1
|
Blagg BS, Catalfano KC. The role of Aha1 in cancer and neurodegeneration. Front Mol Neurosci 2024; 17:1509280. [PMID: 39776493 PMCID: PMC11703849 DOI: 10.3389/fnmol.2024.1509280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity. In conditions where Aha1 levels are dysregulated including cystic fibrosis, cancer and neurodegeneration, Hsp90 mediated client maturation is disrupted. Accumulating evidence has demonstrated that many disease states exhibit large hetero-protein complexes with Hsp90 as the center. Many of these include Aha1, where increased Aha1 levels drive disease states forward. One strategy to block these effects is to design small molecule disruptors of the Hsp90/Aha1 complex. Studies have demonstrated that current Hsp90/Aha1 small molecule disruptors are effective in both models for cancer and neurodegeration.
Collapse
Affiliation(s)
- Brian S.J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
2
|
Reynolds TS, Blagg BSJ. Extracellular heat shock protein 90 alpha (eHsp90α)'s role in cancer progression and the development of therapeutic strategies. Eur J Med Chem 2024; 277:116736. [PMID: 39126794 PMCID: PMC11374465 DOI: 10.1016/j.ejmech.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.
Collapse
Affiliation(s)
- Tyelor S Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Poggio P, Rocca S, Fusella F, Ferretti R, Ala U, D'Anna F, Giugliano E, Panuzzo C, Fontana D, Palumbo V, Carrà G, Taverna D, Gambacorti-Passerini C, Saglio G, Fava C, Piazza R, Morotti A, Orso F, Brancaccio M. miR-15a targets the HSP90 co-chaperone Morgana in chronic myeloid leukemia. Sci Rep 2024; 14:15089. [PMID: 38956394 PMCID: PMC11220062 DOI: 10.1038/s41598-024-65404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Morgana is a ubiquitous HSP90 co-chaperone protein coded by the CHORDC1 gene. Morgana heterozygous mice develop with age a myeloid malignancy resembling human atypical myeloid leukemia (aCML), now renamed MDS/MPN with neutrophilia. Patients affected by this pathology exhibit low Morgana levels in the bone marrow (BM), suggesting that Morgana downregulation plays a causative role in the human malignancy. A decrease in Morgana expression levels is also evident in the BM of a subgroup of Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) patients showing resistance or an incomplete response to imatinib. Despite the relevance of these data, the mechanism through which Morgana expression is downregulated in patients' bone marrow remains unclear. In this study, we investigated the possibility that Morgana expression is regulated by miRNAs and we demonstrated that Morgana is under the control of four miRNAs (miR-15a/b and miR-26a/b) and that miR-15a may account for Morgana downregulation in CML patients.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Down-Regulation
- Gene Expression Regulation, Leukemic
- HSP90 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Chaperones/metabolism
- Molecular Chaperones/genetics
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberta Ferretti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Flora D'Anna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Giugliano
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valeria Palumbo
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Novara, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
5
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Keegan BM, Blagg BSJ. A Split Renilla Luciferase Complementation Assay for the Evaluation of Hsp90/Aha1 Complex Disruptors and Their Activity at the Aha1 C-Terminal Domain. ACS Chem Biol 2023; 18:184-192. [PMID: 36516069 DOI: 10.1021/acschembio.2c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disruption of interactions between Hsp90 and the cochaperone protein, Aha1, has emerged as a therapeutic strategy to inhibit Aha1-driven cancer metastasis and tau aggregation in models of tauopathy. A combination of split Renilla luciferase assays was developed to screen and quantify the ability of small molecules to disrupt interactions between Hsp90 and both full length Aha1 protein (Aha1-FL) and the Aha1 C-terminal domain (Aha1-CTD). This luminescence-based approach was used to identify withaferin A and gedunin as disruptors of Hsp90/Aha1 interactions and provided insight into the binding regions for gambogic acid and gedunin on the Hsp90 homodimer. All compounds tested that disrupted Hsp90/Aha1-CTD interactions were found to disrupt interactions between Hsp90 and Aha1-FL, suggesting that interactions between Hsp90 and the Aha1-CTD play a key role in the stability of Hsp90/Aha1 complexes.
