1
|
Kim JK, Yun HY, Kim JS, Kim W, Lee CS, Kim BG, Jeong HJ. Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:2. [PMID: 38153552 DOI: 10.1007/s00253-023-12836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 12/29/2023]
Abstract
Staphylococcus aureus is a major pathogen that causes infections and life-threatening diseases. Although antibiotics, such as methicillin, have been used, methicillin-resistant S. aureus (MRSA) causes high morbidity and mortality rates, and conventional detection methods are difficult to be used because of time-consuming process. To control the spread of S. aureus, a development of a rapid and simple detection method is required. In this study, we generated a fluorescent anti-S. aureus antibody, and established a novel fluorescence-linked immunosorbent assay (FLISA)-based S. aureus detection method. The method showed high sensitivity and low limit of detection toward MRSA detection. The assay time for FLISA was 5 h, which was faster than that of conventional enzyme-linked immunosorbent assay (ELISA) or rapid ELISA. Moreover, the FLISA-based detection method was applied to diagnose clinically isolated MRSA samples that required only 5.3 h of preincubation. The FLISA method developed in this study can be widely applied as a useful tool for convenient S. aureus detection. KEY POINTS: • A fluorescence-linked immunosorbent assay-based S. aureus detection method • Simultaneous quantification of a maximum of 96 samples within 5 h • Application of the novel system to diagnosis clinical isolates.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Young Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 05355, South Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| |
Collapse
|
2
|
DʼEste E, Lukinavičius G, Lincoln R, Opazo F, Fornasiero EF. Advancing cell biology with nanoscale fluorescence imaging: essential practical considerations. Trends Cell Biol 2024; 34:671-684. [PMID: 38184400 DOI: 10.1016/j.tcb.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.
Collapse
Affiliation(s)
- Elisa DʼEste
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Gražvydas Lukinavičius
- Chromatin Labelling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center, Göttingen 37075, Germany; NanoTag Biotechnologies GmbH, Göttingen 37079, Germany.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
3
|
Lee CH, Zaman S, Kundra V, Anvari B. Erythrocyte nano-ghosts with dual optical and magnetic resonance characteristics. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:085001. [PMID: 39165858 PMCID: PMC11333968 DOI: 10.1117/1.jbo.29.8.085001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Significance Fluorescent organic dyes provide imaging capabilities at cellular and sub-cellular levels. However, a common problem associated with some of the existing dyes such as the US FDA-approved indocyanine green (ICG) is their weak fluorescence emission. Alternative dyes with greater emission characteristics would be useful in various imaging applications. Complementing optical imaging, magnetic resonance (MR) imaging enables deep tissue imaging. Nano-sized delivery systems containing dyes with greater fluorescence emission as well as MR contrast agents present a promising dual-mode platform with high optical sensitivity and deep tissue imaging for image-guided surgical applications. Aim We have engineered a nano-sized platform, derived from erythrocyte ghosts (EGs), with dual near-infrared fluorescence and MR characteristics by co-encapsulation of a brominated carbocyanine dye and gadobenate dimeglumine (Gd-BOPTA). Approach We have investigated the use of three brominated carbocyanine dyes (referred to as BrCy106, BrCy111, and BrCy112) with various degrees of bromination, structural symmetry, and acidic modifications for encapsulation by nano-sized EGs (nEGs) and compared their resulting optical characteristics with nEGs containing ICG. Results We find that asymmetric dyes (BrCy106 and BrCy112) with one dibromobenzene ring offer greater fluorescence emission characteristics. For example, the relative fluorescence quantum yield ( ϕ ) for nEGs fabricated using 100 μ M of BrCy112 is ∼ 41 -fold higher than nEGs fabricated using the same concentrations of ICG. The dual-mode nEGs containing BrCy112 and Gd-BOPTA show a nearly twofold increase in their ϕ as compared with their single optical mode counterpart. Cytotoxicity is not observed upon incubation of SKOV3 cells with nEGs containing BrCy112. Conclusions Erythrocyte nano-ghosts with dual optical and MR characteristics may ultimately prove useful in various biomedical imaging applications such as image-guided tumor surgery where MR imaging can be used for tumor staging and mapping, and fluorescence imaging can help visualize small tumor nodules for resection.
Collapse
Affiliation(s)
- Chi-Hua Lee
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
| | - Shamima Zaman
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Vikas Kundra
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, Maryland, United States
- University of Maryland, Stuart and Marlene Greenbaum Comprehensive Cancer Center, Baltimore, Maryland, United States
| | - Bahman Anvari
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| |
Collapse
|
4
|
Reiber T, Hübner O, Dose C, Yushchenko DA, Resch-Genger U. Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation. Sci Rep 2024; 14:11882. [PMID: 38789582 PMCID: PMC11126734 DOI: 10.1038/s41598-024-62548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels' fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing.
Collapse
Affiliation(s)
- Thorge Reiber
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard‑Willstaetter‑Str. 11, 12489, Berlin, Germany
| | - Christian Dose
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Dmytro A Yushchenko
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard‑Willstaetter‑Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Ogawa M. Targeted Molecular Imaging and Therapy Based on Nuclear and Optical Technologies. Biol Pharm Bull 2024; 47:1066-1071. [PMID: 38825459 DOI: 10.1248/bpb.b24-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Sciences, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University
| |
Collapse
|
7
|
Coutinho A, Poveda JA, Renart ML. Conformational Dynamic Studies of Prokaryotic Potassium Channels Explored by Homo-FRET Methodologies. Methods Mol Biol 2024; 2796:35-72. [PMID: 38856894 DOI: 10.1007/978-1-0716-3818-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fluorescence techniques have been widely used to shed light over the structure-function relationship of potassium channels for the last 40-50 years. In this chapter, we describe how a Förster resonance energy transfer between identical fluorophores (homo-FRET) approach can be applied to study the gating behavior of the prokaryotic channel KcsA. Two different gates have been described to control the K+ flux across the channel's pore, the helix-bundle crossing and the selectivity filter, located at the opposite sides of the channel transmembrane section. Both gates can be studied individually or by using a double-reporter system. Due to its homotetrameric structural arrangement, KcsA presents a high degree of symmetry that fulfills the first requisite to calculate intersubunit distances through this technique. The results obtained through this work have helped to uncover the conformational plasticity of the selectivity filter under different experimental conditions and the importance of its allosteric coupling to the opening of the activation (inner) gate. This biophysical approach usually requires low protein concentration and presents high sensitivity and reproducibility, complementing the high-resolution structural information provided by X-ray crystallography, cryo-EM, and NMR studies.
