1
|
Komnatnyy VV, Nielsen TE, Qvortrup K. Bead-based screening in chemical biology and drug discovery. Chem Commun (Camb) 2018; 54:6759-6771. [PMID: 29888365 DOI: 10.1039/c8cc02486c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
Collapse
Affiliation(s)
- Vitaly V Komnatnyy
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | | | | |
Collapse
|
2
|
Ilari A, Genovese I, Fiorillo F, Battista T, De Ionna I, Fiorillo A, Colotti G. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors. Mol Pharm 2018; 15:3069-3078. [PMID: 29897765 DOI: 10.1021/acs.molpharmaceut.8b00185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.
Collapse
Affiliation(s)
- Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilaria Genovese
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Fabiana Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Theo Battista
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilenia De Ionna
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| |
Collapse
|
3
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
4
|
Abstract
In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique metabolism, where most enzymes are essential for parasitic survival and infectivity. Leishmania parasites and all the other members of the Trypanosomatids family depend on polyamines for growth and survival: the enzymes involved in the synthesis and utilization of spermidine and trypanothione, i.e., arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase and in particular trypanothione synthetase-amidase, trypanothione reductase and tryparedoxin-dependent peroxidase are promising targets for drug development. This review deals with recent structure-based studies on these enzymes, aimed at the discovery of inhibitors of this pathway.
Collapse
|
5
|
O’Sullivan MC, Durham TB, Valdes HE, Dauer KL, Karney NJ, Forrestel AC, Bacchi CJ, Baker JF. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 2015; 23:996-1010. [DOI: 10.1016/j.bmc.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
|
6
|
Abstract
SIGNIFICANCE Parasitic diseases affect hundreds of millions of people worldwide and represent major health problems. Treatment is becoming extremely difficult due to the emergence of drug resistance, the absence of effective vaccines, and the spread of insecticide-resistant vectors. Thus, identification of affordable and readily available drugs against resistant parasites is of global demand. RECENT ADVANCES Susceptibility of many parasites to oxidative stress is a well-known phenomenon. Therefore, generation of reactive oxygen species (ROS) or inhibition of endogenous antioxidant enzymes would be a novel therapeutic approach to develop antiparasitic drugs. This article highlights the unique metabolic pathways along with redox enzymes of unicellular (Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani, Entamoeba histolytica, and Trichomonas vaginalis) and multicellular parasites (Schistosoma mansoni), which could be utilized to promote ROS-mediated toxicity. CRITICAL ISSUES Enzymes involved in various vital redox reactions could be potential targets for drug development. FUTURE DIRECTIONS The identification of redox-active antiparasitic drugs along with their mode of action will help researchers around the world in designing novel drugs in the future.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
7
|
Hintersteiner M, Buehler C, Auer M. On-Bead Screens Sample Narrower Affinity Ranges of Protein-Ligand Interactions Compared to Equivalent Solution Assays. Chemphyschem 2012; 13:3472-80. [DOI: 10.1002/cphc.201200117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/27/2012] [Indexed: 11/06/2022]
|
8
|
Gellner M, Niebling S, Kuchelmeister HY, Schmuck C, Schlücker S. Plasmonically active micron-sized beads for integrated solid-phase synthesis and label-free SERS analysis. Chem Commun (Camb) 2011; 47:12762-4. [DOI: 10.1039/c1cc13562g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Chen X, Tan PH, Zhang Y, Pei D. On-bead screening of combinatorial libraries: reduction of nonspecific binding by decreasing surface ligand density. ACTA ACUST UNITED AC 2010; 11:604-11. [PMID: 19397369 DOI: 10.1021/cc9000168] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
On-bead screening of one-bead-one-compound (OBOC) libraries provides a powerful method for the rapid identification of active compounds against molecular or cellular targets. However, on-bead screening is susceptible to interference from nonspecific binding, which results in biased screening data and false positives. In this work, we have found that a major source of nonspecific binding is derived from the high ligand loading on the library beads, which permits a macromolecular target (e.g., a protein) to simultaneously interact with multiple ligands on the bead surface. To circumvent this problem, we have synthesized a phosphotyrosyl (pY)-containing peptide library on spatially segregated TentaGel microbeads, which feature a 10-fold reduced peptide loading on the bead surface but a normal peptide loading in the bead interior. The library was screened against a panel of 10 Src homology 2 (SH2) domains including those of Csk and Fyn kinases and adaptor protein SLAP, and the specific recognition motif(s) was successfully identified for each of the domains. In contrast, when the SH2 domains were screened against a control library that contained unaltered (high) ligand loading at the bead surface, six of them exhibited varying degrees of sequence biases, ranging from minor perturbation in the relative abundance of different sequences to the exclusive selection of false positive sequences that have no measurable affinity to the target protein. These results indicate that reduction of the ligand loading on the bead surface represents a simple, effective strategy to largely eliminate the interference from nonspecific binding, while preserving sufficient amounts of materials in the bead interior for compound identification. This finding should further expand the utility of OBOC libraries in biomedical research.
