxA is a critical determinant of the acyl chain length found in lipid A, which varies among species of bacteria. In Escherichia coli and Leptospira interrogans, LpxA prefers to incorporate longer R-3-hydroxyacyl chains (C14 and C12, respectively), whereas in Pseudomonas aeruginosa, the enzyme is selective for R-3-hydroxydecanoyl, a 10-hydrocarbon long acyl chain. We now report three P. aeruginosa LpxA crystal structures: apo protein, substrate complex with UDP-GlcNAc, and product complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc. A comparison between the apo form and complexes identifies key residues that position UDP-GlcNAc appropriately for catalysis and supports the role of catalytic His121 in activating the UDP-GlcNAc 3-hydroxyl group for nucleophilic attack during the reaction. The product-complex structure, for the first time, offers structural insights into how Met169 serves to constrain the length of the acyl chain and thus functions as the so-called hydrocarbon ruler. Furthermore, compared with ortholog LpxA structures, the purported oxyanion hole, formed by the backbone amide group of Gly139, displays a different conformation in P. aeruginosa LpxA, which suggests flexibility of this structural feature important for catalysis and the potential need for substrate-induced conformational change in catalysis. Taken together, the three structures provide valuable insights into P. aeruginosa LpxA catalysis and substrate specificity as well as templates for future inhibitor discovery.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - XiuJun Zhang
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cyrus Behzadi
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Logan D Andrews
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Frederick Cohen
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
30
|
Jenkins RJ, Heslip KA, Meagher JL, Stuckey JA, Dotson GD. Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid A biosynthesis. J Biol Chem 2014; 289:15527-35. [PMID: 24742680 PMCID: PMC4140908 DOI: 10.1074/jbc.m114.564278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-β-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.
Collapse
Affiliation(s)
- Ronald J Jenkins
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Kyle A Heslip
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Garry D Dotson
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| |
Collapse
|
31
|
Abstract
Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | | |
Collapse
|
32
|
Chasing acyl carrier protein through a catalytic cycle of lipid A production. Nature 2013; 505:422-6. [PMID: 24196711 PMCID: PMC3947097 DOI: 10.1038/nature12679] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Acyl-carrier-protein (ACP) represents one of the most highly conserved proteins across all domains of life and is nature's way of transporting hydrocarbon-chains in vivo. Notably, type II ACPs serve as a crucial interaction hub within primary cellular metabolism1 by communicating transiently between partner enzymes of the numerous biosynthetic pathways2,3. However, the highly transient nature of such interactions and the inherent conformational mobility of ACP2 have stymied previous attempts to structurally visualize ACP tied to an overall catalytic cycle. This is essential to understanding a fundamental aspect of cellular metabolism leading to compounds that are not only useful to the cell, but are also of therapeutic value. For example, ACP is central to the biosynthesis of the lipid A (endotoxin) component of lipopolysaccharides (LPS) in Gram-negative microorganisms, which is required for their growth and survival4,5 and is an activator of the mammalian host's immune system6,7, thus emerging as an important therapeutic target8-10. During lipid A synthesis (Raetz Pathway), ACP shuttles acyl-intermediates linked to its prosthetic 4′-phosphopantetheine group (4′-PPT)2 among four acyltransferases, including LpxD11. Here we report the crystal structures of three forms of Escherichia coli ACP engaging LpxD, which represent stalled substrate and liberated products along the reaction coordinate. The structures reveal the intricate interactions at the interface that optimally position ACP for acyl-delivery and that directly involve the pantetheinyl group. Conformational differences among the stalled ACPs provide the molecular basis for the association-dissociation process. An unanticipated conformational shift of 4′-phosphopantetheine groups within the LpxD catalytic chamber reveals an unprecedented role of ACP in product release.
Collapse
|
33
|
East SP, Silver LL. Multitarget ligands in antibacterial research: progress and opportunities. Expert Opin Drug Discov 2012; 8:143-56. [PMID: 23252414 DOI: 10.1517/17460441.2013.743991] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Resistance to current antibacterial therapies is an inevitability that represents a significant global health concern. Bacteria have the capacity to render all current drug treatments ineffective, which places a demand on the drug discovery community to constantly develop new antibacterial agents. Compounds that inhibit multiple biological targets, often referred to as multitarget ligands, are an inviting prospect in antibacterial research because, although they will not solve the issue of resistance, they might help to delay the onset. AREAS COVERED This review covers some of the recent progress in identifying new ligands that deliberately interact with more than one essential biological target in bacteria. The two principal areas covered are inhibitors of DNA replication and cell wall biosynthesis. EXPERT OPINION Antibacterial programs for the design of multitarget ligands present an important opportunity for production of antibacterial agents. Their longevity, due to slow development of resistance, is comparable to that seen with other successful agents - but is much improved over single-targeted agents for which resistance can appear in vitro overnight. The preclinical development of these agents will have to overcome the standard problems of antibacterial discovery. Such problems include optimization of characteristics favoring cell entry and particularly the demonstration of selectivity of inhibition of the desired multiple targets without inhibition of other bacterial or any mammalian functions.
Collapse
Affiliation(s)
- Stephen P East
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, UK.
| | | |
Collapse
|
34
|
Shapiro AB, Ross PL, Gao N, Livchak S, Kern G, Yang W, Andrews B, Thresher J. A high-throughput-compatible fluorescence anisotropy-based assay for competitive inhibitors of Escherichia coli UDP-N-acetylglucosamine acyltransferase (LpxA). ACTA ACUST UNITED AC 2012; 18:341-7. [PMID: 23015018 DOI: 10.1177/1087057112462062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LpxA, the first enzyme in the biosynthetic pathway for the Lipid A component of the outer membrane lipopolysaccharide in Gram-negative bacteria, is a potential target for novel antibacterial drug discovery. A fluorescence polarization assay was developed to facilitate high-throughput screening for competitive inhibitors of LpxA. The assay detects displacement of a fluorescently labeled peptide inhibitor, based on the previously reported inhibitor peptide 920, by active site ligands. The affinity of the fluorescent ligand was increased ~10-fold by acyl carrier protein (ACP). Competition with peptide binding was observed with UDP-N-acetylglucosamine (IC(50) ~6 mM), UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine (IC(50) ~200 nM), and DL-3-hydroxymyristic acid (IC(50) ~50 µM) and peptide 920 (IC(50) ~600 nM). The IC(50)s were not significantly affected by the presence of ACP.
Collapse
|