Collapse
Affiliation(s)
- Bradley M Keegan
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Amatya E, Blagg BSJ. Recent advances toward the development of Hsp90 C-terminal inhibitors. Bioorg Med Chem Lett 2023; 80:129111. [PMID: 36549397 PMCID: PMC9869726 DOI: 10.1016/j.bmcl.2022.129111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (Hsp90) is a dynamic protein which serves to ensure proper folding of nascent client proteins, regulate transcriptional responses to environmental stress and guide misfolded and damaged proteins to destruction via ubiquitin proteasome pathway. Recent advances in the field of Hsp90 have been made through development of isoform selective inhibitors, Hsp90 C-terminal inhibitors and disruption of protein-protein interactions. These approaches have led to alleviation of adverse off-target effects caused by pan-inhibition of Hsp90 using N-terminal inhibitors. In this review, we provide an overview of relevant advances on targeting the Hsp90 C-terminal Domain (CTD) and the development of Hsp90 C-terminal inhibitors (CTIs) since 2015.
Collapse
Affiliation(s)
- Eva Amatya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
8
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
9
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
10
|
Mankovich AG, Freeman BC. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules 2022; 12:biom12081077. [PMID: 36008972 PMCID: PMC9406046 DOI: 10.3390/biom12081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The highly conserved molecular chaperone heat shock protein 90 (Hsp90) is well-known for maintaining metastable proteins and mediating various aspects of intracellular protein dynamics. Intriguingly, high-throughput interactome studies suggest that Hsp90 is associated with a variety of other pathways. Here, we will highlight the potential impact of Hsp90 in protein transport. Currently, a limited number of studies have defined a few mechanistic contributions of Hsp90 to protein transport, yet the relevance of hundreds of additional connections between Hsp90 and factors known to aide this process remains unresolved. These interactors broadly support transport pathways including endocytic and exocytic vesicular transport, the transfer of polypeptides across membranes, or unconventional protein secretion. In resolving how Hsp90 contributes to the protein transport process, new therapeutic targets will likely be obtained for the treatment of numerous human health issues, including bacterial infection, cancer metastasis, and neurodegeneration.
Collapse
|
11
|
Li W, Liu J. The Prognostic and Immunotherapeutic Significance of AHSA1 in Pan-Cancer, and Its Relationship With the Proliferation and Metastasis of Hepatocellular Carcinoma. Front Immunol 2022; 13:845585. [PMID: 35757728 PMCID: PMC9226343 DOI: 10.3389/fimmu.2022.845585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
The AHSA1 is a main activator of ATPase of Hsp90. Hsp90 is involved in various metabolic and developmental processes of tumor cells. Although, the role of AHSA1 in tumor cells is still unrecognized. In the current research, the RNA-seq of 33 tumors were downloaded using The Cancer Genome Atlas (TCGA) database for the analysis of AHSA1 expression in tumors. The Kaplan-Meier method was used for the evaluation of the prognostic significance of AHSA1 in patients with pan-cancer. Additionally, the correlation between AHSA1 and immune cell infiltration, immune checkpoint, pyroptosis-related molecules, epithelial cell transformation-related molecules, and autophagy-related molecules were analyzed by co-expression. Furthermore, we examined the effect of AHSA1 knockdown on cell function in Huh7 and HCCLM3 cells of hepatocellular carcinoma (HCC) cell lines. According to the finding of this study, up-regulation of AHSA1 expression was observed in numerous tumor tissues, and its over-expression in liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and esophageal carcinoma (ESCA) could affect the overall survival and disease-specific survival of the patients. Meanwhile, as per the correlation analysis the expression of AHSA1 was greatly correlated with the expression of various immune cell infiltrates, immune checkpoint inhibitors, tumor mutation load, and microsatellite instability. Moreover, this study focused on analyzing the association of AHSA1 expression with multiple pathological stages in HCC, and confirmed that AHSA1 was an independent prognostic factor of HCC by univariate and multivariate COX regression in TCGA and The International Cancer Genome Consortium (ICGC) cohorts. At the same time, cellular experiments proved that the AHSA1 knockdown could decrease the proliferation activity, cell migration and invasion ability of HCC cells. Therefore, the results of this study indicated that AHSA1 can be used as a potential prognostic biomarker of tumors and it may have a significant role in the proliferation as well as migration of HCC cells.