Collapse
Affiliation(s)
- Ana Coutinho
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - María Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.
| |
Collapse
|
8
|
Sasamoto K, Yasuda T, Zhu B, Ueda H, Kitaguchi T. Efficient and rapid linker optimization with heterodimeric coiled coils improves the response of fluorescent biosensors comprising antibodies and protein M. Analyst 2023; 148:5843-5850. [PMID: 37941425 DOI: 10.1039/d3an01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We developed a coiled Q-probe (CQ-probe), a fluorescent probe containing a coiled-coil peptide pair E4/K4, to convert antibodies into biosensors for homogeneous immunoassays. This probe consists of an antibody-binding protein, protein M (PM) with the E4 peptide and the K4 peptide with a fluorescent dye. Compared to PM Q-probes, which are generated by modifying the C-terminus of PM with a fluorescent dye, CQ-probe variants with various linkers are easy to prepare and therefore enable the establishment of biosensors with a significant fluorescence response by localizing the fluorescent dye at the optimal position for quenching and antigen-dependent release. The fluorescence changes of biosensors converted from anti-BGP, anti-cortisol, and anti-testosterone antibodies using the rhodamine 6G (or TAMRA)-labeled CQ-probe upon antigen addition were 13 (or 2.6), 9.7 (or 1.5), and 2.1 (or 1.2) times larger than that of the biosensors converted using the PM Q-probe. Furthermore, the CQ-probe converted anti-digoxin IgG into a functional biosensor, whereas the PM Q-probe/antibody complex showed an insufficient response. This technology exhibits a promising capacity to convert antibodies into high-response biosensors, which are expected to be applied in a wide range of fields, including clinical diagnosis, environmental surveys, food analysis, and biological research.
Collapse
Affiliation(s)
- Kana Sasamoto
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
9
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
10
|
Kessler LF, Balakrishnan A, Deußner-Helfmann NS, Li Y, Mantel M, Glogger M, Barth HD, Dietz MS, Heilemann M. Self-quenched Fluorophore Dimers for DNA-PAINT and STED Microscopy. Angew Chem Int Ed Engl 2023; 62:e202307538. [PMID: 37581373 DOI: 10.1002/anie.202307538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
Super-resolution techniques like single-molecule localisation microscopy (SMLM) and stimulated emission depletion (STED) microscopy have been extended by the use of non-covalent, weak affinity-based transient labelling systems. DNA-based hybrid systems are a prominent example among these transient labelling systems, offering excellent opportunities for multi-target fluorescence imaging. However, these techniques suffer from higher background relative to covalently bound fluorophores, originating from unbound fluorophore-labelled single-stranded oligonucleotides. Here, we introduce short-distance self-quenching in fluorophore dimers as an efficient mechanism to reduce background fluorescence signal, while at the same time increasing the photon budget in the bound state by almost 2-fold. We characterise the optical and thermodynamic properties of fluorophore-dimer single-stranded DNA, and show super-resolution imaging applications with STED and SMLM with increased spatial resolution and reduced background.
Collapse
Affiliation(s)
- Laurell F Kessler
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nina S Deußner-Helfmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Yunqing Li
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Maximilian Mantel
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Hans-Dieter Barth
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
11
|
Mapes JH, Stover J, Stout HD, Folsom TM, Babcock E, Loudwig S, Martin C, Austin MJ, Tu F, Howdieshell CJ, Simpson ZB, Blom T, Weaver D, Winkler D, Vander Velden K, Ossareh PM, Beierle JM, Somekh T, Bardo AM, Anslyn EV, Marcotte EM, Swaminathan J. Robust and scalable single-molecule protein sequencing with fluorosequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558007. [PMID: 37745461 PMCID: PMC10516020 DOI: 10.1101/2023.09.15.558007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.
Collapse
Affiliation(s)
| | | | - Heather D Stout
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | - Christopher Martin
- Erisyon, Inc. Austin, TX, 78752
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | | - Fan Tu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | | | | | | | | | | | | | - Angela M Bardo
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jagannath Swaminathan
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
12
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
13
|
Ueda H, Dai Y, Ghadessy F. Visualizing intracellular target antigens in live cells. Trends Cell Biol 2023; 33:277-279. [PMID: 36759281 DOI: 10.1016/j.tcb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
In order to further visualize intracellular dynamics, precise imaging of endogenous proteins in live cells was performed using an antigen-binding fragment (Fab)-based Quenchbody (Q-body). The transfected Q-body probe showed an antigen-dependent fluorescence response, enabling the clear visualization and sorting of cells expressing p53, a tumor suppressor biomarker.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yancen Dai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
14
|
Efforts toward PET-Activatable Red-Shifted Silicon Rhodamines and Silicon Pyronine Dyes. Pharmaceuticals (Basel) 2023; 16:ph16030401. [PMID: 36986500 PMCID: PMC10053042 DOI: 10.3390/ph16030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023] Open
Abstract
Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally facilitates the visualization of malignant tissue during intraoperative fluorescence-guided surgery or in histological assessments. The silicon-bridged xanthene core offers the opportunity for radiofluorination with SiFA isotope exchange to obtain a small-molecule, PET-activatable NIR dye that can be linked to different target vectors. Herein, we demonstrate for the first time the PET-activation of a fluorinated silicon pyronine, belonging to a class of low-molecular-weight fluorescence dyes with a large Stokes shift (up to 129 nm) and solvent-dependent NIR dye properties, with a successful radiochemical conversion of 70%. The non-fluorinated pyronine precursor is easily accessible by a three-step sequence from commercially starting material with a 12% overall yield. Moreover, a library of seven unusually functionalized (by approximately 15 nm), red-shifted silicon rhodamines were synthesized in three- to four-step sequences and the optical properties of the novel dyes were characterized. It was also shown that the synthesized silicon rhodamine dyes can be easily conjugated by amide bond formation or ‘click-reaction’ approaches.
