1
|
Bopp C, Bernet NM, Meyer F, Khan R, Robinson SL, Kohler HPE, Buller R, Hofstetter TB. Elucidating the Role of O 2 Uncoupling for the Adaptation of Bacterial Biodegradation Reactions Catalyzed by Rieske Oxygenases. ACS ENVIRONMENTAL AU 2024; 4:204-218. [PMID: 39035869 PMCID: PMC11258757 DOI: 10.1021/acsenvironau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/23/2024]
Abstract
Oxygenation of aromatic and aliphatic hydrocarbons by Rieske oxygenases is the initial step of various biodegradation pathways for environmental organic contaminants. Microorganisms carrying Rieske oxygenases are able to quickly adapt their substrate spectra to alternative carbon and energy sources that are structurally related to the original target substrate, yet the molecular events responsible for this rapid adaptation are not well understood. Here, we evaluated the hypothesis that reactive oxygen species (ROS) generated by unproductive activation of O2, the so-called O2 uncoupling, in the presence of the alternative substrate exert a selective pressure on the bacterium for increasing the oxygenation efficiency of Rieske oxygenases. To that end, we studied wild-type 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 and five enzyme variants that have evolved from adaptive laboratory evolution experiments with 3- and 4-nitrotoluene as alternative growth substrates. The enzyme variants showed a substantially increased oxygenation efficiency toward the new target substrates concomitant with a reduction of ROS production, while mechanisms and kinetics of enzymatic O2 activation remained unchanged. Structural analyses and docking studies suggest that amino acid substitutions in enzyme variants occurred at residues lining both substrate and O2 transport tunnels, enabling tighter binding of the target substrates in the active site. Increased oxygenation efficiencies measured in vitro for the various enzyme (variant)-substrate combinations correlated linearly with in vivo changes in growth rates for evolved Acidovorax strains expressing the variants. Our data suggest that the selective pressure from oxidative stress toward more efficient oxygenation by Rieske oxygenases was most notable when O2 uncoupling exceeded 60%.
Collapse
Affiliation(s)
- Charlotte
E. Bopp
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Fabian Meyer
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Riyaz Khan
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Serina L. Robinson
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rebecca Buller
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Thomas B. Hofstetter
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Bopp CE, Bernet NM, Kohler HPE, Hofstetter TB. Elucidating the Role of O 2 Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases. ACS ENVIRONMENTAL AU 2022; 2:428-440. [PMID: 36164353 PMCID: PMC9502038 DOI: 10.1021/acsenvironau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxygenations of aromatic
soil and water contaminants with molecular
O2 catalyzed by Rieske dioxygenases are frequent initial
steps of biodegradation in natural and engineered environments. Many
of these non-heme ferrous iron enzymes are known to be involved in
contaminant metabolism, but the understanding of enzyme–substrate
interactions that lead to successful biodegradation is still elusive.
Here, we studied the mechanisms of O2 activation and substrate
hydroxylation of two nitroarene dioxygenases to evaluate enzyme- and
substrate-specific factors that determine the efficiency of oxygenated
product formation. Experiments in enzyme assays of 2-nitrotoluene
dioxygenase (2NTDO) and nitrobenzene dioxygenase (NBDO) with methyl-,
fluoro-, chloro-, and hydroxy-substituted nitroaromatic substrates
reveal that typically 20–100% of the enzyme’s activity
involves unproductive paths of O2 activation with generation
of reactive oxygen species through so-called O2 uncoupling.
The 18O and 13C kinetic isotope effects of O2 activation and nitroaromatic substrate hydroxylation, respectively,
suggest that O2 uncoupling occurs after generation of FeIII-(hydro)peroxo species in the catalytic cycle. While 2NTDO
hydroxylates ortho-substituted nitroaromatic substrates
more efficiently, NBDO favors meta-substituted, presumably
due to distinct active site residues of the two enzymes. Our data
implies, however, that the O2 uncoupling and hydroxylation
activity cannot be assessed from simple structure–reactivity
relationships. By quantifying O2 uncoupling by Rieske dioxygenases,
our work provides a mechanistic link between contaminant biodegradation,
the generation of reactive oxygen species, and possible adaptation
strategies of microorganisms to the exposure of new contaminants.