Collapse
Affiliation(s)
- Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jun Liu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| |
Collapse
|
12
|
Keegan BM, Catalfano KC, Banerjee M, Blagg BSJ. Synthesis and Evaluation of Small Molecule Disruptors of the Aha1/Hsp90 Complex for the Reduction of Tau Aggregation. ACS Med Chem Lett 2022; 13:827-832. [PMID: 35586436 PMCID: PMC9109267 DOI: 10.1021/acsmedchemlett.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
KU-177 was recently shown to disrupt interactions between Hsp90 and Aha1 in vitro. Subsequent studies in recombinant thioflavin T (ThT) assays demonstrated that KU-177 ablates Aha1-driven enhancement of Hsp90-dependent tau aggregation, which was confirmed by TEM. Using KU-177 as a lead compound, derivatives of KU-177 were synthesized and evaluated for their ability to disrupt Aha1/Hsp90 interactions and inhibit P301L tau aggregation. Preliminary structure-activity relationships were revealed, which led to the identification of a new lead compound that contains a cis-like amide bond. The new lead compounds retain the ability to disrupt Aha1/Hsp90 interactions in SH-SY5Y and SK-BR-3 cells without direct inhibition of Hsp90, providing a new scaffold for subsequent drug discovery efforts.
Collapse
Affiliation(s)
- Bradley M. Keegan
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Kevin C. Catalfano
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Monimoy Banerjee
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Brian S. J. Blagg
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| |
Collapse
|
13
|
Yuan Z, Wang L, Hong S, Shi C, Yuan B. Diagnostic value of HSP90α and related markers in lung cancer. J Clin Lab Anal 2022; 36:e24462. [PMID: 35522136 PMCID: PMC9169185 DOI: 10.1002/jcla.24462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the expression of heat shock protein 90α (HSP90α) in patients with lung cancer (LC) and the clinical value of HSP90α and other related markers in the diagnosis of LC. Methods Of 335 patients enrolled in the study cohort, 175 were screened for LC and 160 were healthy (HC). The plasma levels of HSP90α and related markers (CEA, NSE, CYFRA21‐1 and ProGRP) were detected in all individuals in the cohort by enzyme‐linked immunosorbent assay (ELISA). Groups were divided according to gender (male/female), age (≤60 years/>60 years), types of LC (small‐cell carcinoma, squamous carcinoma and adenocarcinoma), staging (I, II, III and IV) and metastasis (metastasis and non‐metastasis) separately. Wilcoxon Mann–Whitney test and Kruskal–Wallis test were used to compare statistical differences between two groups/among the multiple groups for each factor of HSP90α. The r‐value and Kappa were used to compare HSP90α with related markers, and the receiver operating curve (ROC) was used to evaluate the efficacy of plasma HSP90α in predicting LC. Results No statistical difference was found in the plasma level of HSP90α among different age and gender groups (p > 0.05). In the group divided by LC type, staging and metastasis status, there were statistical differences among different groups in HSP90α level (p < 0.05). The levels of HSP90α, CEA, NSE, CYFRA21‐1 and ProGRP in LC groups were significantly higher than HC (p < 0.001). R values of HSP90α correlated with other related markers in the diagnosis of LC (p < 0.05). Although HSP90α and other related markers did not fit the satisfactory conformance, in terms of the positive rate of diagnosis, it was statistically differences in the diagnostic positive rate between HSP90α and each marker (p < 0.01). ROC analysis showed that a plasma HSP90α cut‐off point of 50.02 ng/ml had an optimal predictive value for LC. Conclusions HSP90α has significant clinical value in early screening and diagnosis of LC. The combined application of HSP90α and related markers can improve the positive rate of early diagnosis of LC effectively.