Collapse
|
15
|
Montiel L, Spada F, Crisp A, Serdjukow S, Carell T, Frischmuth T. Divergent Synthesis of Ultrabright and Dendritic Xanthenes for Enhanced Click-Chemistry-Based Bioimaging. Chemistry 2023; 29:e202202633. [PMID: 36317813 PMCID: PMC10107433 DOI: 10.1002/chem.202202633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Biorthogonal labelling with fluorescent small molecules is an indispensable tool for diagnostic and biomedical applications. In dye-based 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assays, augmentation of the fluorescent signal entails an overall enhancement in the sensitivity and quality of the method. To this end, a rapid, divergent synthetic procedure that provides ready-to-click pH-insensitive rhodamine dyes exhibiting outstanding brightness was established. Compared to the shortest available synthesis of related high quantum-yielding rhodamines, two fewer synthetic steps are required. In a head-to-head imaging comparison involving copper(I)-catalyzed azide alkyne cycloaddition reactions with in vitro administered EdU, our new 3,3-difluoroazetidine rhodamine azide outperformed the popular 5-TAMRA-azide, making it among the best available choices when it comes to fluorescent imaging of DNA. In a further exploration of the fluorescence properties of these dyes, a set of bis-MPA dendrons carrying multiple fluorescein or rhodamine units was prepared by branching click chemistry. Fluorescence self-quenching of fluorescein- and rhodamine-functionalized dendrons limited the suitability of the dyes as labels in EdU-based experiments but provided new insights into these effects.
Collapse
Affiliation(s)
- Luis Montiel
- Baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (Munich), Germany.,Department of Chemistry, Institut für Chemische Epigenetik München (ICEM), Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
| | - Fabio Spada
- Baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (Munich), Germany
| | - Antony Crisp
- Baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (Munich), Germany
| | - Sascha Serdjukow
- Baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (Munich), Germany
| | - Thomas Carell
- Department of Chemistry, Institut für Chemische Epigenetik München (ICEM), Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
| | | |
Collapse
|
16
|
Bühler B, Schokolowski J, Benderoth A, Englert D, Grün F, Jäschke A, Sunbul M. Avidity-based bright and photostable light-up aptamers for single-molecule mRNA imaging. Nat Chem Biol 2023; 19:478-487. [PMID: 36658339 DOI: 10.1038/s41589-022-01228-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023]
Abstract
Fluorescent light-up aptamers (FLAPs) have emerged as valuable tools to visualize RNAs, but are mostly limited by their poor brightness, low photostability, and high fluorescence background in live cells. Exploiting the avidity concept, here we present two of the brightest FLAPs with the strongest aptamer-dye interaction, high fluorogenicity, and remarkable photostability. They consist of dimeric fluorophore-binding aptamers (biRhoBAST and biSiRA) embedded in an RNA scaffold and their bivalent fluorophore ligands (bivalent tetramethylrhodamine TMR2 and silicon rhodamine SiR2). Red fluorescent biRhoBAST-TMR2 and near-infrared fluorescent biSiRA-SiR2 are orthogonal to each other, facilitating simultaneous visualization of two different RNA species in live cells. One copy of biRhoBAST allows for simple and robust mRNA imaging with strikingly higher signal-to-background ratios than other FLAPs. Moreover, eight biRhoBAST repeats enable single-molecule mRNA imaging and tracking with minimal perturbation of their localization, translation, and degradation, demonstrating the potential of avidity-enhanced FLAPs for imaging RNA dynamics.
Collapse
Affiliation(s)
- Bastian Bühler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Janin Schokolowski
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Anja Benderoth
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
17
|
Jyoti D, Gordon-Wylie SW, Reeves DB, Paulsen KD, Weaver JB. Distinguishing Nanoparticle Aggregation from Viscosity Changes in MPS/MSB Detection of Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:6690. [PMID: 36081147 PMCID: PMC9459920 DOI: 10.3390/s22176690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Magnetic particle spectroscopy (MPS) in the Brownian relaxation regime, also termed magnetic spectroscopy of Brownian motion (MSB), can detect and quantitate very low, sub-nanomolar concentrations of molecular biomarkers. MPS/MSB uses the harmonics of the magnetization induced by a small, low-frequency oscillating magnetic field to provide quantitative information about the magnetic nanoparticles' (mNPs') microenvironment. A key application uses antibody-coated mNPs to produce biomarker-mediated aggregation that can be detected using MPS/MSB. However, relaxation changes can also be caused by viscosity changes. To address this challenge, we propose a metric that can distinguish between aggregation and viscosity. Viscosity changes scale the MPS/MSB harmonic ratios with a constant multiplier across all applied field frequencies. The change in viscosity is exactly equal to the multiplier with generality, avoiding the need to understand the signal explicitly. This simple scaling relationship is violated when particles aggregate. Instead, a separate multiplier must be used for each frequency. The standard deviation of the multipliers over frequency defines a metric isolating viscosity (zero standard deviation) from aggregation (non-zero standard deviation). It increases monotonically with biomarker concentration. We modeled aggregation and simulated the MPS/MSB signal changes resulting from aggregation and viscosity changes. MPS/MSB signal changes were also measured experimentally using 100 nm iron-oxide mNPs in solutions with different viscosities (modulated by glycerol concentration) and with different levels of aggregation (modulated by concanavalin A linker concentrations). Experimental and simulation results confirmed that viscosity changes produced small changes in the standard deviation and aggregation produced larger values of standard deviation. This work overcomes a key barrier to using MPS/MSB to detect biomarkers in vivo with variable tissue viscosity.
