1
|
Yan X, Bu A, Yuan Y, Zhang X, Lin Z, Yang X. Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH. Microb Cell Fact 2024; 23:256. [PMID: 39342182 PMCID: PMC11438209 DOI: 10.1186/s12934-024-02524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner. RESULTS In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter PesaS and stepwise evaluation, we developed an optimal Esa-PBD(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8. CONCLUSIONS This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.
Collapse
Affiliation(s)
- Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Anqi Bu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- School of Biomedicine, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Wang L, Guo Y, Shen Y, Yang K, Cai X, Zhang B, Liu Z, Zheng Y. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli. Biotechnol Adv 2024; 73:108353. [PMID: 38593935 DOI: 10.1016/j.biotechadv.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yizhou Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
4
|
Song J, Zhuang M, Fang Y, Hu X, Wang X. Self-regulated efficient production of L-threonine via an artificial quorum sensing system in engineered Escherichia coli. Microbiol Res 2024; 284:127720. [PMID: 38640767 DOI: 10.1016/j.micres.2024.127720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miaomiao Zhuang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Cao Z, Liu Z, Zhang G, Mao X. P mutants with different promoting period and their application for quorum sensing regulated protein expression. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Gu F, Jiang W, Kang F, Su T, Yang X, Qi Q, Liang Q. A synthetic population-level oscillator in non-microfluidic environments. Commun Biol 2023; 6:515. [PMID: 37179427 PMCID: PMC10183009 DOI: 10.1038/s42003-023-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Synthetic oscillators have become a research hotspot because of their complexity and importance. The construction and stable operation of oscillators in large-scale environments are important and challenging. Here, we introduce a synthetic population-level oscillator in Escherichia coli that operates stably during continuous culture in non-microfluidic environments without the addition of inducers or frequent dilution. Specifically, quorum-sensing components and protease regulating elements are employed, which form delayed negative feedback to trigger oscillation and accomplish the reset of signals through transcriptional and post-translational regulation. We test the circuit in devices with 1 mL, 50 mL, 400 mL of medium, and demonstrate that the circuit could maintain stable population-level oscillations. Finally, we explore potential applications of the circuit in regulating cellular morphology and metabolism. Our work contributes to the design and testing of synthetic biological clocks that function in large populations.
Collapse
Affiliation(s)
- Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Xiaoya Yang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| |
Collapse
|
7
|
Cao Z, Liu Z, Mao X. Application of Quorum Sensing in Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5062-5074. [PMID: 36967589 DOI: 10.1021/acs.jafc.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metabolic engineering is widely utilized in the food and other fields and has the benefits of low-cost substrates, eco-friendly fermentation processes, and efficient substrate synthesis. Microbial synthesis by metabolic engineering requires maintaining the productive capacity of the microorganism. Moreover, economic reasons limit the use of inducers in the exogenous synthesis pathway. Most unicellular microorganisms can interact by emitting signaling molecules; this mechanism, known as quorum sensing (QS), is an autoinduced system of microorganisms. With the deepening research on QS systems of different microorganisms, its components are widely used to regulate the metabolic synthesis of microorganisms as a dynamic regulatory system. In this Review, we described the typical bacterial QS mechanisms. Then, we summarized various regulatory strategies for QS and their applications to metabolic engineering. Finally, we underlined the potential for QS modularity in future metabolic engineering and suggested stimulating research on fungal QS systems.
Collapse
Affiliation(s)
- Zhuoning Cao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
8
|
Zhang B, Yang H, Wu Z, Pan J, Li S, Chen L, Cai X, Liu Z, Zheng Y. Spatiotemporal Gene Expression by a Genetic Circuit for Chemical Production in Escherichia coli. ACS Synth Biol 2023; 12:768-779. [PMID: 36821871 DOI: 10.1021/acssynbio.2c00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gene expression in spatiotemporal distribution improves the ability of cells to respond to changing environments. For microbial cell factories in artificial environments, reconstruction of the target compound's biosynthetic pathway in a new spatiotemporal dimension/scale promotes the production of chemicals. Here, a genetic circuit based on the Esa quorum sensing and lac operon was designed to achieve the dynamic temporal gene expression. Meanwhile, the pathway was regulated by an l-cysteine-specific sensor and relocalized to the plasma membrane for further flux enhancement to l-cysteine and toxicity reduction on a spatial scale. Finally, the integrated spatiotemporal regulation circuit for l-cysteine biosynthesis enabled a 14.16 g/L l-cysteine yield in Escherichia coli. Furthermore, this spatiotemporal regulation circuit was also applied in our previously constructed engineered strain for pantothenic acid, methionine, homoserine, and 2-aminobutyric acid production, and the titer increased by 29, 33, 28, and 41%, respectively. These results highlighted the applicability of our spatiotemporal regulation circuit to enhance the performance of microbial cell factories.