Collapse
Affiliation(s)
- Zhimin Yuan
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Songlin Hong
- F&E Data Technology (Tianjin) Corp, Tianjin, China
| | - Changbei Shi
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, China
| | - Bin Yuan
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
14
|
Astl L, Stetz G, Verkhivker GM. Dissecting Molecular Principles of the Hsp90 Chaperone Regulation by Allosteric Modulators Using a Hierarchical Simulation Approach and Network Modeling of Allosteric Interactions: Conformational Selection Dictates the Diversity of Protein Responses and Ligand-Specific Functional Mechanisms. J Chem Theory Comput 2020; 16:6656-6677. [PMID: 32941034 DOI: 10.1021/acs.jctc.0c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformational plasticity of the Hsp90 molecular chaperones underlies the diversity of functional mechanisms that these versatile molecular machines employ to coordinate their vast protein clientele in the cellular environment. Despite a steady progress in studies of the Hsp90 machinery, a great deal remains unknown about molecular principles and ligand-specific functional mechanisms of the Hsp90 regulation by allosteric modulators that attracted significant attention because of their therapeutic potential. Due to structural complexity and dynamic nature of the Hsp90 responses to allosteric modulators, the atomistic details about the mode of action of these small molecules continue to be fairly scarce and controversial. In this work, we employ an integrative strategy that encompassed atomistic simulations of the Hsp90 proteins and hierarchical modeling of Hsp90-ligand binding with network analysis to explore functional mechanisms of the Hsp90 regulation by a panel of allosteric modulators (novobiocin, KU-135, KU-174, and KU-32) with different models of action. The results show that functional mechanisms of allosteric modulation in the Hsp90 proteins may be driven by conformational selection principles in which ligands elicit pre-existing states of the unbound chaperone to drive ligand-specific protein responses and distinct scenarios of Hsp90 regulation. We found that novobiocin can selectively sequester an ensemble of open chaperone conformations and inhibit the progression of the functional cycle through a cascade of cumulative dynamic changes. In contrast, KU-32 displayed unique preferences toward partially closed dynamic states, inducing robust allosteric signaling and stimulation of the ATPase cycle. The proposed model of the Hsp90 regulation by allosteric modulators reconciled diverse experimental data and showed that allosteric modulators may operate via targeted exploitation of dynamic landscapes eliciting vastly different protein responses and diverse mechanisms of action.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
15
|
Baker-Williams AJ, Hashmi F, Budzyński MA, Woodford MR, Gleicher S, Himanen SV, Makedon AM, Friedman D, Cortes S, Namek S, Stetler-Stevenson WG, Bratslavsky G, Bah A, Mollapour M, Sistonen L, Bourboulia D. Co-chaperones TIMP2 and AHA1 Competitively Regulate Extracellular HSP90:Client MMP2 Activity and Matrix Proteolysis. Cell Rep 2020; 28:1894-1906.e6. [PMID: 31412254 DOI: 10.1016/j.celrep.2019.07.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/01/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022] Open
Abstract
The extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity. In addition to disrupting the eHSP90:MMP2 complex and terminally inactivating MMP2, TIMP2 loads the client to eHSP90, keeping the protease in a transient inhibitory state. Secreted activating co-chaperone AHA1 displaces TIMP2 from the complex, providing a "reactivating" mechanism for MMP2. Gene knockout or blocking antibodies targeting TIMP2 and AHA1 released by HT1080 cancer cells modify their gelatinolytic activity. Our data suggest that TIMP2 and AHA1 co-chaperones function as a molecular switch that determines the inhibition and reactivation of the eHSP90 client protein MMP2.
