1
|
Qiu Y, Chu AJ, Tsang TF, Zheng Y, Lam NM, Li KSL, Ip M, Yang X, Ma C. Synthesis and biological evaluation of nusbiarylin derivatives as bacterial rRNA synthesis inhibitor with potent antimicrobial activity against MRSA and VRSA. Bioorg Chem 2022; 124:105863. [DOI: 10.1016/j.bioorg.2022.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/09/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
2
|
Abstract
The low G + C Gram-positive bacteria represent some of the most medically and industrially important microorganisms. They are relied on for the production of food and dietary supplements, enzymes and antibiotics, as well as being responsible for the majority of nosocomial infections and serving as a reservoir for antibiotic resistance. Control of gene expression in this group is more highly studied than in any bacteria other than the Gram-negative model Escherichia coli, yet until recently no structural information on RNA polymerase (RNAP) from this group was available. This review will summarize recent reports on the high-resolution structure of RNAP from the model low G + C representative Bacillus subtilis, including the role of auxiliary subunits δ and ε, and outline approaches for the development of antimicrobials to target RNAP from this group.
Collapse
Affiliation(s)
- Michael Miller
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia
| | - Aaron J Oakley
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia
| | - Peter J Lewis
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia.,School Of Chemistry And Molecular Bioscience, University Of Wollongong And Illawarra Health And Medical Research Institute, Wollongong, Nsw, Australia
| |
Collapse
|
3
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
4
|
Kaur G, Kapoor S, Kaundal S, Dutta D, Thakur KG. Structure-Guided Designing and Evaluation of Peptides Targeting Bacterial Transcription. Front Bioeng Biotechnol 2020; 8:797. [PMID: 33014990 PMCID: PMC7505949 DOI: 10.3389/fbioe.2020.00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The mycobacterial RNA polymerase (RNAP) is an essential and validated drug target for developing antibacterial drugs. The β-subunit of Mycobacterium tuberculosis (Mtb) RNAP (RpoB) interacts with an essential and global transcription factor, CarD, and confers antibiotic and oxidative stress resistance to Mtb. Compromising the RpoB/CarD interactions results in the killing of mycobacteria, hence disrupting the RpoB/CarD interaction has been proposed as a novel strategy for the development of anti-tubercular drugs. Here, we describe the first approach to rationally design and test the efficacy of the peptide-based inhibitors which specifically target the conserved PPI interface between the bacterial RNAP β/transcription factor complex. We performed in silico protein-peptide docking studies along with biochemical assays to characterize the novel peptide-based inhibitors. Our results suggest that the top ranked peptides are highly stable, soluble in aqueous buffer, and capable of inhibiting transcription with IC50 > 50 μM concentration. Using peptide-based molecules, our study provides the first piece of evidence to target the conserved RNAP β/transcription factor interface for designing new inhibitors. Our results may hence form the basis to further improve the potential of these novel peptides in modulating bacterial gene expression, thus inhibiting bacterial growth and combating bacterial infections.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
5
|
Sartini S, Levati E, Maccesi M, Guerra M, Spadoni G, Bach S, Benincasa M, Scocchi M, Ottonello S, Rivara S, Montanini B. New Antimicrobials Targeting Bacterial RNA Polymerase Holoenzyme Assembly Identified with an in Vivo BRET-Based Discovery Platform. ACS Chem Biol 2019; 14:1727-1736. [PMID: 31310497 DOI: 10.1021/acschembio.9b00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacterial resistance represents a major health threat worldwide, and the development of new therapeutics, including innovative antibiotics, is urgently needed. We describe a discovery platform, centered on in silico screening and in vivo bioluminescence resonance energy transfer in yeast cells, for the identification of new antimicrobials that, by targeting the protein-protein interaction between the β'-subunit and the initiation factor σ70 of bacterial RNA polymerase, inhibit holoenzyme assembly and promoter-specific transcription. Out of 34 000 candidate compounds, we identified seven hits capable of interfering with this interaction. Two derivatives of one of these hits proved to be effective in inhibiting transcription in vitro and growth of the Gram-positive pathogens Staphylococcus aureus and Listeria monocytogenes. Upon supplementation of a permeability adjuvant, one derivative also effectively inhibited Escherichia coli growth. On the basis of the chemical structures of these inhibitors, we generated a ligand-based pharmacophore model that will guide the rational discovery of increasingly effective antibacterial agents.