Collapse
Affiliation(s)
- Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zidan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiayuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shirong Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lifeng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum- sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
|
10
|
Combing with redox regulation via quorum-sensing system and fermentation strategies for improving D-pantothenic acid production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Fernández-Cabezón L, Rosich I Bosch B, Kozaeva E, Gurdo N, Nikel PI. Dynamic flux regulation for high-titer anthranilate production by plasmid-free, conditionally-auxotrophic strains of Pseudomonas putida. Metab Eng 2022; 73:11-25. [PMID: 35659519 DOI: 10.1016/j.ymben.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Anthranilate, an intermediate of the shikimate pathway, is a high-value aromatic compound widely used as a precursor in the production of dyes, fragrances, plastics and pharmaceuticals. Traditional strategies adopted for microbial anthranilate production rely on the implementation of auxotrophic strains-which requires aromatic amino acids or complex additives to be supplemented in the culture medium, negatively impacting production costs. In this work, we engineered the soil bacterium Pseudomonas putida for high-titer, glucose-dependent anthranilate production by repurposing elements of the Esa quorum sensing (QS) system of Pantoea stewartii. The PesaS promoter mediated a self-regulated transcriptional response that effectively knocked-down the expression of the trpDC genes. Next, we harnessed the synthetic QS elements to engineer a growth-to-anthranilate production switch. The resulting plasmid-free P. putida strain produced the target compound at 3.8 ± 0.3 mM in shaken-flask cultures after 72 h-a titer >2-fold higher than anthranilate levels reported thus far. Our results highlight the value of dynamic flux regulation for the production of intermediate metabolites within highly-regulated routes (such as the shikimate pathway), thereby circumventing the need of expensive additives.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Berta Rosich I Bosch
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
13
|
Li S, Wu S, Ren Y, Meng Q, Yin J, Yu Z. Characterization of differentiated autoregulation of LuxI/LuxR-type quorum sensing system in Pseudoalteromonas. Biochem Biophys Res Commun 2022; 590:177-183. [PMID: 34990892 DOI: 10.1016/j.bbrc.2021.12.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
Abstract
Gram-negative bacteria usually use acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR-type quorum sensing (QS) systems for cell-cell cooperation and/or bacteria-environment communication. LuxI and LuxR are AHLs synthase and receptor, respectively. These two parts could form a positive regulatory feedback loop, controlling various types of group behaviors. However, the autoregulation mechanisms between them are fragmented and could be highly differentiated in different bacteria. Here, we clarified the autoregulation mechanism between LuxI and LuxR in Pseudoalteromonas sp. R3. YasI (LuxI in strain R3) synthesizes two types of AHLs, C8-HSL and 3-OH-C8-HSL. It is worth noting that YasR (LuxR in strain R3) only responds to C8-HSL rather than 3-OH-C8-HSL. YasR-C8HSL can activate the yasI transcription by recognizing "lux box" at yasI upstream. Interestingly, YasR can directly promote the yasR expression with AHL-independent manner, but AHL absence caused by the yasI-deficiency led to the significant decrease in the yasR expression. Further study demonstrated that the yasI-deficiency can result in the decrease in the yasR mRNA stability. Notably, both yasI-deficiency and yasR-deficiency led to the significant decrease in the expression of hfq encoding RNA chaperone. Therefore, it was speculated that not only YasR itself can directly regulate the yasR transcription, but YasR-C8HSL complex indirectly affects the yasR mRNA stability by regulating Hfq.
Collapse
Affiliation(s)
- Shuangjia Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shijun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
14
|
Abstract
Metabolic engineering reprograms cells to synthesize value-added products. In doing so, endogenous genes are altered and heterologous genes can be introduced to achieve the necessary enzymatic reactions. Dynamic regulation of metabolic flux is a powerful control scheme to alleviate and overcome the competing cellular objectives that arise from the introduction of these production pathways. This review explores dynamic regulation strategies that have demonstrated significant production benefits by targeting the metabolic node corresponding to a specific challenge. We summarize the stimulus-responsive control circuits employed in these strategies that determine the criterion for actuating a dynamic response and then examine the points of control that couple the stimulus-responsive circuit to a shift in metabolic flux.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Christina V Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
15
|
Tominaga M, Nozaki K, Umeno D, Ishii J, Kondo A. Robust and flexible platform for directed evolution of yeast genetic switches. Nat Commun 2021; 12:1846. [PMID: 33758180 PMCID: PMC7988172 DOI: 10.1038/s41467-021-22134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