Collapse
Affiliation(s)
- Xianwen Chen
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
10
|
Two-Step Enzymatic Modification of Solid-Supported Bergenin in Aqueous and Organic Media. Tetrahedron Lett 2010; 51:1220. [PMID: 20174610 DOI: 10.1016/j.tetlet.2009.12.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The natural flavonoid bergenin was directly immobilized onto carboxylic acid functionalized controlled pore glass (carboxy-CPG) at 95% yield. Immobilized bergenin was brominated via chloroperoxidase in aqueous solution and then transesterified with vinyl butyrate in diisopropyl ether by subtilisin carslberg (SC) extracted into the organic solvent via ion pairing. Enzymatic cleavage of 7-bromo-4-butyrylbergenin from carboxy-CPG (9.6% final yield) was accomplished using lipase B (LipB) in an aqueous/organic mixture (90/10 v/v of water/acetonitrile), demonstrating the feasibility of solid phase biocatalysis of a natural product in aqueous and non-aqueous media.
Collapse
|
11
|
Machon U, Büchold C, Stempka M, Schirmeister T, Gelhaus C, Leippe M, Gut J, Rosenthal PJ, Kisker C, Leyh M, Schmuck C. On-bead screening of a combinatorial fumaric acid derived peptide library yields antiplasmodial cysteine protease inhibitors with unusual peptide sequences. J Med Chem 2009; 52:5662-72. [PMID: 19715342 DOI: 10.1021/jm900629w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new class of cysteine protease inhibitors based on fumaric acid derived oligopeptides was successfully identified from a high-throughput screening of a solid-phase bound combinatorial library. As target enzymes falcipain and rhodesain were used, which play important roles in the life cycles of the parasites which cause malaria (Plasmodium falciparum) and African sleeping sickness (Trypanosoma brucei rhodesiense). The best inhibitors with unusual amino acid sequences not reported before for this type of enzyme were also fully analyzed in detail in solution. K(i) values in the lower micromolar and even nanomolar region were found. Some inhibitors are even active against plasmodia and show good selectivity relative to other enzymes. Also the mechanism of action was studied and could be shown to be irreversible inhibition.
Collapse
Affiliation(s)
- Uwe Machon
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitatstrasse 7, 45141 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Joo SH, Pei D. Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: determination of the sequence specificity of PDZ domains. Biochemistry 2008; 47:3061-72. [PMID: 18232644 DOI: 10.1021/bi7023628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preparation of support-bound combinatorial peptide libraries with free C-termini has been challenging in the past because solid-phase peptide synthesis usually starts from the C-terminus, which must be covalently attached to the solid support. In this work, we have developed a general methodology to synthesize and screen one-bead-one-compound peptide libraries containing free C-termini. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers, and peptides were synthesized on the beads in the conventional C --> N manner, with their C-termini attached to the support through an ester linkage on the bead surface but through an amide bond in the bead interior. The surface peptides were cyclized between their N-terminal amine and a carboxyl group installed at a C-terminal linker sequence, while the internal peptides were kept in the linear form. Base hydrolysis of the ester linkage in the cyclic peptides regenerated linear peptides that contained a free alpha-carboxyl group at their C-termini but remained covalently attached to the resin via the N-termini ("inverted" peptides). An inverted peptide library containing five random residues (theoretical diversity of 3.2 x 10 (6)) was synthesized and screened for binding to four postsynaptic density-95/discs large/zona occluden-1 (PDZ) domains of sodium-hydrogen exchanger regulatory factor-1 (NHERF1) and channel-interacting PDZ domain protein (CIPP). The identity of the binding peptides was determined by sequencing the linear encoding peptides inside the bead by partial Edman degradation/mass spectrometry. Consensus recognition motifs were identified for the PDZ domains, and representative peptides were resynthesized and confirmed for binding to their cognate PDZ domains. This method should be generally applicable to all PDZ domains as well as other protein domains and enzymes that recognize the C-terminus of their target proteins.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
13
|
Schmuck C, Wich P, Küstner B, Kiefer W, Schlücker S. Direkte und markierungsfreie Detektion von festphasengebundenen Substanzen durch oberflächenverstärkte Raman-Streuung. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Schmuck C, Wich P, Küstner B, Kiefer W, Schlücker S. Direct and Label-Free Detection of Solid-Phase-Bound Compounds by Using Surface-Enhanced Raman Scattering Microspectroscopy. Angew Chem Int Ed Engl 2007; 46:4786-9. [PMID: 17492809 DOI: 10.1002/anie.200605190] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carsten Schmuck
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Akbar U, Aschenbrenner CD, Harper MR, Johnson HR, Dordick JS, Clark DS. Direct solubilization of enzyme aggregates with enhanced activity in nonaqueous media. Biotechnol Bioeng 2007; 96:1030-9. [PMID: 17171716 DOI: 10.1002/bit.21291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A protein solubilization method has been developed to directly solubilize protein clusters into organic solvents containing small quantities of surfactant and trace amounts of water. Termed "direct solubilization," this technique was shown to solubilize three distinct proteins - subtilisin Carlsberg, lipase B from Candida antarctica, and soybean peroxidase - with much greater efficiencies than extraction of the protein from aqueous solution into surfactant-containing organic solvents (referred to as extraction). More significant, however, was the dramatic increase in directly solubilized enzyme activity relative to extracted enzyme activity, particularly for subtilisin and lipase in polar organic solvents. For example, in THF the initial rate towards bergenin transesterification was ca. 70 times higher for directly solubilized subtilisin than for the extracted enzyme. Furthermore, unlike their extracted counterparts, the directly solubilized enzymes yielded high product conversions across a spectrum of non-polar and polar solvents. Structural characterization of the solubilized enzymes via light scattering and atomic force microscopy revealed soluble proteins consisting of active enzyme aggregates containing approximately 60 and 100 protein molecules, respectively, for subtilisin and lipase. Formation of such clusters appears to provide a microenvironment conducive to catalysis and, in polar organic solvents at least, may protect the enzyme from solvent-induced inactivation.