Collapse
Affiliation(s)
- Dhrubo Jyoti
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - John B. Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
18
|
Maxson ME, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar H+ATPase using the Legionella effector protein SidK. J Biophys Biochem Cytol 2022; 221:212963. [PMID: 35024770 PMCID: PMC8763849 DOI: 10.1083/jcb.202107174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Cell-to-cell variability in inducible Caspase9-mediated cell death. Cell Death Dis 2022; 13:34. [PMID: 35013114 PMCID: PMC8748834 DOI: 10.1038/s41419-021-04468-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
iCasp9 suicide gene has been widely used as a promising killing strategy in various cell therapies. However, different cells show significant heterogeneity in response to apoptosis inducer, posing challenges in clinical applications of killing strategy. The cause of the heterogeneity remains elusive so far. Here, by simultaneously monitoring the dynamics of iCasp9 dimerization, Caspase3 activation, and cell fate in single cells, we found that the heterogeneity was mainly due to cell-to-cell variability in initial iCasp9 expression and XIAP/Caspase3 ratio. Moreover, multiple-round drugging cannot increase the killing efficiency. Instead, it will place selective pressure on protein levels, especially on the level of initial iCasp9, leading to drug resistance. We further show this resistance can be largely eliminated by combinatorial drugging with XIAP inhibitor at the end, but not at the beginning, of the multiple-round treatments. Our results unveil the source of cell fate heterogeneity and drug resistance in iCasp9-mediated cell death, which may enlighten better therapeutic strategies for optimized killing.
Collapse
|
20
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
21
|
Zhao X, Zhao H, Wang S, Fan Z, Ma Y, Yin Y, Wang W, Xi R, Meng M. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J Am Chem Soc 2021; 143:20828-20836. [PMID: 34860505 DOI: 10.1021/jacs.1c09155] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cancer phototherapy has been extensively studied as noninvasive cancer treatment. To present efficient recognition toward cancer cells, most photosensitizers (PSs) are required to couple with tumor-targeted ligands. Interestingly, the heptamethine cyanine IR780 displays an intrinsic tumor-targeted feature even without modification. However, the photothermal efficacy and photostability of IR780 are not sufficient enough for clinical use. Herein, we involve a twisted structure of tetraphenylethene (TPE) between two molecules of IR780 to improve the photothermal conversion efficiency (PCE). The obtained molecule T780T shows strong near-infrared (NIR) fluorescence and improved PCE (38.5%) in the dispersed state. Also, the photothermal stability and ROS generation capability of T780T at the NIR range (808 nm) are both promoted. In the aqueous phase, the T780T was formulated into uniform nanoaggregates (∼200 nm) with extremely low fluorescence and PTT response, which would reduce in vivo imaging background and side effect of PTT response in normal tissues. After intravenous injection into tumor-bearing mice, the T780T nanoaggregates display high tumor accumulation and thus remarkably inhibit the tumor growth. Moreover, the enhanced photostability of the T780T allows for twice irradiation after one injection and leads to more significant tumor inhibition. In summary, our study presents a tumor-targeted small-molecule PS for efficient cancer therapy and brings a new design of heptamethine cyanine PS for potential clinical applications.
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongjie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Zhiwen Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Wei Wang
- Institute of Chemistry & Center for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
22
|
Li H, Li X, Chen L, Li B, Dong H, Liu H, Yang X, Ueda H, Dong J. Quench-Release-Based Fluorescent Immunosensor for the Rapid Detection of Tumor Necrosis Factor α. ACS OMEGA 2021; 6:31009-31016. [PMID: 34841143 PMCID: PMC8613823 DOI: 10.1021/acsomega.1c03941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor α (TNF-α) is used as a biomarker for the diagnosis of various inflammatory and autoimmune diseases. In recent years, numerous approaches have been used for the qualitative and quantitative analyses of TNF-α. However, these methods have several drawbacks, such as a tedious and time-consuming process, high pH and temperature sensitivity, and increased chances of denaturation in vitro. Quenchbody (Q-body) is a fluorescence immunoprobe that functions based on the principle of photoinduced electron transfer and has been successful in detecting various substances. In this study, we constructed two Q-bodies based on a therapeutic antibody, adalimumab, to rapidly detect human TNF-α. Both sensors could detect TNF-α within 5 min. The results showed that the limit of detection (LOD) of TNF-α was as low as 0.123 ng/mL with a half-maximal effective concentration (EC50) of 25.0 ng/mL using the TAMRA-labeled Q-body, whereas the ATTO520-labeled Q-body had a LOD of 0.419 ng/mL with an EC50 of 65.6 ng/mL, suggesting that the Q-bodies could rapidly detect TNF-α with reasonable sensitivity over a wide detection range. These biosensors will be useful tools for the detection and monitoring of inflammatory biomarkers.
Collapse
Affiliation(s)
- Haimei Li
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinyu Li
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Limei Chen
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Baowei Li
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hang Dong
- School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hongying Liu
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xueying Yang
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hiroshi Ueda
- World
Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 Japan
| | - Jinhua Dong
- Key
Laboratory for Biological Medicine in Shandong Universities, Weifang
Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
- World
Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 Japan
| |
Collapse
|
23
|
Farrakhova D, Maklygina Y, Romanishkin I, Yakovlev D, Plyutinskaya A, Bezdetnaya L, Loschenov V. Fluorescence imaging analysis of distribution of indocyanine green in molecular and nanoform in tumor model. Photodiagnosis Photodyn Ther 2021; 37:102636. [PMID: 34808398 DOI: 10.1016/j.pdpdt.2021.102636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The efficient intraoperative identification of tumors requires the development of highly specific near-infrared (NIR) probes as contrast agents. One of the most effective dyes existing in clinic oncology is Indocyanine Green (ICG). However, ICG has a rapid excretion, thus ruling out its extended accumulation in pathological tissues therefore limiting its clinical applications. ICG colloid solution (ICG NPs) consists predominantly of J-aggregates and to a lesser extent of H-aggregates and monomers. In the present study we assessed the spectral properties of ICG nanoforms in preclinical models. METHODS We used optical spectroscopy and video fluorescence navigation to monitor accumulation and distribution of ICG monomers and ICG NPs in various tissues in mice with xenografted laryngopharyngeal carcinoma after intravenous drugs injection. RESULTS After i.v. injection, the molecular form of ICG was not retained in the tumor and its circulation cycle averaged 5 min. Alternatively, the nanoform of the drug had a different pharmacokinetics, reaching maximum accumulation 24 h after intravenous injection. Moreover, once in the circulation, we observed a progressive accumulation in the tumor of both ICG H-aggregates and ICG monomers, but not J-aggregates. CONCLUSION Spectral characteristics of ICG NPs indicated the presence of several fractions, namely, J- and H-aggregates along with molecular forms. These fractions had different fluorescence spectra, allowing us to track the transformation of the drug in vivo conditions. After ICG NPs administration, J-aggregates induce accumulation of monomeric forms in the tumor, enabling extended intraoperative diagnostic, and as such further studies of J-aggregates for theranostic applications in oncological surgery are of great interest.