A wide repertoire of genetic switches has accelerated prokaryotic synthetic biology, while eukaryotic synthetic biology has lagged in the model organism Saccharomyces cerevisiae. Eukaryotic genetic switches are larger and more complex than prokaryotic ones, complicating the rational design and evolution of them. Here, we present a robust workflow for the creation and evolution of yeast genetic switches. The selector system was designed so that both ON- and OFF-state selection of genetic switches is completed solely by liquid handling, and it enabled parallel screen/selection of different motifs with different selection conditions. Because selection threshold of both ON- and OFF-state selection can be flexibly tuned, the desired selection conditions can be rapidly pinned down for individual directed evolution experiments without a prior knowledge either on the library population. The system's utility was demonstrated using 20 independent directed evolution experiments, yielding genetic switches with elevated inducer sensitivities, inverted switching behaviours, sensory functions, and improved signal-to-noise ratio (>100-fold induction). The resulting yeast genetic switches were readily integrated, in a plug-and-play manner, into an AND-gated carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Masahiro Tominaga
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kenta Nozaki
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Umeno
- grid.136304.30000 0004 0370 1101Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, Chiba, Japan
| | - Jun Ishii
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Kobe, Japan ,grid.7597.c0000000094465255Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
16
|
Wu Y, Wang CW, Wang D, Wei N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth Biol 2021; 10:333-344. [PMID: 33496568 DOI: 10.1021/acssynbio.0c00491] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water contamination by pathogenic bacteria is a major public health concern globally. Monitoring bacterial contamination in water is critically important to protect human health, but this remains a critical challenge. Engineered whole-cell biosensors created through synthetic biology hold great promise for rapid and cost-effective detection of waterborne pathogens. In this study, we created a novel whole-cell biosensor to detect water contamination by Pseudomonas aeruginosa and Burkholderia pseudomallei, which are two critical bacterial pathogens and are recognized as common causative agents for waterborne diseases. The biosensor detects the target bacterial pathogens by responding to the relevant quorum sensing signal molecules. Particularly, this study constructed and characterized the biosensor on the basis of the QscR quorum sensing signal system for the first time. We first designed and constructed a QscR on the basis of the sensing module in the E. coli host cell and integrated the QscR sensing module with a reporting module that expressed an enhanced green fluorescent protein (EGFP). The results demonstrated that the biosensor had high sensitivity in response to the quorum sensing signals of the target bacterial pathogens. We further engineered a biosensor that expressed a red pigment lycopene in the reporting module to produce a visible signal readout for the pathogen detection. Additionally, we investigated the feasibility of a paper-based assay by immobilizing the lycopene-based whole-cell biosensor on paper with the aim to build a prototype for developing portable detection devices. The biosensor would provide a simple and inexpensive alternative for timely and point-of-care detection of water contamination and protect human health.
Collapse
|
17
|
Inducible cell-to-cell signaling for tunable dynamics in microbial communities. Nat Commun 2020; 11:1193. [PMID: 32132536 PMCID: PMC7055273 DOI: 10.1038/s41467-020-15056-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022] Open
Abstract
The last decade has seen bacteria at the forefront of biotechnological innovation, with applications including biomolecular computing, living therapeutics, microbiome engineering and microbial factories. These emerging applications are all united by the need to precisely control complex microbial dynamics in spatially extended environments, requiring tools that can bridge the gap between intracellular and population-level coordination. To address this need, we engineer an inducible quorum sensing system which enables precise tunability of bacterial dynamics both at the population and community level. As a proof-of-principle, we demonstrate the advantages of this system when genetically equipped for cargo delivery. In addition, we exploit the absence of cross-talk with respect to the majority of well-characterized quorum sensing systems to demonstrate inducibility of multi-strain communities. More broadly, this work highlights the unexplored potential of remotely inducible quorum sensing systems which, coupled to any gene of interest, may facilitate the translation of circuit designs into applications.
Collapse
|
18
|
Gu F, Jiang W, Mu Y, Huang H, Su T, Luo Y, Liang Q, Qi Q. Quorum Sensing-Based Dual-Function Switch and Its Application in Solving Two Key Metabolic Engineering Problems. ACS Synth Biol 2020; 9:209-217. [PMID: 31944663 DOI: 10.1021/acssynbio.9b00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic engineering aims to achieve high yields of desired products. The most common strategies focus on optimization of metabolic flux distributions. The dynamic activation or inhibition of gene expression through quorum sensing (QS) has been applied to metabolic engineering. In this study, we designed and constructed a series of QS-based bifunctional dynamic switches (QS switches) capable of synchronizing the up-regulation and down-regulation of genes at different times and intervals. The bifunctional QS switches were based on the Esa QS system, because EsaR regulatory proteins can act as transcriptional activator and repressor. The QS switches' effectiveness and feasibility were verified through fluorescence characterization. Finally, the QS switches were applied to the production of 5-aminolevulinic acid (ALA) and poly-β-hydroxybutyrate (PHB) to solve two key metabolic engineering problems: necessary gene knockout and redirection of metabolic flux. The production of PHB and ALA was increased 6- and 12-fold in Escherichia coli, respectively.