Collapse
Affiliation(s)
- Sara Sartini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Elisabetta Levati
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Martina Maccesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Guerra
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Team Physiology and Cell Fate, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
6
|
Kamal AAM, Habib M, Haupenthal J, Hartmann RW, Empting M. Hit evaluation of an α-helical peptide: Ala-scan, truncation and sidechain-to-sidechain macrocyclization of an RNA polymerase Inhibitor. Biol Chem 2019; 400:333-342. [PMID: 30657738 DOI: 10.1515/hsz-2018-0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
RNA polymerase (RNAP) remains a relatively underexplored target with only rifampicin and fidaxomicin in clinical use. Hence, the concurrent rise in bacterial resistance rate urges the search for novel RNAP inhibitors with a novel mode of action. In this work, we investigated the impact of several systematic modifications including sidechain-to-sidechain macrocylization in the α-helical content and biological activity of a previously identified inhibitory sigma factor fragment. Ala-scan results, peptide truncation from both the N- and C-terminus and modifications inspired by other RNAP inhibitors revealed novel structure activity relationships but did not yield a superior sequence. Additionally, four insertion points for non-natural amino acids bearing side chains required for macrocylization were explored. Linear precursors showed improved stabilization of the α-helical content compared to the original sequence as demonstrated by circular dichroism (CD) spectroscopy. However, this increase in α-helicity did not translate into improved biological activity. Instead, complete abolishment of RNAP inhibitory activity occurred. We hypothesize three possible reasons for such a discrepancy and offer the basis for further optimization efforts for this peptidic RNAP inhibitor.
Collapse
Affiliation(s)
- Ahmed Ashraf Moustafa Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Monica Habib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.,Institute of Molecular Virology, Ulm University Medical Center, D-89081 Ulm, Germany
| | - Joerg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Rolf Wolfgang Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
9
|
Fruth M, Plaza A, Hinsberger S, Sahner JH, Haupenthal J, Bischoff M, Jansen R, Müller R, Hartmann RW. Binding mode characterization of novel RNA polymerase inhibitors using a combined biochemical and NMR approach. ACS Chem Biol 2014; 9:2656-63. [PMID: 25207839 DOI: 10.1021/cb5005433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial RNA polymerase (RNAP) represents a validated target for the development of broad-spectrum antibiotics. However, the medical value of RNAP inhibitors in clinical use is limited by the prevalence of resistant strains. To overcome this problem, we focused on the exploration of alternative target sites within the RNAP. Previously, we described the discovery of a novel RNAP inhibitor class containing an ureidothiophene-2-carboxylic acid core structure. Herein, we demonstrate that these compounds are potent against a set of methicillin-resistant Staphylococcus aureus (MRSA) strains (MIC 2-16 μg mL(-1)) and rifampicin-resistant Escherichia coli TolC strains (MIC 12.5-50 μg mL(-1)). Additionally, an abortive transcription assay revealed that these compounds inhibit the bacterial transcription process during the initiation phase. Furthermore, the binding mode of the ureidothiophene-2-carboxylic acids was characterized by mutagenesis studies and ligand-based NMR spectroscopy. Competition saturation transfer difference (STD) NMR experiments with the described RNAP inhibitor myxopyronin A (Myx) suggest that the ureidothiophene-2-carboxylic acids compete with Myx for the same binding site in the RNAP switch region. INPHARMA (interligand NOE for pharmacophore mapping) experiments and molecular docking simulations provided a binding model in which the ureidothiophene-2-carboxylic acids occupy the region of the Myx western chain binding site and slightly occlude that of the eastern chain. These results demonstrate that the ureidothiophene-2-carboxylic acids are a highly attractive new class of RNAP inhibitors that can avoid the problem of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, 66421 Homburg/Saar, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Identification of inhibitors of a bacterial sigma factor using a new high-throughput screening assay. Antimicrob Agents Chemother 2014; 59:193-205. [PMID: 25331704 DOI: 10.1128/aac.03979-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria are formidable pathogens because their cell envelope presents an adaptable barrier to environmental and host-mediated challenges. The stress response pathway controlled by the alternative sigma factor σ(E) is critical for maintenance of the cell envelope. Because σ(E) is required for the virulence or viability of several Gram-negative pathogens, it might be a useful target for antibiotic development. To determine if small molecules can inhibit the σ(E) pathway, and to permit high-throughput screening for antibiotic lead compounds, a σ(E) activity assay that is compatible with high-throughput screening was developed and validated. The screen employs a biological assay with positive readout. An Escherichia coli strain was engineered to express yellow fluorescent protein (YFP) under negative regulation by the σ(E) pathway, such that inhibitors of the pathway increase the production of YFP. To validate the screen, the reporter strain was used to identify σ(E) pathway inhibitors from a library of cyclic peptides. Biochemical characterization of one of the inhibitory cyclic peptides showed that it binds σ(E), inhibits RNA polymerase holoenzyme formation, and inhibits σ(E)-dependent transcription in vitro. These results demonstrate that alternative sigma factors can be inhibited by small molecules and enable high-throughput screening for inhibitors of the σ(E) pathway.