Collapse
Affiliation(s)
- Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Fiza Hashmi
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Gleicher
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Derek Friedman
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Cortes
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sara Namek
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alaji Bah
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
16
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
17
|
The Right Tool for the Job: An Overview of Hsp90 Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:135-146. [DOI: 10.1007/978-3-030-40204-4_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Wang X, An D, Wang X, Liu X, Li B. Extracellular Hsp90α clinically correlates with tumor malignancy and promotes migration and invasion in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:1119-1128. [PMID: 30809093 PMCID: PMC6376885 DOI: 10.2147/ott.s195529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Extracellular Hsp90α (eHsp90α) is known to be involved in tumor invasiveness and metastasis, and its prognostic value in many kinds of tumors has been identified. We aimed to evaluate the clinical and functional role of eHsp90α in esophageal squamous cell carcinoma (ESCC). Patients and methods A total of 193 patients with newly diagnosed ESCC were retrospectively evaluated. The relationship between serum Hsp90α levels before treatment and ESCC malignancy of the patients was analyzed. To test the role of eHsp90α in migration and invasion of ESCC cell lines, transwell assay was performed. Western blotting was used to explore the possible mechanism in which eHsp90α promotes ESCC migration and invasion. Results We found that the serum Hsp90α level before treatment is positively correlated with ESCC malignancy. Moreover, high serum Hsp90α level before treatment was significantly correlated with positive lymph node (LN) metastasis, which is the main prognostic factor for ESCC patients. Meanwhile, we demonstrated that eHsp90α promoted migration and invasion of ECA109 and ECA9706 in vitro. Further investigations revealed that eHsp90α stabilized MMP-2 and promoted epithelial-to-mesenchymal transition evidenced by downregulation of E-cadherin and upregulation of N-cadherin. On the other hand, Hsp90α neutralizing antibody functionally blocked the secreted Hsp90α and reversed those effects. Conclusion Our findings prove the critical role of eHsp90α in promoting ESCC migration and invasion, indicating it can be not only a promising predictor for ESCC LN status, but also an effective target in ESCC therapeutics, especially in preventing LN metastasis.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Dianzheng An
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Xinlei Wang
- Department of Gastroenterology, Qingdao Hiser Medical Center, Qingdao, Shandong, People's Republic of China
| | - Xiaomeng Liu
- University of Jinan, School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| |
Collapse
|
19
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
20
|
Borin M, Saraceno C, Catania M, Lorenzetto E, Pontelli V, Paterlini A, Fostinelli S, Avesani A, Di Fede G, Zanusso G, Benussi L, Binetti G, Zorzan S, Ghidoni R, Buffelli M, Bolognin S. Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:61. [PMID: 30005699 PMCID: PMC6045891 DOI: 10.1186/s40478-018-0567-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
One of the earliest pathological features characterizing Alzheimer’s disease (AD) is the loss of dendritic spines. Among the many factors potentially mediating this loss of neuronal connectivity, the contribution of Rho-GTPases is of particular interest. This family of proteins has been known for years as a key regulator of actin cytoskeleton remodeling. More recent insights have indicated how its complex signaling might be triggered also in pathological conditions. Here, we showed that the Rho-GTPase family member Rac1 levels decreased in the frontal cortex of AD patients compared to non-demented controls. Also, Rac1 increased in plasma samples of AD patients with Mini-Mental State Examination < 18 compared to age-matched non demented controls. The use of different constitutively active peptides allowed us to investigate in vitro Rac1 specific signaling. Its activation increased the processing of amyloid precursor protein and induced the translocation of SET from the nucleus to the cytoplasm, resulting in tau hyperphosphorylation at residue pT181. Notably, Rac1 was abnormally activated in the hippocampus of 6-week-old 3xTg-AD mice. However, the total protein levels decreased at 7-months. A rescue strategy based on the intranasal administration of Rac1 active peptide at 6.5 months prevented dendritic spine loss. This data suggests the intriguing possibility of a dual role of Rac1 according to the different stages of the pathology. In an initial stage, Rac1 deregulation might represent a triggering co-factor due to the direct effect on Aβ and tau. However, at a later stage of the pathology, it might represent a potential therapeutic target due to the beneficial effect on spine dynamics.