Collapse
Affiliation(s)
- Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yunlan Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hao Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yue Luo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
19
|
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 2019; 46:1343-1358. [PMID: 31278525 DOI: 10.1007/s10295-019-02211-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Functional differentiation and metabolite exchange enable microbial consortia to perform complex metabolic tasks and efficiently cycle the nutrients. Inspired by the cooperative relationships in environmental microbial consortia, synthetic microbial consortia have great promise for studying the microbial interactions in nature and more importantly for various engineering applications. However, challenges coexist with promises, and the potential of consortium-based technologies is far from being fully harnessed. Thorough understanding of the underlying molecular mechanisms of microbial interactions is greatly needed for the rational design and optimization of defined consortia. These knowledge gaps could be potentially filled with the assistance of the ongoing revolution in systems biology and synthetic biology tools. As current fundamental and technical obstacles down the road being removed, we would expect new avenues with synthetic microbial consortia playing important roles in biological and environmental engineering processes such as bioproduction of desired chemicals and fuels, as well as biodegradation of persistent contaminants.
Collapse
|
20
|
Shen YP, Fong LS, Yan ZB, Liu JZ. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:94. [PMID: 31044007 PMCID: PMC6477704 DOI: 10.1186/s13068-019-1438-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/13/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND 4-Hydroxyphenylacetic acid (4HPAA) is an important building block for synthesizing drugs, agrochemicals, biochemicals, etc. 4HPAA is currently produced exclusively via petrochemical processes and the process is environmentally unfriendly and unsustainable. Microbial cell factory would be an attractive approach for 4HPAA production. RESULTS In the present study, we established a microbial biosynthetic system for the de novo production of 4HPAA from glucose in Escherichia coli. First, we compared different biosynthetic pathways for the production of 4HPAA. The yeast Ehrlich pathway produced the highest level of 4HPAA among these pathways that were evaluated. To increase the pathway efficiency, the yeast Ehrlich pathway enzymes were directedly evolved via error-prone PCR. Two phenylpyruvate decarboxylase ARO10 and phenylacetaldehyde dehydrogenase FeaB variants that outperformed the wild-type enzymes were obtained. These mutations increased the in vitro and in vivo catalytic efficiency for converting 4-hydroxyphenylpyruvate to 4HPAA. A tunable intergenic region (TIGR) sequence was inserted into the two evolved genes to balance their expression. Regulation of TIGR for the evolved pathway enzymes further improved the production of 4HPAA, resulting in a 1.13-fold increase in titer compared with the fusion wild-type pathway. To prevent the toxicity of a heterologous pathway to the cell, an Esa quorum-sensing (QS) circuit with both activating and repressing functions was developed for inducer-free productions of metabolites. The Esa-PesaR activation QS system was used to dynamically control the biosynthetic pathway of 4HPAA in E. coli, which achieved 17.39 ± 0.26 g/L with a molar yield of 23.2% without addition of external inducers, resulting in a 46.4% improvement of the titer compared to the statically controlled pathway. CONCLUSION We have constructed an E. coli for 4HPAA production with the highest titer to date. This study also demonstrates that the combination of directed evolution of pathway enzymes and dynamic pathway regulation using a QS circuit is a powerful strategy of metabolic engineering for the productions of metabolites.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Lai San Fong
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Zhi-Bo Yan
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
21
|
Ding Y, Contreras-Llano LE, Morris E, Mao M, Tan C. Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30137-30146. [PMID: 30113814 DOI: 10.1021/acsami.8b10029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The functioning of synthetic gene circuits depends on their local chemical context defined by the types and concentrations of biomolecules in the surrounding milieu that influences gene transcription and translation. This chemical-context dependence of synthetic gene circuits arises from significant yet unknown cross talk between engineered components, host cells, and environmental factors and has been a persistent challenge for synthetic biology. Here, we show that the sensitivity of synthetic gene networks to their extracellular chemical contexts can be minimized, and their designed functions rendered robust using artificial cells, which are synthetic biomolecular compartments engineered from the bottom-up using liposomes that encapsulate the gene networks. Our artificial cells detect, interact with, and kill bacteria in simulated external environments with different chemical complexity. Our work enables the engineering of synthetic gene networks with minimal dependency on their extracellular chemical context and creates a new frontier in controlling robustness of synthetic biological systems using bioinspired mechanisms.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Luis E Contreras-Llano
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Eliza Morris
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Michelle Mao
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Cheemeng Tan
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| |
Collapse
|
22
|
Daer R, Barrett CM, Melendez EL, Wu J, Tekel SJ, Xu J, Dennison B, Muller R, Haynes KA. Characterization of diverse homoserine lactone synthases in Escherichia coli. PLoS One 2018; 13:e0202294. [PMID: 30138364 PMCID: PMC6107141 DOI: 10.1371/journal.pone.0202294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing networks have been identified in over one hundred bacterial species to date. A subset of these networks regulate group behaviors, such as bioluminescence, virulence, and biofilm formation, by sending and receiving small molecules called homoserine lactones (HSLs). Bioengineers have incorporated quorum sensing pathways into genetic circuits to connect logical operations. However, the development of higher-order genetic circuitry is inhibited by crosstalk, in which one quorum sensing network responds to HSLs produced by a different network. Here, we report the construction and characterization of a library of ten synthases including some that are expected to produce HSLs that are incompatible with the Lux pathway, and therefore show no crosstalk. We demonstrated their function in a common lab chassis, Escherichia coli BL21, and in two contexts, liquid and solid agar cultures, using decoupled Sender and Receiver pathways. We observed weak or strong stimulation of a Lux receiver by longer-chain or shorter-chain HSL-generating Senders, respectively. We also considered the under-investigated risk of unintentional release of incompletely deactivated HSLs in biological waste. We found that HSL-enriched media treated with bleach were still bioactive, while autoclaving deactivates LuxR induction. This work represents the most extensive comparison of quorum signaling synthases to date and greatly expands the bacterial signaling toolkit while recommending practices for disposal based on empirical, quantitative evidence.