Collapse
Affiliation(s)
- Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Kong L, Deng Z, You D. Chemistry and biosynthesis of bacterial polycyclic xanthone natural products. Nat Prod Rep 2022; 39:2057-2095. [PMID: 36083257 DOI: 10.1039/d2np00046f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Covering: up to the end of 2021Bacterial polycyclic xanthone natural products (BPXNPs) are a growing family of natural xanthones featuring a pentangular architecture with various modifications to the tricyclic xanthone chromophore. Their structural diversities and various activities have fueled biosynthetic and chemical synthetic studies. Moreover, their more potent activities than the clinically used drugs make them potential candidates for the treatment of diseases. Future unraveling of structure activity relationships (SARs) will provide new options for the (bio)-synthesis of drug analogues with higher activities. This review summarizes the isolation, structural elucidation and biological activities and more importantly, the recent strategies for the microbial biosynthesis and chemical synthesis of BPXNPs. Regarding their biosynthesis, we discuss the recent progress in enzymes that synthesize tricyclic xanthone, the protein candidates for structural moieties (methylene dioxygen bridge and nitrogen heterocycle), tailoring enzymes for methylation and halogenation. The chemical synthesis part summarizes the recent methodology for the division synthesis and coupling construction of achiral molecular skeletons. Ultimately, perspectives on the biosynthetic study of BPXNPs are discussed.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
A Novel Gene Cluster Is Involved in the Degradation of Lignin-Derived Monoaromatics in Thermus oshimai JL-2. Appl Environ Microbiol 2021; 87:AEM.01589-20. [PMID: 33741620 DOI: 10.1128/aem.01589-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.
Collapse
|
6
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
7
|
Hu D, Gao YH, Yao XS, Gao H. Recent advances in dissecting the demethylation reactions in natural product biosynthesis. Curr Opin Chem Biol 2020; 59:47-53. [PMID: 32460136 DOI: 10.1016/j.cbpa.2020.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Demethylation is a chemical process widely distributed in nature to remove a methyl group from an organic molecule, which is a key aspect of diverse biological processes including biosynthesis of natural products, degradation of plant biomass and epigenetic regulation. This process is facilitated by diverse demethylases via distinct mechanisms. Recent studies have disclosed some novel demethylation reactions as well as their underlying demethylases in the biosynthesis of bacterial sterols, fungal terpenoids, and plant alkaloids. This article focuses on current advances in dissecting the demethylation reactions in biosynthesis of natural products and aims to point out the enzymatic mechanisms, which will further enhance our knowledge and understanding of demethylation process in nature.
Collapse
Affiliation(s)
- Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Yao-Hui Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
8
|
Rogers MS, Lipscomb JD. Salicylate 5-Hydroxylase: Intermediates in Aromatic Hydroxylation by a Rieske Monooxygenase. Biochemistry 2019; 58:5305-5319. [PMID: 31066545 PMCID: PMC6856394 DOI: 10.1021/acs.biochem.9b00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rieske oxygenases (ROs) catalyze a large range of oxidative chemistry. We have shown that cis-dihydrodiol-forming Rieske dioxygenases first react with their aromatic substrates via an active site nonheme Fe(III)-superoxide; electron transfer from the Rieske cluster then completes the product-forming reaction. Alternatively, two-electron-reduced Fe(III)-peroxo or hydroxo-Fe(V)-oxo activated oxygen intermediates are possible and may be utilized by other ROs to expand the catalytic range. Here, the reaction of a Rieske monooxygenase, salicylate 5-hydroxylase, that does not form a cis-dihydrodiol is examined. Single-turnover kinetic studies show fast binding of salicylate and O2. Transfer of the Rieske electron required to form the gentisate product occurs through bonds over ∼12 Å and must also be very fast. However, the observed rate constant for this reaction is much slower than expected and sensitive to substrate type. This suggests that initial reaction with salicylate occurs using the same Fe(III)-superoxo-level intermediate as Rieske dioxygenases and that this reaction limits the observed rate of electron transfer. A transient intermediate (λmax = 700 nm) with an electron paramagnetic resonance (EPR) at g = 4.3 is observed after the product is formed in the active site. The use of 17O2 (I = 5/2) results in hyperfine broadening of the g = 4.3 signal, showing that gentisate binds to the mononuclear iron via its C5-OH in the intermediate. The chromophore and EPR signal allow study of product release in the catalytic cycle. Comparison of the kinetics of single- and multiple-turnover reactions shows that re-reduction of the metal centers accelerates product release ∼300-fold, providing insight into the regulatory mechanism of ROs.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Lanfranchi E, Trajković M, Barta K, de Vries JG, Janssen DB. Exploring the Selective Demethylation of Aryl Methyl Ethers with a
Pseudomonas
Rieske Monooxygenase. Chembiochem 2018; 20:118-125. [DOI: 10.1002/cbic.201800594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisa Lanfranchi
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Present address: School of Food and Nutritional Science SciencesUniversity College Cork College Road Cork T12 YN60 Republic of Ireland
| | - Miloš Trajković
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Katalin Barta
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Johannes G. de Vries