Collapse
|
21
|
Zuehlke AD, Moses MA, Neckers L. Heat shock protein 90: its inhibition and function. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0527. [PMID: 29203712 DOI: 10.1098/rstb.2016.0527] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) facilitates metastable protein maturation, stabilization of aggregation-prone proteins, quality control of misfolded proteins and assists in keeping proteins in activation-competent conformations. Proteins that rely on Hsp90 for function are delivered to Hsp90 utilizing a co-chaperone-assisted cycle. Co-chaperones play a role in client transfer to Hsp90, Hsp90 ATPase regulation and stabilization of various Hsp90 conformational states. Many of the proteins chaperoned by Hsp90 (Hsp90 clients) are essential for the progression of various diseases, including cancer, Alzheimer's disease and other neurodegenerative diseases, as well as viral and bacterial infections. Given the importance of these clients in different diseases and their dynamic interplay with the chaperone machinery, it has been suggested that targeting Hsp90 and its respective co-chaperones may be an effective method for combating a large range of illnesses.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Jiang F, Guo AP, Xu JC, Wang HJ, Mo XF, You QD, Xu XL. Identification and optimization of novel 6-acylamino-2-aminoquinolines as potent Hsp90 C-terminal inhibitors. Eur J Med Chem 2017; 141:1-14. [DOI: 10.1016/j.ejmech.2017.07.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
|
23
|
Shao LD, Su J, Ye B, Liu JX, Zuo ZL, Li Y, Wang YY, Xia C, Zhao QS. Design, Synthesis, and Biological Activities of Vibsanin B Derivatives: A New Class of HSP90 C-Terminal Inhibitors. J Med Chem 2017; 60:9053-9066. [PMID: 29019670 DOI: 10.1021/acs.jmedchem.7b01395] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, vibsanin B (ViB) was found to preferentially target HSP90β compared to HSP90α. In this study, multiple experiments, including pull-down assays of biotin-ViB with recombinant HSP90β-NTD, MD, CTD, and full-length HSP90β, molecular docking of ViB and its derivatives to the HSP90 CTD, and a inhibition assay of interaction of the HSP90β CTD with GST-tagged cyclophilin 40 (Cyp40) by ViB derivatives, suggest that ViB can directly bind to the HSP90 C-terminus. On the basis of the docking predictions and primary structure-activity relationships (SARs), a series of ViB analogues devised with focus on the C18 position, along with compounds derivatized at the C4, C7, and C8 positions, were designed and chemically synthesized. Compound 12f (IC50 = 1.12 μM against SK-BR-3) exhibits great potency with drug-like properties. Overall, our findings demonstrate that compounds with the vibsanin B scaffold are a new class of HSP90 C-terminal inhibitors with considerable potential as anticancer agents.
Collapse
Affiliation(s)
- Li-Dong Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Baixin Ye
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
| | - Jiang-Xin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
| | - Chengfeng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China.,University of Chinese Academy of Science , Beijing 100049, China
| |
Collapse
|
24
|
Bartsch K, Hombach-Barrigah A, Clos J. Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 2017; 22:729-742. [PMID: 28455612 PMCID: PMC5573691 DOI: 10.1007/s12192-017-0800-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
Hsp90 and its co-chaperones are essential for the medically important parasite Leishmania donovani, facilitating life cycle control and intracellular survival. Activity of Hsp90 is regulated by co-chaperones of the Aha1 and P23 families. In this paper, we studied the expression of L. donovani Aha1 in two life cycle stages, its interaction with Hsp90 and the phenotype of Aha1 null mutants during the insect stage and inside infected macrophages. This study provides a detailed in vitro analysis of the function of Aha1 in Leishmania parasites and the first instance of a reverse genetic analysis of Aha1 in a protozoan parasite. While Aha1 is non-essential under standard growth conditions and at elevated temperature, Aha1 protects against ethanol stress. However, both overexpression and lack of Aha1 affected parasite growth in the presence of the Hsp90 inhibitors radicicol (RAD) and geldanamycin (GA). Under RAD pressure, P23 and Aha1 act in an antagonistic way. By contrast, expression levels of both co-chaperones have similar effects under GA treatment, indicating different inhibition mechanisms by the two compounds. Aha1 is also secreted in virulence-enhancing exosomes. This may explain why the loss of Aha1 reduces the infectivity of L. donovani in ex vivo mouse macrophages, indicating a role during the intracellular mammalian stage.
Collapse
Affiliation(s)
- Katharina Bartsch
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Antje Hombach-Barrigah
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany.
| |
Collapse
|
25
|
Abstract
The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer's disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood-brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.