Collapse
Affiliation(s)
- René Daer
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States of America
| | - Cassandra M. Barrett
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States of America
| | - Ernesto Luna Melendez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Jiaqi Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Stefan J. Tekel
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States of America
| | - Jimmy Xu
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States of America
| | - Brady Dennison
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ryan Muller
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, United States of America
| | - Karmella A. Haynes
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States of America
| |
Collapse
|
23
|
Affiliation(s)
- Paul D. Riggs
- New England Biolabs, Inc., Research; Ipswich Massachusetts
| |
Collapse
|
24
|
Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun 2018; 9:2677. [PMID: 29992956 PMCID: PMC6041260 DOI: 10.1038/s41467-018-05046-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Advancing synthetic biology to the multicellular level requires the development of multiple cell-to-cell communication channels that propagate information with minimal signal interference. The development of quorum-sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on cognate acyl-homoserine lactone (AHL)/transcription factor pairs, while the use of non-cognate pairs as a design feature has received limited attention. Here, we demonstrate a large library of AHL-receiver devices, with all cognate and non-cognate chemical signal interactions quantified, and we develop a software tool that automatically selects orthogonal communication channels. We use this approach to identify up to four orthogonal channels in silico, and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels is an enabling step that facilitates the design of synthetic consortia for applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation and spatial organisation. The engineering of synthetic microbial communities necessitates the use of synthetic, orthogonal cell-to-cell communication channels. Here the authors present a library of characterised AHL-receiver devices and a software tool for the automatic identification of non-interfering chemical communication channels.
Collapse
|
25
|
Abstract
The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.
Collapse
Affiliation(s)
- David L Shis
- Department of Biosciences, Rice University, Houston, Texas 77005, USA;
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, USA; .,Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Oleg A Igoshin
- Department of Biosciences, Rice University, Houston, Texas 77005, USA; .,Department of Bioengineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
26
|
Duong DA, Stevens AM. Integrated downstream regulation by the quorum-sensing controlled transcription factors LrhA and RcsA impacts phenotypic outputs associated with virulence in the phytopathogen Pantoea stewartii subsp. stewartii. PeerJ 2017; 5:e4145. [PMID: 29230372 PMCID: PMC5723134 DOI: 10.7717/peerj.4145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Pantoea stewartii subsp. stewartii is a Gram-negative proteobacterium that causes leaf blight and Stewart’s wilt disease in corn. Quorum sensing (QS) controls bacterial exopolysaccharide production that blocks water transport in the plant xylem at high bacterial densities during the later stage of the infection, resulting in wilt. At low cell density the key master QS regulator in P. stewartii, EsaR, directly represses rcsA, encoding an activator of capsule biosynthesis genes, but activates lrhA, encoding a transcription factor that regulates surface motility. Both RcsA and LrhA have been shown to play a role in plant virulence. In this study, additional information about the downstream targets of LrhA and its interaction with RcsA was determined. A transcriptional fusion assay revealed autorepression of LrhA in P. stewartii and electrophoretic mobility shift assays (EMSA) using purified LrhA confirmed that LrhA binds to its own promoter. In addition, LrhA binds to the promoter for the RcsA gene, as well as those for putative fimbrial subunits and biosurfactant production enzymes in P. stewartii, but not to the flhDC promoter, which is the main direct target of LrhA in Escherichia coli. This work led to a reexamination of the physiological function of RcsA in P. stewartii and the discovery that it also plays a role in surface motility. These findings are broadening our understanding of the coordinated regulatory cascades utilized in the phytopathogen P. stewartii.