Collapse
Affiliation(s)
- Dina Farrakhova
- Prokhorov General Physics Institute of the Russian Academy of Science, Vavilova str.38, Moscow 119991, Russia.
| | - Yulia Maklygina
- Prokhorov General Physics Institute of the Russian Academy of Science, Vavilova str.38, Moscow 119991, Russia
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Science, Vavilova str.38, Moscow 119991, Russia
| | - Dmitry Yakovlev
- Prokhorov General Physics Institute of the Russian Academy of Science, Vavilova str.38, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia
| | - Anna Plyutinskaya
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkin Ave. 3, Moscow 125284, Russia
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, CNRS, Université de Lorraine, Campus Sciences Boulevard des Aiguillettes BP 70239 54506 Vandoeuvre Les Nancy Cedex, Vandoeuvre-lès-Nancy 54519, France; Institut de Cancérologie de Lorraine, 6 Av. de Bourgogne, Vandoeuvre-lès-Nancy 54519, France
| | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Science, Vavilova str.38, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse, 31, Moscow 115409, Russia
| |
Collapse
|
24
|
Díaz-García C, Renart ML, Poveda JA, Giudici AM, González-Ros JM, Prieto M, Coutinho A. Probing the Structural Dynamics of the Activation Gate of KcsA Using Homo-FRET Measurements. Int J Mol Sci 2021; 22:ijms222111954. [PMID: 34769384 PMCID: PMC8584343 DOI: 10.3390/ijms222111954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The allosteric coupling between activation and inactivation processes is a common feature observed in K+ channels. Particularly, in the prokaryotic KcsA channel the K+ conduction process is controlled by the inner gate, which is activated by acidic pH, and by the selectivity filter (SF) or outer gate, which can adopt non-conductive or conductive states. In a previous study, a single tryptophan mutant channel (W67 KcsA) enabled us to investigate the SF dynamics using time-resolved homo-Förster Resonance Energy Transfer (homo-FRET) measurements. Here, the conformational changes of both gates were simultaneously monitored after labelling the G116C position with tetramethylrhodamine (TMR) within a W67 KcsA background. At a high degree of protein labeling, fluorescence anisotropy measurements showed that the pH-induced KcsA gating elicited a variation in the homo-FRET efficiency among the conjugated TMR dyes (TMR homo-FRET), while the conformation of the SF was simultaneously tracked (W67 homo-FRET). The dependence of the activation pKa of the inner gate with the ion occupancy of the SF unequivocally confirmed the allosteric communication between the two gates of KcsA. This simple TMR homo-FRET based ratiometric assay can be easily extended to study the conformational dynamics associated with the gating of other ion channels and their modulation.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
- Correspondence: (M.L.R.); (A.C.)
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - José M. González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Manuel Prieto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (M.L.R.); (A.C.)
| |
Collapse
|
25
|
Renault K, Chevalier A, Bignon J, Jacquemin D, Richard J, Romieu A. Coumarin‐Pyronin Hybrid Dyes: Synthesis, Fluorescence Properties and Theoretical Calculations**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kévin Renault
- ICMUB, UMR 6302, CNRS Univ. Bourgogne Franche-Comté 9, Avenue Alain Savary 21000 Dijon France
| | - Arnaud Chevalier
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Denis Jacquemin
- CEISAM Lab, UMR 6230 Université de Nantes CNRS 44000 Nantes France
| | - Jean‐Alexandre Richard
- Functional Molecules and Polymers Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology and Research (A*STAR) 8 Biomedical Grove, Neuros, #07-01 138665 Singapore Singapore
- Research and Technology Development Illumina 29 Woodlands Industrial Park E1 757716 Singapore Singapore
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS Univ. Bourgogne Franche-Comté 9, Avenue Alain Savary 21000 Dijon France
| |
Collapse
|
26
|
Joseph J, Baumann KN, Postigo A, Bollepalli L, Bohndiek SE, Hernández-Ainsa S. DNA-Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo. Adv Healthc Mater 2021; 10:e2001739. [PMID: 33191661 DOI: 10.1002/adhm.202001739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 01/01/2023]
Abstract
Optoacoustic tomography (OT) enables non-invasive deep tissue imaging of optical contrast at high spatio-temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near-infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA-based nanocarrier (DNA-NC) platforms is introduced. DNA-NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA-NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA-NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
Collapse
Affiliation(s)
- James Joseph
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Kevin N Baumann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alejandro Postigo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Laura Bollepalli
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- ARAID Foundation, Government of Aragon, Zaragoza, 50018, Spain
| |
Collapse
|
27
|
Inoue A, Ohmuro-Matsuyama Y, Kitaguchi T, Ueda H. Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sens 2020; 5:3457-3464. [PMID: 33169966 DOI: 10.1021/acssensors.0c01404] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Quenchbody (Q-body)" is a quench-based fluorescent biosensor labeled with a fluorescent dye near the antigen-binding site of an antibody. Q-bodies can detect a range of target molecules quickly by simply mixing with a sample. However, the development of Q-bodies using VHH-nanobodies derived from camelid heavy-chain antibodies has not been reported despite their favorable characteristics. Here, we report a "mini Q-body" that can detect the chemotherapy agent methotrexate (MTX) by using anti-MTX nanobody. Three kinds of constructs each encoding an N-terminal Cys-tag and anti-MTX VHH gene with a different length of linker (GGGS)n (n = 0, 2, and 4) between them were prepared followed by the expression in Escherichia coli and labeling with several dye maleimides. When the fluorescence intensities in the presence of varied MTX concentrations were measured, TAMRA-labeled nanobodies showed a higher response than ATTO520- or R6G-labeled ones. Especially, TAMRA C6-labeled mini Q-body with no linker showed the highest response of ∼6-fold and a low detection limit of 0.56 nM. When each Trp residue in the mini Q-body was mutated to address the quenching mechanism, the major role of Trp34 at CDR1 in quenching was revealed. Furthermore, the mini Q-body could detect MTX in 50% human serum with a low detection limit of 1.72 nM, showing its applicability to therapeutic drug monitoring. This study is expected to become the basis of the construction of highly responsive mini Q-bodies for sensitive detection of many molecules from small haptens to larger proteins, which will lead to broader applications such as point-of-care tests.