Collapse
|
26
|
Tong J, Tan S, Nikolovska-Coleska Z, Yu J, Zou F, Zhang L. FBW7-Dependent Mcl-1 Degradation Mediates the Anticancer Effect of Hsp90 Inhibitors. Mol Cancer Ther 2017; 16:1979-1988. [PMID: 28619760 DOI: 10.1158/1535-7163.mct-17-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein 90 (Hsp90) is widely overexpressed in cancer cells and necessary for maintenance of malignant phenotypes. Hsp90 inhibition induces tumor cell death through degradation of its client oncoproteins and has shown promises in preclinical studies. However, the mechanism by which Hsp90 inhibitors kill tumor cells is not well-understood. Biomarkers associated with differential sensitivity and resistance to Hsp90 inhibitors remain to be identified. In this study, we found that colorectal cancer cells containing inactivating mutations of FBW7, a tumor suppressor and E3 ubiquitin ligase, are intrinsically insensitive to Hsp90 inhibitors. The insensitive colorectal cancer cells lack degradation of Mcl-1, a prosurvival Bcl-2 family protein. Hsp90 inhibition promotes GSK3β-dependent phosphorylation of Mcl-1, which subsequently binds to FBW7 and undergoes ubiquitination and proteasomal degradation. Specifically blocking Mcl-1 phosphorylation by genetic knock-in abrogates its degradation and renders in vitro and in vivo resistance to Hsp90 inhibitors, which can be overcame by Mcl-1-selective small-molecule inhibitors. Collectively, our findings demonstrate a key role of GSK3β/FBW7-dependent Mcl-1 degradation in killing of colorectal cancer cells by Hsp90 inhibitors and suggest FBW7 mutational status as a biomarker for Hsp90-targeted therapy. Mol Cancer Ther; 16(9); 1979-88. ©2017 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shuai Tan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | | | - Jian Yu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China.
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Unconventional Secretion of Heat Shock Proteins in Cancer. Int J Mol Sci 2017; 18:ijms18050946. [PMID: 28468249 PMCID: PMC5454859 DOI: 10.3390/ijms18050946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies.
Collapse
|
28
|
Shrestha L, Bolaender A, Patel HJ, Taldone T. Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease. Curr Top Med Chem 2017; 16:2753-64. [PMID: 27072696 DOI: 10.2174/1568026616666160413141911] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/21/2015] [Accepted: 01/17/2016] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10021, USA.
| |
Collapse
|
29
|
Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients. PLoS One 2016; 11:e0164538. [PMID: 27846214 PMCID: PMC5112797 DOI: 10.1371/journal.pone.0164538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Objectives To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Methods Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). Results DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. Conclusions The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.
Collapse
|
30
|
Ghosh S, Liu Y, Garg G, Anyika M, McPherson NT, Ma J, Dobrowsky RT, Blagg BSJ. Diverging Novobiocin Anti-Cancer Activity from Neuroprotective Activity through Modification of the Amide Tail. ACS Med Chem Lett 2016; 7:813-8. [PMID: 27563408 DOI: 10.1021/acsmedchemlett.6b00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022] Open
Abstract
Novobiocin is a natural product that binds the Hsp90 C-terminus and manifests Hsp90 inhibitory activity. Structural investigations on novobiocin led to the development of both anti-cancer and neuroprotective agents. The varied pharmacological activity manifested by these novobiocin analogs prompted the investigation of structure-function studies to identify these contradictory effects, which revealed that modifications to the amide side chain produce either anti-cancer or neuroprotective activity. Compounds that exhibit neuroprotective activity contain a short alkyl or cycloalkyl amide side chain. In contrast, anti-cancer agents contain five or more carbons, disrupt interactions between Hsp90α and Aha1, and induce the degradation of Hsp90-dependent client proteins.
Collapse
Affiliation(s)
| | - Yang Liu
- Department
of Medicinal Chemistry, Fujian Medical University, Fuzhou, China 350004
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The chaperome constitutes a broad family of molecular chaperones and co-chaperones that facilitate the folding, refolding, and degradation of the proteome. Heat shock protein 90 (Hsp90) promotes the folding of numerous oncoproteins to aid survival of malignant phenotypes, and small molecule inhibitors of the Hsp90 chaperone complex offer a viable approach to treat certain cancers. One therapeutic attribute of this approach is the selectivity of these molecules to target high affinity oncogenic Hsp90 complexes present in tumor cells, which are absent in nontransformed cells. This selectivity has given rise to the idea that disease may contribute to forming a stress chaperome that is functionally distinct in its ability to interact with small molecule Hsp90 modulators. Consistent with this premise, modulating Hsp90 improves clinically relevant endpoints of diabetic peripheral neuropathy but has little impact in nondiabetic nerve. The concept of targeting the "diabetic chaperome" to treat diabetes and its complications is discussed.
