1
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
2
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
3
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
4
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
5
|
Drożdż W, Walczak A, Stefankiewicz AR. Simultaneous Formation of a Fully Organic Triply Dynamic Combinatorial Library. Org Lett 2021; 23:3641-3645. [PMID: 33904751 PMCID: PMC8289287 DOI: 10.1021/acs.orglett.1c01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Here we report the
simultaneous formation of doubly and triply
dynamic libraries as a result of exchange reactions between functionalized
organic building blocks. A combination of three different reversible
covalent linkages involving a boronate ester transesterification along
with an imine and disulfide exchange was employed to generate a new
type of fully organic triply dynamic molecular assembly.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Anna Walczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Martinez-Amezaga M, Orrillo AG, Furlan RLE. Engineering multilayer chemical networks. Chem Sci 2019; 10:8338-8347. [PMID: 31803411 PMCID: PMC6844274 DOI: 10.1039/c9sc02166c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dynamic multilevel systems emerged in the last few years as new platforms to study thermodynamic systems. In this work, unprecedented fully communicated three-level systems are studied. First, different conditions were screened to selectively activate thiol/dithioacetal, thiol/thioester, and thiol/disulfide exchanges, individually or in pairs. Some of those conditions were applied, sequentially, to build multilayer dynamic systems wherein information, in the form of relative amounts of building blocks, can be directionally transmitted between different exchange pools. As far as we know, this is the first report of one synthetic dynamic chemical system where relationships between layers can be changed through network operations.
Collapse
Affiliation(s)
- Maitena Martinez-Amezaga
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - A Gastón Orrillo
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - Ricardo L E Furlan
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| |
Collapse
|
7
|
Reuther JF, Dahlhauser SD, Anslyn EV. Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angew Chem Int Ed Engl 2019; 58:74-85. [PMID: 30098086 PMCID: PMC10851707 DOI: 10.1002/anie.201808371] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 11/08/2022]
Abstract
Dynamic assembly of macromolecules in biological systems is one of the fundamental processes that facilitates life. Although such assembly most commonly uses noncovalent interactions, a set of dynamic reactions involving reversible covalent bonding is actively being exploited for the design of functional materials, bottom-up assembly, and molecular machines. This Minireview highlights recent implementations and advancements in the area of tunable orthogonal reversible covalent (TORC) bonds for these purposes, and provides an outlook for their expansion, including the development of synthetically encoded polynucleotide mimics.
Collapse
Affiliation(s)
- James F. Reuther
- Department of Chemistry, University of Texas at Austin Austin, TX (USA)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA (USA)
| | | | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin Austin, TX (USA)
| |
Collapse
|
8
|
Orrillo AG, Escalante AM, Martinez-Amezaga M, Cabezudo I, Furlan RLE. Molecular Networks in Dynamic Multilevel Systems. Chemistry 2018; 25:1118-1127. [DOI: 10.1002/chem.201804143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Maitena Martinez-Amezaga
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| |
Collapse
|
9
|
Reuther JF, Dahlhauser SD, Anslyn EV. Einstellbare orthogonale reversible kovalente Bindungen: dynamische Kontrolle über die molekulare Selbstorganisation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James F. Reuther
- Department of Chemistry University of Texas at Austin Austin TX USA
- Department of Chemistry University of Massachusetts Lowell Lowell MA USA
| | | | - Eric V. Anslyn
- Department of Chemistry University of Texas at Austin Austin TX USA
| |
Collapse
|
10
|
Orrillo AG, La-Venia A, Escalante AM, Furlan RLE. Rewiring Chemical Networks Based on Dynamic Dithioacetal and Disulfide Bonds. Chemistry 2018; 24:3141-3146. [DOI: 10.1002/chem.201705654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 01/09/2023]
Affiliation(s)
- A. Gastón Orrillo
- Instituto de Investigaciones para el Descubrimiento de, Fármacos de Rosario (UNR-CONICET); Ocampo y Esmeralda; 2000 Rosario Argentina
| | - Agustina La-Venia
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Suipacha 531 S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Instituto de Investigaciones para el Descubrimiento de, Fármacos de Rosario (UNR-CONICET); Ocampo y Esmeralda; 2000 Rosario Argentina
| | - Ricardo L. E. Furlan
- Instituto de Investigaciones para el Descubrimiento de, Fármacos de Rosario (UNR-CONICET); Ocampo y Esmeralda; 2000 Rosario Argentina
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; S2002LRK Rosario Argentina
| |
Collapse
|
11
|
Matysiak BM, Nowak P, Cvrtila I, Pappas CG, Liu B, Komáromy D, Otto S. Antiparallel Dynamic Covalent Chemistries. J Am Chem Soc 2017; 139:6744-6751. [PMID: 28440073 PMCID: PMC5438195 DOI: 10.1021/jacs.7b02575] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.
Collapse
Affiliation(s)
- Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivica Cvrtila
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Charalampos G Pappas
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bin Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dávid Komáromy
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Seifert HM, Ramirez Trejo K, Anslyn EV. Four Simultaneously Dynamic Covalent Reactions. Experimental Proof of Orthogonality. J Am Chem Soc 2016; 138:10916-24. [DOI: 10.1021/jacs.6b04532] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen M. Seifert
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Karina Ramirez Trejo
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Brachvogel RC, von Delius M. The Dynamic Covalent Chemistry of Esters, Acetals and Orthoesters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- René-Chris Brachvogel
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
- Friedrich-Alexander University Erlangen-Nürnberg (FAU); Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM); Henkestr. 42 91054 Erlangen Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
14
|
Orrillo AG, Escalante AM, Furlan RLE. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry. Chemistry 2016; 22:6746-9. [PMID: 26990904 DOI: 10.1002/chem.201600208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/22/2022]
Abstract
Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina
| | - Andrea M Escalante
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina
| | - Ricardo L E Furlan
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina. .,Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000), Argentina.
| |
Collapse
|
15
|
Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries. Int J Mol Sci 2015; 16:21858-72. [PMID: 26378519 PMCID: PMC4613285 DOI: 10.3390/ijms160921858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system.