Collapse
Affiliation(s)
- Akihito Inoue
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
28
|
Helmerich DA, Beliu G, Sauer M. Multiple-Labeled Antibodies Behave Like Single Emitters in Photoswitching Buffer. ACS NANO 2020; 14:12629-12641. [PMID: 32804475 DOI: 10.1021/acsnano.0c06099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degree of labeling (DOL) of antibodies has so far been optimized for high brightness and specific and efficient binding. The influence of the DOL on the blinking performance of antibodies used in direct stochastic optical reconstruction microscopy (dSTORM) has so far attained limited attention. Here, we investigated the spectroscopic characteristics of IgG antibodies labeled at DOLs of 1.1-8.3 with Alexa Fluor 647 (Al647) at the ensemble and single-molecule level. Multiple-Al647-labeled antibodies showed weak and strong quenching interactions in aqueous buffer but could all be used for dSTORM imaging with spatial resolutions of ∼20 nm independent of the DOL. Single-molecule fluorescence trajectories and photon antibunching experiments revealed that individual multiple-Al647-labeled antibodies show complex photophysics in aqueous buffer but behave as single emitters in photoswitching buffer independent of the DOL. We developed a model that explains the observed blinking of multiple-labeled antibodies and can be used for the development of improved fluorescent probes for dSTORM experiments.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
29
|
Rapid Target Binding and Cargo Release of Activatable Liposomes Bearing HER2 and FAP Single-Chain Antibody Fragments Reveal Potentials for Image-Guided Delivery to Tumors. Pharmaceutics 2020; 12:pharmaceutics12100972. [PMID: 33076292 PMCID: PMC7650594 DOI: 10.3390/pharmaceutics12100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Liposomes represent suitable tools for the diagnosis and treatment of a variety of diseases, including cancers. To study the role of the human epidermal growth factor receptor 2 (HER2) as target in cancer imaging and image-guided deliveries, liposomes were encapsulated with an intrinsically quenched concentration of a near-infrared fluorescent dye in their aqueous interior. This resulted in quenched liposomes (termed LipQ), that were fluorescent exclusively upon degradation, dye release, and activation. The liposomes carried an always-on green fluorescent phospholipid in the lipid layer to enable tracking of intact liposomes. Additionally, they were functionalized with single-chain antibody fragments directed to fibroblast activation protein (FAP), a marker of stromal fibroblasts of most epithelial cancers, and to HER2, whose overexpression in 20–30% of all breast cancers and many other cancer types is associated with a poor treatment outcome and relapse. We show that both monospecific (HER2-IL) and bispecific (Bi-FAP/HER2-IL) formulations are quenched and undergo HER2-dependent rapid uptake and cargo release in cultured target cells and tumor models in mice. Thereby, tumor fluorescence was retained in whole-body NIRF imaging for 32–48 h post-injection. Opposed to cell culture studies, Bi-FAP/HER2-IL-based live confocal microscopy of a high HER2-expressing tumor revealed nuclear delivery of the encapsulated dye. Thus, the liposomes have potentials for image-guided nuclear delivery of therapeutics, and also for intraoperative delineation of tumors, metastasis, and tumor margins.
Collapse
|
30
|
He K, Zeng S, Qian L. Recent progress in the molecular imaging of therapeutic monoclonal antibodies. J Pharm Anal 2020; 10:397-413. [PMID: 33133724 PMCID: PMC7591813 DOI: 10.1016/j.jpha.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/01/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies have become one of the central components of the healthcare system and continuous efforts are made to bring innovative antibody therapeutics to patients in need. It is equally critical to acquire sufficient knowledge of their molecular structure and biological functions to ensure the efficacy and safety by incorporating new detection approaches since new challenges like individual differences and resistance are presented. Conventional techniques for determining antibody disposition including plasma drug concentration measurements using LC-MS or ELISA, and tissue distribution using immunohistochemistry and immunofluorescence are now complemented with molecular imaging modalities like positron emission tomography and near-infrared fluorescence imaging to obtain more dynamic information, while methods for characterization of antibody's interaction with the target antigen as well as visualization of its cellular and intercellular behavior are still under development. Recent progress in detecting therapeutic antibodies, in particular, the development of methods suitable for illustrating the molecular dynamics, is described here.
Collapse
Affiliation(s)
- Kaifeng He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Synthesis of Quenchbodies for One-Pot Detection of Stimulant Drug Methamphetamine. Methods Protoc 2020; 3:mps3020043. [PMID: 32545237 PMCID: PMC7359713 DOI: 10.3390/mps3020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The problem of illicit drug use and addiction is an escalating issue worldwide. As such, fast and precise detection methods are needed to help combat the problem. Herein, the synthesis method for an anti-methamphetamine Quenchbody (Q-body), a promising sensor for use in simple and convenient assays, has been described. The fluorescence intensity of the Q-body generated by two-site labeling of Escherichia coli produced anti-methamphetamine antigen-binding fragment (Fab) with TAMRA-C2-maleimide dyes increased 5.1-fold over background in the presence of a hydroxyl methamphetamine derivative, 3-[(2S)-2-(methylamino)propyl]phenol. This derivative has the closest structure to methamphetamine of the chemicals available for use in a laboratory. Our results indicate the potential use of this Q-body as a novel sensor for the on-site detection of methamphetamine, in such occasions as drug screening at workplace, suspicious substance identification, and monitoring patients during drug rehabilitation.
Collapse
|
32
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgräber UK, Fahr A, Hilger I. Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes. Pharmaceutics 2020; 12:pharmaceutics12040370. [PMID: 32316521 PMCID: PMC7238156 DOI: 10.3390/pharmaceutics12040370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.
