1
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
2
|
Peng HN, Ye LM, Zhang M, Yang YC, Zheng J. Synthesis and antimicrobial activity of 3,4-dihydropyrimidin-2(1H)-one derivatives containing a hydrazone moiety. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe title compounds were synthesized and characterized by IR,1H NMR,13C NMR and HRMS data. Their antimicrobial activities against bacterial strainsEscherichia coliand fungal strainsAspergillus nigerwere evaluated.
Collapse
|
3
|
Agten SM, Dawson PE, Hackeng TM. Oxime conjugation in protein chemistry: from carbonyl incorporation to nucleophilic catalysis. J Pept Sci 2016; 22:271-9. [PMID: 27006095 DOI: 10.1002/psc.2874] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
Use of oxime forming reactions has become a widely applied strategy for peptide and protein bioconjugation. The efficiency of the reaction and robust stability of the oxime product has led to the development of a growing list of methods to introduce the required ketone or aldehyde functionality site specifically into proteins. Early methods focused on site-specific oxidation of an N-terminal serine or threonine and more recently transamination methods have been developed to convert a broader set of N-terminal amino acids into a ketone or aldehyde. More recently, site-specific modification of protein has been attained through engineering enzymes involved in posttranslational modifications in order to accommodate aldehyde-containing substrates. Similarly, a growing list of unnatural amino acids can be introduced through development of selective amino-acyl tRNA synthetase/tRNA pairs combined with codon reassignment. In the case of glycoproteins, glycans can be selectively modified chemically or enzymatically to introduce aldehyde functional groups. Finally, the total chemical synthesis of proteins complements these biological and chemoenzymatic approaches. Once introduced, the oxime ligation of these aldehyde and ketone groups can be catalyzed by aniline or a variety of aniline derivatives to tune the activity, pH preference, stability and solubility of the catalyst. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stijn M Agten
- Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tilman M Hackeng
- Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
El-Mahdi O, Melnyk O. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug Chem 2013; 24:735-65. [PMID: 23578008 DOI: 10.1021/bc300516f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the 1990s, α-oxo aldehyde or glyoxylic acid chemistry has inspired a vast array of synthetic tools for tailoring peptide or protein structures, for developing peptides endowed with novel physicochemical properties or biological functions, for assembling a large diversity of bioconjugates or hybrid materials, or for designing peptide-based micro or nanosystems. This past decade, important developments have enriched the α-oxo aldehyde synthetic tool box in peptide bioconjugation chemistry and explored novel applications. The aim of this review is to give a large overview of this creative field.
Collapse
Affiliation(s)
- Ouafâa El-Mahdi
- Université Sidi Mohamed Ben Abdellah, Faculté Polydisciplinaire de Taza, Morocco
| | | |
Collapse
|
5
|
Yablokova TV, Chelushkin PS, Dorosh MY, Efremov AM, Orlov SV, Burov SV. Synthesis of GnRH analogues and their application in targeted gene delivery systems. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1068162012010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hapuarachchige S, Montaño G, Ramesh C, Rodriguez D, Henson LH, Williams CC, Kadavakkollu S, Johnson DL, Shuster CB, Arterburn JB. Design and synthesis of a new class of membrane-permeable triazaborolopyridinium fluorescent probes. J Am Chem Soc 2011; 133:6780-90. [PMID: 21473622 PMCID: PMC3244355 DOI: 10.1021/ja2005175] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Gilbert Montaño
- Department of Biology, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Chinnasamy Ramesh
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Delany Rodriguez
- Department of Biology, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Lauren H. Henson
- Department of Biology, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Casey C. Williams
- Department of Biology, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Samuel Kadavakkollu
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Dennis L. Johnson
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| | - Jeffrey B. Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM 88003, USA
| |
Collapse
|
7
|
de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E. Nonnatural Amino Acids for Site-Specific Protein Conjugation. Bioconjug Chem 2009; 20:1281-95. [DOI: 10.1021/bc800294a] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Albert J. de Graaf
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Marlous Kooijman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|