Collapse
|
16
|
Bracchi ME, Fulton DA. Orthogonal breaking and forming of dynamic covalent imine and disulfide bonds in aqueous solution. Chem Commun (Camb) 2015; 51:11052-5. [PMID: 26067447 DOI: 10.1039/c5cc02716k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Orthogonal bond-breaking and forming of dynamic covalent disulfide and imine bonds in aqueous solution is demonstrated. Through judicious choice of reaction partners and conditions, it is possible to cleave and reform selectively these bonds in the presence of each other in the absence of unwanted competing processes.
Collapse
Affiliation(s)
- Michael E Bracchi
- A Chemical Nanoscience Laboratory, School of Chemistry, Newcastle University, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
17
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
18
|
Matache M, Bogdan E, Hădade ND. Selective Host Molecules Obtained by Dynamic Adaptive Chemistry. Chemistry 2014; 20:2106-31. [DOI: 10.1002/chem.201303504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Wilson A, Gasparini G, Matile S. Functional systems with orthogonal dynamic covalent bonds. Chem Soc Rev 2014; 43:1948-62. [DOI: 10.1039/c3cs60342c] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
Wong CH, Zimmerman SC. Orthogonality in organic, polymer, and supramolecular chemistry: from Merrifield to click chemistry. Chem Commun (Camb) 2013; 49:1679-95. [PMID: 23282586 DOI: 10.1039/c2cc37316e] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of orthogonality has been applied to many areas of chemistry, ranging from wave functions to chromatography. But it was Barany and Merrifield's orthogonal protecting group strategy that paved the way for solid phase peptide syntheses, other important classes of biomaterials such as oligosaccharides and oligonucleotides, and ultimately to a term in widespread usage that is focused on chemical reactivity and binding selectivity. The orthogonal protection strategy has been extended to the development of orthogonal activation, and recently the click reaction, for streamlining organic synthesis. The click reaction and its variants are considered orthogonal as the components react together in high yield and in the presence of many other functional groups. Likewise, supramolecular building blocks can also be orthogonal, thereby enabling programmed self-assembly, a superb strategy to create complex architectures. Overall, orthogonal reactions and supramolecular interactions have dramatically improved the syntheses, the preparation of functional materials, and the self-assembly of nanoscale structures.
Collapse
Affiliation(s)
- Chun-Ho Wong
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
22
|
Li J, Nowak P, Otto S. Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J Am Chem Soc 2013; 135:9222-39. [DOI: 10.1021/ja402586c] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
23
|
Escalante AM, Orrillo AG, Cabezudo I, Furlan RLE. Two-Stage Amplification of Receptors Using a Multilevel Orthogonal/Simultaneous Dynamic Combinatorial Library. Org Lett 2012; 14:5816-9. [DOI: 10.1021/ol3027335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
24
|
Miller BL. DCC in the development of nucleic acid targeted and nucleic acid inspired structures. Top Curr Chem (Cham) 2012; 322:107-37. [PMID: 21769715 DOI: 10.1007/128_2011_200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Nucleic acids were one of the first biological targets explored with DCC, and research into the application has continued to yield novel and useful structures for sequence- and structure-selective recognition of oligonucleotides. This chapter reviews major developments in DNA- and RNA-targeted DCC, including methods under development for the conversion of DCC-derived lead compounds into probe molecules suitable for studies in vitro and in vivo. Innovative applications of DCC for the discovery of new materials based on nucleic acids and new methods for the modification of nucleic acid structure and function are also discussed.
Collapse
Affiliation(s)
- Benjamin L Miller
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
25
|
Eppel S. A model for codependent reversible/irreversible growth processes. J Chem Phys 2012; 136:054705. [DOI: 10.1063/1.3681402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Gromova AV, Ciszewski JM, Miller BL. Ternary resin-bound Dynamic Combinatorial Chemistry. Chem Commun (Camb) 2012; 48:2131-3. [PMID: 22240966 DOI: 10.1039/c2cc17192a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ability to carry out simultaneous orthogonal exchange chemistries has opened new opportunities for increasing the numerical and structural diversity accessible to Dynamic Combinatorial Chemistry. We present proof-of-concept experiments demonstrating this concept is transferrable to resin-bound DCC, facilitating the generation and analysis of libraries with greater structural diversity.
Collapse
Affiliation(s)
- Anna V Gromova
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
27
|
Shema-Mizrachi M, Pavan GM, Levin E, Danani A, Lemcoff NG. Catalytic Chameleon Dendrimers. J Am Chem Soc 2011; 133:14359-67. [DOI: 10.1021/ja203690k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - G. M. Pavan
- Laboratory of Applied Mathematics and Physics (LAMFI), University of Applied Science of Southern Switzerland (SUPSI), Centro Galleria 2, Manno 6928, Switzerland
| | - E. Levin
- Department of Chemistry, Ben-Gurion University, Beer-Sheva, Israel
| | - A. Danani
- Laboratory of Applied Mathematics and Physics (LAMFI), University of Applied Science of Southern Switzerland (SUPSI), Centro Galleria 2, Manno 6928, Switzerland
| | - N. G. Lemcoff
- Department of Chemistry, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
28
|
Hunt RAR, Otto S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun (Camb) 2011; 47:847-58. [PMID: 21116521 DOI: 10.1039/c0cc03759a] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rosemary A R Hunt
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|