Collapse
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ansgar M. Kollmeier
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital-Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany;
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany;
| | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| |
Collapse
|
33
|
Gu L, Renault K, Romieu A, Richard JA, Srinivasan R. Synthesis and spectral properties of 6′-triazolyl-dihydroxanthene-hemicyanine fused near-infrared dyes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01724h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper(i)-catalyzed azide alkyne cycloaddition (CuAAC) to explore the fluorogenic potential of near-infrared (NIR) dihydroxanthene (DHX) triazole dyes.
Collapse
Affiliation(s)
- Lingyue Gu
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| | - Kévin Renault
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Jean-Alexandre Richard
- Functional Molecules and Polymers Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR)
- Neuros, #07-01 138665
- Singapore
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
34
|
Yamamoto K, Kamiya M, Urano Y. Highly sensitive fluorescence imaging of cancer with avidin-protease probe conjugate. Bioorg Med Chem Lett 2019; 29:126663. [PMID: 31521477 DOI: 10.1016/j.bmcl.2019.126663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023]
Abstract
It is a long-term goal of cancer diagnosis to develop tumor-imaging techniques that have sufficient specificity and sensitivity to detect small tumor nodules during surgery or endoscopic surgery. Here, we introduce an avidin-conjugated fluorescence probe, Avidin-Leu-HMRG, which consists of a cancer-targeting macromolecule (avidin) and a protease-activatable probe. The conjugate has a high affinity for lectin on cancer cells and undergoes endocytosis, followed by irreversible fluorescence activation due to cleavage by lysosomal leucine aminopeptidase. In a mouse model of peritoneal ovarian metastases, the probe could detect submillimeter-sized tumor nodules with a high S/N ratio at 1 h after intraperitoneal injection.
Collapse
Affiliation(s)
- Kyoko Yamamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
35
|
Effect of molecular packing on modulation of electronic properties of organic donor–acceptor hybrid gels. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
37
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
38
|
Macrophage-targeted, enzyme-triggered fluorescence switch-on system for detection of embolism-vulnerable atherosclerotic plaques. J Control Release 2019; 302:105-115. [DOI: 10.1016/j.jconrel.2019.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023]
|
39
|
Kusano S, Matsumoto K, Hayashida O. Modular design for fluorophore homodimer probes using diethylentriamine as a common spacer. Org Biomol Chem 2019; 17:3599-3603. [PMID: 30912560 DOI: 10.1039/c9ob00406h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic fluorophore homodimer probes 1 and 2 bearing 7-aminocoumarin and naphthalimide dyes, respectively, connected via diethylenetriamine (DETA) spacer, have been developed to demonstrate the validity of our modular probe design on the basis of the triamine-based spacer.
Collapse
Affiliation(s)
- Shuhei Kusano
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
40
|
Single-Step Detection of the Influenza Virus Hemagglutinin Using Bacterially-Produced Quenchbodies. SENSORS 2018; 19:s19010052. [PMID: 30583603 PMCID: PMC6338965 DOI: 10.3390/s19010052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
We have successfully generated a Quenchbody that enables the detection of the influenza virus hemagglutinin (HA), in a simple and convenient manner. By two-site labeling of the bacterially-produced anti-HA Fab with ATTO520, its fluorescence intensity was increased to 4.4-fold, in the presence of a nanomolar concentration of H1N1 HA. Our results indicate the potential use of this Quenchbody, as a sensor for the simple in situ detection of influenza A virus.
Collapse
|
41
|
Ogata F, Nagaya T, Maruoka Y, Akhigbe J, Meares A, Lucero MY, Satraitis A, Fujimura D, Okada R, Inagaki F, Choyke PL, Ptaszek M, Kobayashi H. Activatable Near-Infrared Fluorescence Imaging Using PEGylated Bacteriochlorin-Based Chlorin and BODIPY-Dyads as Probes for Detecting Cancer. Bioconjug Chem 2018; 30:169-183. [PMID: 30475591 DOI: 10.1021/acs.bioconjchem.8b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Near infrared (NIR) fluorescent probes are attractive tools for biomedical in vivo imaging due to the relatively deeper tissue penetration and lower background autofluorescence. Activatable probes are turned on only after binding to their target, further improving target to background ratios. However, the number of available activatable NIR probes is limited. In this study, we introduce two types of activatable NIR fluorophores derived from bacteriochlorin: chlorin-bacteriochlorin energy-transfer dyads and boron-dipyrromethene (BODIPY)-bacteriochlorin energy-transfer dyads. These fluorophores are characterized by multiple narrow excitation bands with relatively strong emission in the NIR. Targeted bacteriochlorin-based antibody or peptide probes have been previously limited by aggregation after conjugation. Polyethylene glycol (PEG) chains were added to improve the hydrophilicity without altering pharmacokinetics of the targeting moieties. These PEGylated bacteriochlorin-based activatable fluorophores have potential as targeted activatable, multicolor NIR fluorescent probes for in vivo applications.
Collapse
Affiliation(s)
- Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Joshua Akhigbe
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Adam Meares
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Melissa Y Lucero
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| |
Collapse
|
42
|
Ruan Z, Yuan P, Li T, Tian Y, Cheng Q, Yan L. Glutathione Triggered Near Infrared Fluorescence Imaging-Guided Chemotherapy by Cyanine Conjugated Polypeptide. ACS Biomater Sci Eng 2018; 4:4208-4218. [DOI: 10.1021/acsbiomaterials.8b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Youliang Tian
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Quan Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| |
Collapse
|
43
|
Donaphon B, Bloom LB, Levitus M. Photophysical characterization of interchromophoric interactions between rhodamine dyes conjugated to proteins. Methods Appl Fluoresc 2018; 6:045004. [PMID: 29985159 DOI: 10.1088/2050-6120/aad20f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rhodamine dyes in aqueous solution form non-fluorescent dimers with a plane-to-plane stacking geometry (H-dimers). The self-quenching properties of these dimers have been exploited to probe the conformation and dynamics of proteins using a variety of fluorescence approaches that require the interpretation of fluorescence intensities, lifetimes and fluctuations. Here, we report on a systematic study of the photophysical properties of three rhodamine dyes (tetramethylrhodamine, Alexa 488 and Alexa 546) covalently bound to the E. coli sliding clamp (β clamp) with emphasis on the properties of the H-dimers that form when the dimeric protein is labeled with one dye at each side of the dimer interface. Overall, results are consistent with an equilibrium between non-emissive dimers and unstacked monomers that experience efficient dynamic quenching Protein constructs labeled with tetramethylrhodamine show the characteristic features of H-dimers in their absorption spectra and a c.a. 40-fold quenching of fluorescence intensity. The degree of quenching decreases when samples are labeled with a tetramethylrhodamine derivative bearing a six-carbon linker. H-dimers do not form in samples labeled with Alexa 488 and A546, but fluorescence is still quenched in these samples through a dynamic mechanism. These results should help researchers design and interpret fluorescence experiments that take advantage of the properties of rhodamine dimers in protein research.