Collapse
Affiliation(s)
- Rick T Dobrowsky
- Department of Pharmacology and Toxicology, The University of Kansas, 5064 Malott Hall 1251 Wescoe Hall Dr., Lawrence, KS, 66045, USA.
| |
Collapse
|
32
|
Li L, Mo H, Zhang J, Zhou Y, Peng X, Luo X. The Role of Heat Shock Protein 90B1 in Patients with Polycystic Ovary Syndrome. PLoS One 2016; 11:e0152837. [PMID: 27046189 PMCID: PMC4821534 DOI: 10.1371/journal.pone.0152837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/25/2016] [Indexed: 12/01/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogenetic disorder in women that is characterized by arrested follicular growth and anovulatory infertility. The altered protein expression levels in the ovarian tissues reflect the molecular defects in folliculogenesis. To identify aberrant protein expression in PCOS, we analyzed protein expression profiles in the ovarian tissues of patients with PCOS. We identified a total of 18 protein spots that were differentially expressed in PCOS compared with healthy ovarian samples. A total of 13 proteins were upregulated and 5 proteins were downregulated. The expression levels of heat shock protein 90B1 (HSP90B1) and calcium signaling activator calmodulin 1 (CALM1) were increased by at least two-fold. The expression levels of HSP90B1 and CALM1 were positively associated with ovarian cell survival and negatively associated with caspase-3 activation and apoptosis. Knock-down of HSP90B1 with siRNA attenuated ovarian cell survival and increased apoptosis. In contrast, ovarian cell survival was improved and cell apoptosis was decreased in cells over-expressing HSP90B1. These results demonstrated the pivotal role of HSP90B1 in the proliferation and survival of ovarian cells, suggesting a critical role for HSP90B1 in the pathogenesis of PCOS. We also observed a downregulation of anti-inflammatory activity-related annexin A6 (ANXA6) and tropomyosin 2 (TPM2) compared with the normal controls, which could affect cell division and folliculogenesis in PCOS. This is the first study to identify novel altered gene expression in the ovarian tissues of patients with PCOS. These findings may have significant implications for future diagnostic and treatment strategies for PCOS using molecular interventions.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
- Laboratory of Chinese Medicine Quality Research, Macau University of Science and Technology, Macau, China
| | - Hui Mo
- Laboratory of Chinese Medicine Quality Research, Macau University of Science and Technology, Macau, China
| | - Jing Zhang
- Guangzhou Family Planning Specialty Hospital, Guangzhou, Guangdong, China
| | - Yongxian Zhou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiuhong Peng
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiping Luo
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
33
|
Ghosh S, Shinogle HE, Galeva NA, Dobrowsky RT, Blagg BSJ. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem 2016; 291:8309-23. [PMID: 26872972 DOI: 10.1074/jbc.m115.688374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is up-regulated in cancer and is required for the folding of numerous signaling proteins. Consequently, HSP90 represents an ideal target for the development of new anti-cancer agents. The human HSP90 isoform, glucose-regulated protein 94 (GRP94), resides in the endoplasmic reticulum and regulates secretory pathways, integrins, and Toll-like receptors, which contribute to regulating immunity and metastasis. However, the cellular function of GRP94 remains underinvestigated. We report that GRP94 knockdown cells are defective in intracellular transport and, consequently, negatively impact the trafficking of F-actin toward the cellular cortex, integrin α2 and integrin αL toward the cell membrane and filopodia, and secretory vesicles containing the HSP90α-AHA1-survivin complex toward the leading edge. As a result, GRP94 knockdown cells form a multipolar spindle instead of bipolar morphology and consequently manifest a defect in cell migration and adhesion.
Collapse
Affiliation(s)
| | | | | | - Rick T Dobrowsky
- the Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | | |
Collapse
|
34
|
Abstract
The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action.
Collapse
|