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Dick B. Janssen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| |
Collapse
|
10
|
Kong L, Zhang W, Chooi YH, Wang L, Cao B, Deng Z, Chu Y, You D. A Multifunctional Monooxygenase XanO4 Catalyzes Xanthone Formation in Xantholipin Biosynthesis via a Cryptic Demethoxylation. Cell Chem Biol 2017; 23:508-16. [PMID: 27105283 DOI: 10.1016/j.chembiol.2016.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
Abstract
Xantholipin and several related polycyclic xanthone antibiotics feature a unique xanthone ring nucleus within a highly oxygenated, angular, fused hexacyclic system. In this study, we demonstrated that a flavin-dependent monooxygenase (FMO) XanO4 catalyzes the oxidative transformation of an anthraquinone to a xanthone system during the biosynthesis of xantholipin. In vitro isotopic labeling experiments showed that the reaction involves sequential insertion of two oxygen atoms, accompanied by an unexpected cryptic demethoxylation reaction. Moreover, characterizations of homologous FMOs of XanO4 suggested the generality of the XanO4-like-mediated reaction for the assembly of a xanthone ring in the biosynthesis of polycyclic xanthone antibiotics. These findings not only expand the repertoire of FMO activities but also reveal a novel mechanism for xanthone ring formation.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weike Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yit Heng Chooi
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009, Australia
| | - Lu Wang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Ferraro DJ, Okerlund A, Brown E, Ramaswamy S. One enzyme, many reactions: structural basis for the various reactions catalyzed by naphthalene 1,2-dioxygenase. IUCRJ 2017; 4:648-656. [PMID: 28989720 PMCID: PMC5619856 DOI: 10.1107/s2052252517008223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Rieske nonheme iron oxygenases (ROs) are a well studied class of enzymes. Naphthalene 1,2-dioxygenase (NDO) is used as a model to study ROs. Previous work has shown how side-on binding of oxygen to the mononuclear iron provides this enzyme with the ability to catalyze stereospecific and regiospecific cis-dihydroxylation reactions. It has been well documented that ROs catalyze a variety of other reactions, including mono-oxygenation, desaturation, O- and N-dealkylation, sulfoxidation etc. NDO itself catalyzes a variety of these reactions. Structures of NDO in complex with a number of different substrates show that the orientation of the substrate in the active site controls not only the regiospecificity and stereospecificity, but also the type of reaction catalyzed. It is proposed that the mononuclear iron-activated dioxygen attacks the atoms of the substrate that are most proximal to it. The promiscuity of delivering two products (apparently by two different reactions) from the same substrate can be explained by the possible binding of the substrate in slightly different orientations aided by the observed flexibility of residues in the binding pocket.
Collapse
Affiliation(s)
- Daniel J. Ferraro
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Adam Okerlund
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Brown
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - S. Ramaswamy
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- TAS, Institute for Stem Cell Biology and Regenerative Medicine, GKVK POST, Bangalore 560 065, India
| |
Collapse
|
12
|
Withall DM, Haynes SW, Challis GL. Stereochemistry and Mechanism of Undecylprodigiosin Oxidative Carbocyclization to Streptorubin B by the Rieske Oxygenase RedG. J Am Chem Soc 2015; 137:7889-97. [PMID: 26023709 DOI: 10.1021/jacs.5b03994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The prodiginines are a group of specialized metabolites that share a 4-methoxypyrrolyldipyrromethene core structure. Streptorubin B is a structurally remarkable member of the prodiginine group produced by Streptomyces coelicolor A3(2) and other actinobacteria. It is biosynthesized from undecylprodigiosin by an oxidative carbocyclization catalyzed by the Rieske oxygenase-like enzyme RedG. Undecylprodigiosin derives from the RedH-catalyzed condensation of 2-undecylpyrrole and 4-methoxy-2, 2'-bipyrrole-5-carboxaldehyde (MBC). To probe the mechanism of the RedG-catalyzed reaction, we synthesized 2-(5-pentoxypentyl)-pyrrole, an analogue of 2-undecylpyrrole with an oxygen atom next to the site of C-C bond formation, and fed it, along with synthetic MBC, to Streptomyces albus expressing redH and redG. This resulted in the production of the 6'-oxa analogue of undecylprodigiosin. In addition, a small amount of a derivative of this analogue lacking the n-pentyl group was produced, consistent with a RedG catalytic mechanism involving hydrogen abstraction from the alkyl chain of undecylprodigiosin prior to pyrrole functionalization. To investigate the stereochemistry of the RedG-catalyzed oxidative carbocyclization, [7'-(2)H](7'R)-2-undecylpyrrole and [7'-(2)H](7'S)-2-undecylpyrrole were synthesized and fed separately, along with MBC, to S. albus expressing redH and redG. Analysis of the extent of deuterium incorporation into the streptorubin B produced in these experiments showed that the pro-R hydrogen atom is abstracted from C-7' of undecylprodigiosin and that the reaction proceeds with inversion of configuration at C-7'. This contrasts sharply with oxidative heterocyclization reactions catalyzed by other nonheme iron-dependent oxygenase-like enzymes, such as isopenicillin N synthase and clavaminate synthase, which proceed with retention of configuration at the carbon center undergoing functionalization.
Collapse
Affiliation(s)
- David M Withall
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Stuart W Haynes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|