Collapse
Affiliation(s)
- Duy An Duong
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ann M Stevens
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
27
|
Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient. Sci Rep 2017; 7:8959. [PMID: 28827562 PMCID: PMC5566481 DOI: 10.1038/s41598-017-08870-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signal-dependent switching of motility, either on or off, led to population-level directional movement of cells up or down a signal gradient. We developed a mathematical model that captures the behaviour of the cells, enables identification of key parameters controlling system behaviour, and facilitates predictive-design of motility-based pattern formation. We demonstrated that motility of the receiver strains could be controlled by a sender strain generating a signal gradient. The modular quorum sensing-dependent architecture for interfacing different senders with receivers enabled a broad range of systems-level behaviours. The directional control of motility, especially combined with the potential to incorporate tuneable sensors and more complex sensing-logic, may lead to tools for novel biosensing and targeted-delivery applications.
Collapse
|
28
|
Chizzolini F, Forlin M, Yeh Martín N, Berloffa G, Cecchi D, Mansy SS. Cell-Free Translation Is More Variable than Transcription. ACS Synth Biol 2017; 6:638-647. [PMID: 28100049 DOI: 10.1021/acssynbio.6b00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.
Collapse
Affiliation(s)
- Fabio Chizzolini
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Michele Forlin
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Noël Yeh Martín
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Giuliano Berloffa
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Dario Cecchi
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Sheref S Mansy
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| |
Collapse
|
29
|
Gupta A, Reizman IMB, Reisch CR, Prather KLJ. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 2017; 35:273-279. [PMID: 28191902 PMCID: PMC5340623 DOI: 10.1038/nbt.3796] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/13/2017] [Indexed: 01/20/2023]
Abstract
Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We applied our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in 5.5-fold increased titres of myo-inositol and titers of glucaric acid that improved from unmeasurable quantities to >0.8 g/L. Scaled-up production in benchtop bioreactors resulted in almost 10-fold and 5-fold increases in titers of myo-inositol and glucaric acid. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable quantities to >100 mg/L.
Collapse
Affiliation(s)
- Apoorv Gupta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Irene M Brockman Reizman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher R Reisch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Kernell Burke A, Duong DA, Jensen RV, Stevens AM. Analyzing the Transcriptomes of Two Quorum-Sensing Controlled Transcription Factors, RcsA and LrhA, Important for Pantoea stewartii Virulence. PLoS One 2015; 10:e0145358. [PMID: 26699719 PMCID: PMC4689408 DOI: 10.1371/journal.pone.0145358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative proteobacterium Pantoea stewartii subsp. stewartii causes wilt disease in corn plants. Wilting is primarily due to bacterial exopolysaccharide (EPS) production that blocks water transport in the xylem during the late stages of infection. EsaR, the master quorum-sensing (QS) regulator in P. stewartii, modulates EPS levels. At low cell densities EsaR represses or activates expression of a number of genes in the absence of its acyl homoserine lactone (AHL) ligand. At high cell densities, binding of AHL inactivates EsaR leading to derepression or deactivation of its direct targets. Two of these direct targets are the key transcription regulators RcsA and LrhA, which in turn control EPS production and surface motility/adhesion, respectively. In this study, RNA-Seq was used to further examine the physiological impact of deleting the genes encoding these two second-tier regulators. Quantitative reverse transcription PCR (qRT-PCR) was used to validate the regulation observed in the RNA-Seq data. A GFP transcriptional fusion reporter confirmed the existence of a regulatory feedback loop in the system between LrhA and RcsA. Plant virulence assays carried out with rcsA and lrhA deletion and complementation strains demonstrated that both transcription factors play roles during establishment of wilt disease in corn. These efforts further define the hierarchy of the QS-regulated network controlling plant virulence in P. stewartii.
Collapse
Affiliation(s)
- Alison Kernell Burke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Duy An Duong
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gerdt JP, McInnis CE, Schell TL, Blackwell HE. Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Org Biomol Chem 2015; 13:1453-62. [PMID: 25474181 DOI: 10.1039/c4ob02252a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) via the synthesis and detection of N-acyl L-homoserine lactone (AHL) signals regulates important pathogenic and mutualistic phenotypes in many bacteria. Over the past two decades, the development of non-native molecules that modulate this cell-cell signaling process has become an active area of research. The majority of these compounds were designed to block binding of the native AHL signal to its cognate LuxR-type receptor, and much effort has focused on LasR in the opportunistic pathogen Pseudomonas aeruginosa. Despite a small set of reported LasR structural data, it remains unclear which polar interactions are most important for either (i) activation of the LasR receptor by its native AHL signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL), or (ii) activation or inhibition of LasR by related AHL analogs. Herein, we report our investigations into the activity of OdDHL and five synthetic analogs in wild-type LasR and in nine LasR mutants with modifications to key polar residues in their ligand binding sites. Our results allowed us to rank, for the first time, the relative importance of each LasR:OdDHL hydrogen bond for LasR activation and provide strong evidence for the five synthetic ligands binding LasR in a very similar orientation as OdDHL. By delineating the specific molecular interactions that are important for LasR modulation by AHLs, these findings should aid in the design of new synthetic modulators of LasR (and homologous LuxR-type receptors) with improved potencies and selectivities.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | | | |
Collapse
|
32
|
Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 2015; 30:7-15. [DOI: 10.1016/j.ymben.2015.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
|
33
|
Brockman IM, Prather KLJ. Dynamic metabolic engineering: New strategies for developing responsive cell factories. Biotechnol J 2015; 10:1360-9. [PMID: 25868062 DOI: 10.1002/biot.201400422] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/02/2015] [Accepted: 03/15/2015] [Indexed: 12/22/2022]
Abstract
Metabolic engineering strategies have enabled improvements in yield and titer for a variety of valuable small molecules produced naturally in microorganisms, as well as those produced via heterologous pathways. Typically, the approaches have been focused on up- and downregulation of genes to redistribute steady-state pathway fluxes, but more recently a number of groups have developed strategies for dynamic regulation, which allows rebalancing of fluxes according to changing conditions in the cell or the fermentation medium. This review highlights some of the recently published work related to dynamic metabolic engineering strategies and explores how advances in high-throughput screening and synthetic biology can support development of new dynamic systems. Dynamic gene expression profiles allow trade-offs between growth and production to be better managed and can help avoid build-up of undesired intermediates. The implementation is more complex relative to static control, but advances in screening techniques and DNA synthesis will continue to drive innovation in this field.