Collapse
Affiliation(s)
- Bryan Donaphon
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States of America
| | | | | |
Collapse
|
44
|
Peveler WJ, Algar WR. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chem Biol 2018; 13:1752-1766. [PMID: 29461796 DOI: 10.1021/acschembio.7b01022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Förster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
Collapse
Affiliation(s)
- William J. Peveler
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
45
|
Xiao Q, Chen T, Chen S. Fluorescent contrast agents for tumor surgery. Exp Ther Med 2018; 16:1577-1585. [PMID: 30186374 PMCID: PMC6122374 DOI: 10.3892/etm.2018.6401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4–11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near-infrared fluorescence imaging allows for real-time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near-infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5-aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker-targeted fluorescent dyes, which allow conjugation to different target sites.
Collapse
Affiliation(s)
- Qi Xiao
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Tianming Chen
- Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China
| | - Shilin Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
46
|
Martín-Serrano Ortiz Á, Stenström P, Mesa Antunez P, Andrén OCJ, Torres MJ, Montañez MI, Malkoch M. Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ángela Martín-Serrano Ortiz
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Patrik Stenström
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Pablo Mesa Antunez
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Oliver C. J. Andrén
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Maria J. Torres
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Maria I. Montañez
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| |
Collapse
|
47
|
Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Anal Bioanal Chem 2018; 410:4219-4226. [DOI: 10.1007/s00216-018-1074-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
48
|
Dong J, Fujita R, Zako T, Ueda H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal Biochem 2018; 550:61-67. [PMID: 29678763 DOI: 10.1016/j.ab.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
A quenchbody (Q-body) is an antibody-based biosensor that employs fluorescence quenching of the dye(s) attached to the antibody fragment, which are de-quenched upon antigen binding. In this study, we aimed to develop Fab type Q-bodies (UQ-bodies) to aid the diagnosis of Alzheimer's disease (AD). Characteristic senile plaques in AD consist of amyloid-β peptide (Aβ) generated from the amyloid precursor protein. Aβ42, one of the major peptide forms, aggregates fast and manifests higher neurotoxicity. Recent studies showed that Aβ oligomers, such as Aβ-derived diffusible ligand (ADDL), are more toxic than fibrils. Thus, detection of Aβ and its oligomers in body fluid might help detect deterioration caused by the disease. To this end, the Fab fragment of the anti-Aβ antibody h12A11, which binds preferentially to ADDL, was expressed in Escherichia coli, and labeled with a fluorescent dye at the N terminus of either the heavy chain, or the heavy and light chains, via Cys-containing tag(s) to prepare UQ-bodies. As a result, the double-labeled UQ-bodies detected ADDL with higher sensitivity than that for the Aβ peptide. In addition, the UQ-body could be used to image aggregated Aβ with a low background, which suggested the potential of UQ-bodies as a fast bioimaging tool.
Collapse
Affiliation(s)
- Jinhua Dong
- Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University, 7166 Baotongxi, Weifang, Shandong 261053, PR China; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Richi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Ehime 790-8577 Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| |
Collapse
|
49
|
Jeong HJ, Matsumoto K, Itayama S, Kodama K, Abe R, Dong J, Shindo M, Ueda H. Construction of dye-stapled Quenchbodies by photochemical crosslinking to antibody nucleotide-binding sites. Chem Commun (Camb) 2018; 53:10200-10203. [PMID: 28856370 DOI: 10.1039/c7cc03043f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully converted an antibody single-chain variable fragment and a full-sized antibody to Quenchbodies, which are a type of powerful fluorescent immunosensor, through ultraviolet-based photochemical crosslinking of an indole-3-butyric acid-conjugated fluorescent dye to the nucleotide-binding sites near the antigen-binding sites.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim Biophys Acta Gen Subj 2018; 1862:1389-1400. [PMID: 29545133 DOI: 10.1016/j.bbagen.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endoglin (CD105) is overexpressed on tumor cells and tumor vasculatures, making it a potential target for diagnostic imaging and therapy of different neoplasms. Therefore, studies on nanocarrier systems designed for endoglin-directed diagnostic and drug delivery purposes would expose the feasibility of targeting endoglin with therapeutics. METHODS Liposomes carrying high concentrations of a near-infrared fluorescent dye in the aqueous interior were prepared by the lipid film hydration and extrusion procedure, then conjugated to single chain antibody fragments either selective for murine endoglin (termed mEnd-IL) or directed towards human endoglin (termed hEnd-IL). A combination of Dynamic Light Scattering, electron microscopy, cell binding and uptake assays, confocal microscopy and in vivo fluorescence imaging of mice bearing xenografted human breast cancer and human fibrosarcoma models were implemented to elucidate the potentials of the liposomes. RESULTS The mEnd-IL and hEnd-IL were highly selective for the respective murine- and human endoglin expressing cells in vitro and in vivo. Hence, the hEnd-IL bound distinctly to the tumor cells and enabled suitable fluorescence imaging of the tumors, whereas the mEnd-IL bound the tumor vasculature, but also to the liver, kidney and lung vasculature of mice. CONCLUSIONS The work highlights key differences between targeting vascular (murine) and neoplastic (human) endoglin in animal studies, and suggests that the hEnd-IL can serve as a delivery system that targets human endoglin overexpressed in pathological conditions. GENERAL SIGNIFICANCE The endoglin-targeting liposomes presented herewith represent strategic tools for the future implementation of endoglin-directed neoplastic and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| |
Collapse
|