Collapse
|
11
|
Surface plasmon resonance – more than a screening technology: insights in the binding mode of σ70:core RNAP inhibitors. Future Med Chem 2014; 6:1551-65. [DOI: 10.4155/fmc.14.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Antibiotic resistance has become a major health problem. The σ70:core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β’ subunit has been identified as an inhibition hot spot. Materials & methods & Results: By using surface plasmon resonance-based assays, inhibitors of the protein–protein interaction were identified and competition with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a σ70:core assembly assay. For one hit series, we found a correlation between activity and affinity. Mutant interaction studies suggest the inhibitors’ binding site. Conclusion: Surface plasmon resonance is a valuable technology in drug design, that has been used in this study to identify and evaluate σ70:core RNA polymerase inhibitors.
Collapse
|
12
|
New insights into the bacterial RNA polymerase inhibitor CBR703 as a starting point for optimization as an anti-infective agent. Antimicrob Agents Chemother 2014; 58:4242-5. [PMID: 24820077 DOI: 10.1128/aac.02600-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CBR703 was reported to inhibit bacterial RNA polymerase (RNAP) and biofilm formation, considering it to be a good candidate for further optimization. While synthesized derivatives of CBR703 did not result in more-active RNAP inhibitors, we observed promising antibacterial activities. These again correlated with a significant cytotoxicity toward mammalian cells. Furthermore, we suspect the promising effects on biofilm formation to be artifacts. Consequently, this class of compounds can be considered unattractive as antibacterial agents.
Collapse
|
13
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
14
|
Hinsberger S, Hüsecken K, Groh M, Negri M, Haupenthal J, Hartmann RW. Discovery of Novel Bacterial RNA Polymerase Inhibitors: Pharmacophore-Based Virtual Screening and Hit Optimization. J Med Chem 2013; 56:8332-8. [DOI: 10.1021/jm400485e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Hinsberger
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Kristina Hüsecken
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Matthias Groh
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz-Institute for Pharmaceutical
Research Saarland, Department
of Drug Design and Optimization, and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Ma C, Yang X, Kandemir H, Mielczarek M, Johnston EB, Griffith R, Kumar N, Lewis PJ. Inhibitors of bacterial transcription initiation complex formation. ACS Chem Biol 2013; 8:1972-80. [PMID: 23751807 DOI: 10.1021/cb400231p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic resistance is a growing global problem, with very few new compounds in development. Bacterial transcription is an underutilized target for antibiotics, which has been attributed to the similarity of the active site of RNA polymerases (RNAPs) across all domains of life and the ease with which resistance can arise through point mutation at multiple sites within this conserved region. In this study we have taken a rational approach to design a novel set of compounds that specifically target the formation of transcription initiation complexes by preventing the unique bacterial σ initiation factor from binding to RNAP. We have identified the region of RNAP to which these compounds bind and demonstrate that one compound, GKL003, has an inhibition constant in the low nanomolar range. This compound has activity against both Gram-positive and -negative organisms, including a community acquired methicillin-resistant strain of the major pathogen Staphylococcus aureus.
Collapse
Affiliation(s)
- Cong Ma
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | - Elecia B Johnston
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | - Peter J. Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|