Collapse
Affiliation(s)
- Irene M Brockman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
Davis RM, Muller RY, Haynes KA. Can the natural diversity of quorum-sensing advance synthetic biology? Front Bioeng Biotechnol 2015; 3:30. [PMID: 25806368 PMCID: PMC4354409 DOI: 10.3389/fbioe.2015.00030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/21/2015] [Indexed: 12/12/2022] Open
Abstract
Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.
Collapse
Affiliation(s)
- René Michele Davis
- Ira A. Fulton School of Biological and Health Systems Engineering, Arizona State University , Tempe, AZ , USA ; Biological Design Graduate Program, Arizona State University , Tempe, AZ , USA
| | - Ryan Yue Muller
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, AZ , USA ; School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Karmella Ann Haynes
- Ira A. Fulton School of Biological and Health Systems Engineering, Arizona State University , Tempe, AZ , USA
| |
Collapse
|
35
|
Brameyer S, Kresovic D, Bode HB, Heermann R. LuxR solos in Photorhabdus species. Front Cell Infect Microbiol 2014; 4:166. [PMID: 25478328 PMCID: PMC4235431 DOI: 10.3389/fcimb.2014.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/24/2014] [Indexed: 01/18/2023] Open
Abstract
Bacteria communicate via small diffusible molecules to mediate group-coordinated behavior, a process designated as quorum sensing. The basic molecular quorum sensing system of Gram-negative bacteria consists of a LuxI-type autoinducer synthase producing acyl-homoserine lactones (AHLs) as signaling molecules, and a LuxR-type receptor detecting the AHLs to control expression of specific genes. However, many proteobacteria possess one or more unpaired LuxR-type receptors that lack a cognate LuxI-like synthase, referred to as LuxR solos. The enteric and insect pathogenic bacteria of the genus Photorhabdus harbor an extraordinarily high number of LuxR solos, more than any other known bacteria, and all lack a LuxI-like synthase. Here, we focus on the presence and the different types of LuxR solos in the three known Photorhabdus species using bioinformatics analyses. Generally, the N-terminal signal-binding domain (SBD) of LuxR-type receptors sensing AHLs have a motif of six conserved amino acids that is important for binding and specificity of the signaling molecule. However, this motif is altered in the majority of the Photorhabdus-specific LuxR solos, suggesting the use of other signaling molecules than AHLs. Furthermore, all Photorhabdus species contain at least one LuxR solo with an intact AHL-binding motif, which might allow the ability to sense AHLs of other bacteria. Moreover, all three species have high AHL-degrading activity caused by the presence of different AHL-lactonases and AHL-acylases, revealing a high quorum quenching activity against other bacteria. However, the majority of the other LuxR solos in Photorhabdus have a N-terminal so-called PAS4-domain instead of an AHL-binding domain, containing different amino acid motifs than the AHL-sensors, which potentially allows the recognition of a highly variable range of signaling molecules that can be sensed apart from AHLs. These PAS4-LuxR solos are proposed to be involved in host sensing, and therefore in inter-kingdom signaling. Overall, Photorhabdus species are perfect model organisms to study bacterial communication via LuxR solos and their role for a symbiotic and pathogenic life style.
Collapse
Affiliation(s)
- Sophie Brameyer
- Bereich Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München München, Germany
| | - Darko Kresovic
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt Frankfurt am Main, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt Frankfurt am Main, Germany
| | - Ralf Heermann
- Bereich Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München München, Germany
| |
Collapse
|
36
|
Acyl-homoserine lactone recognition and response hindering the quorum-sensing regulator EsaR. PLoS One 2014; 9:e107687. [PMID: 25238602 PMCID: PMC4169570 DOI: 10.1371/journal.pone.0107687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain.
Collapse
|
37
|
Adams BL, Carter KK, Guo M, Wu HC, Tsao CY, Sintim HO, Valdes JJ, Bentley WE. Evolved Quorum sensing regulator, LsrR, for altered switching functions. ACS Synth Biol 2014; 3:210-9. [PMID: 24111753 DOI: 10.1021/sb400068z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to carry out innovative complex, multistep synthetic biology functions, members of a cell population often must communicate with one another to coordinate processes in a programmed manner. It therefore follows that native microbial communication systems are a conspicuous target for developing engineered populations and networks. Quorum sensing (QS) is a highly conserved mechanism of bacterial cell-cell communication and QS-based synthetic signal transduction pathways represent a new generation of biotechnology toolbox members. Specifically, the E. coli QS master regulator, LsrR, is uniquely positioned to actuate gene expression in response to a QS signal. In order to expand the use of LsrR in synthetic biology, two novel LsrR switches were generated through directed evolution: an "enhanced" repression and derepression eLsrR and a reversed repression/derepression function "activator" aLsrR. Protein modeling and docking studies are presented to gain insight into the QS signal binding to these two evolved proteins and their newly acquired functionality. We demonstrated the use of the aLsrR switch using a coculture system in which a QS signal, produced by one bacterial strain, is used to inhibit gene expression via aLsrR in a different strain. These first ever AI-2 controlled synthetic switches allow gene expression from the lsr promoter to be tuned simultaneously in two distinct cell populations. This work expands the tools available to create engineered microbial populations capable of carrying out complex functions necessary for the development of advanced synthetic products.
Collapse
Affiliation(s)
- Bryn L. Adams
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | | | | | | | | | | - James J. Valdes
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | |
Collapse
|
38
|
Shong J, Collins CH. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals. ACS Synth Biol 2014; 3:238-46. [PMID: 24175658 DOI: 10.1021/sb4000965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have constructed and characterized two synthetic AND-gate promoters that require both a quorum-sensing (QS) signal and an exogenously added inducer to turn on gene expression. The engineered promoters, LEE and TTE, contain binding sites for the QS-dependent repressor, EsaR, and either LacI or TetR, and they are induced by an acyl-homoserine lactone (AHL) signal and IPTG or aTc. Although repression of both LEE and TTE by wild-type EsaR was observed, induction of gene expression at physiologically relevant concentrations of AHL required the use of an EsaR variant with higher signal sensitivity. Gene expression from both LEE and TTE was shown to require both signal molecules, and gene expression above background levels was not observed with either signal alone. We added endogenous production of AHL to evaluate the ability of the promoters to function in a QS-dependent manner and observed that gene expression increased as a function of cell density only in the presence of exogenously added IPTG or aTc. Cell-cell communication-dependent AND-gate behaviors were demonstrated using an agar plate assay, where cells containing the engineered promoters were shown to respond to AHL produced by a second E. coli strain only in the presence of exogenously added IPTG or aTc. The promoters described in this work demonstrate that EsaR and its target DNA sequence can be used to engineer new promoters to respond to cell density or cell-cell communication. Further, the AND-gate promoters described here may serve as a template for new regulatory systems that integrate QS and the presence of key metabolites or other environmental cues to enable dynamic changes in gene expression for metabolic engineering applications.
Collapse
Affiliation(s)
- Jasmine Shong
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
| | - Cynthia H. Collins
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy New
York 12180 United States of America
| |
Collapse
|
39
|
Shong J, Collins CH. Engineering the esaR promoter for tunable quorum sensing- dependent gene expression. ACS Synth Biol 2013; 2:568-75. [PMID: 23879176 DOI: 10.1021/sb4000433] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quorum sensing (QS) systems enable bacteria to coordinate their behavior as a function of local population density and are often used in synthetic systems that require cell−cell communication. We have engineered the esaR promoter, P(esaR), which is repressed by the QS regulator E(saR). E(saR)-dependent gene expression from P(esaR) is induced by 3-oxo-hexanoyl-homoserine lactone (3OC6HSL). Here, we report a set of modified P(esaR) promoters that contain a second E(saR) binding site. We observed changes in gene expression levels, regulatory range, 3OC6HSL sensitivity, and the regulatory role of E(saR) that are dependent on the position of the second binding site. Combining the new promoters with endogenous 3OC6HSL production led to QS-dependent systems that exhibit a range of expression levels and timing. These promoters represent a new set of tools for modulating QS-dependent gene expression and may be used to tune the regulation of multiple genes in response to a single QS signal.
Collapse
Affiliation(s)
- Jasmine Shong
- Department of Chemical and Biological
Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Cynthia H. Collins
- Department of Chemical and Biological
Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Biology, Rensselaer Polytechnic Institute, 110 Eighth Street,
Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|