Collapse
Affiliation(s)
- Umar Akbar
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
16
|
Dixon SM, Li P, Liu R, Wolosker H, Lam KS, Kurth MJ, Toney MD. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries. J Med Chem 2006; 49:2388-97. [PMID: 16610782 DOI: 10.1021/jm050701c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-bead one-compound combinatorial chemistry together with a high-throughput screen based on fluorescently labeled enzyme allowed the identification of slow binding inhibitors of human serine racemase (hSR). A peptide library of topographically segregated encoded resin beads was synthesized, and several hSR-binding compounds were isolated, identified, and resynthesized for further kinetic study. Of these, several showed inhibitory effects with moderate potency (high micromolar K(I)s) toward hSR. A clear structural motif was identified consisting of 3-phenylpropionic acid and histidine moieties. Importantly, the inhibitors identified showed no structural similarities to the natural substrate, L-serine. Detailed kinetic analyses of the properties of selected inhibitors show that the screening protocol used here selectively identifies slow binding inhibitors. They provide a pharmacophore for the future isolation of more potent ligands that may prove useful in probing and understanding the biological role of hSR.
Collapse
Affiliation(s)
- Seth M Dixon
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Dixon MJ, Maurer RI, Biggi C, Oyarzabal J, Essex JW, Bradley M. Mechanism and structure-activity relationships of norspermidine-based peptidic inhibitors of trypanothione reductase. Bioorg Med Chem 2005; 13:4513-26. [PMID: 15922604 DOI: 10.1016/j.bmc.2005.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 04/11/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
A library of polyamine-peptide conjugates based around some previously identified inhibitors of trypanothione reductase was synthesised by parallel solid-phase chemistry and screened. Kinetic analysis of library members established that subtle structural changes altered their mechanism of action, switching between competitive and non-competitive inhibition. The mode of action of the non-competitive inhibitors was investigated in detail by a variety of techniques including enzyme kinetic analysis (looking at both NADPH and trypanothione disulfide substrates), gel filtration chromatography and analytical ultracentrifugation, leading to the identification of an allosteric mode of inhibition.
Collapse
Affiliation(s)
- Mark J Dixon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | | | | | |
Collapse
|
18
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiol Proteins as Guardians of the Intracellular Redox Milieu in Parasites: Old and New Drug Targets in Trypanosomes and Malaria-Causing Plasmodia. Angew Chem Int Ed Engl 2005; 44:690-715. [PMID: 15657967 DOI: 10.1002/anie.200300639] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.
Collapse
Affiliation(s)
- R Luise Krauth-Siegel
- Universität Heidelberg, Biochemie-Zentrum, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
19
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiolproteine als Hüter des intrazellulären Redoxmilieus bei Parasiten: alte und neue Wirkstoff-Targets bei Trypanosomiasis und Malaria. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300639] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Girard C, Tranchant I, Gorteau V, Potey L, Herscovici J. Development of a DNA Interaction Test with Small Molecules Still Grafted on Solid Phase. ACTA ACUST UNITED AC 2004; 6:275-8. [PMID: 15002977 DOI: 10.1021/cc0499744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Girard
- Synthèse, Imagerie et Nanochimie, Laboratoire de Pharmacologie Chimique et Génétique (FRE 2463 CNRS/U266 INSERM), Ecole Nationale Supérieure de Chimie de Paris, 75005 Paris, France
| | | | | | | | | |
Collapse
|
21
|
Abstract
There are a lack of effective chemotherapies for many parasitic diseases. Polyamine pathways have been reported as potential targets for the development of new chemotherapies against parasitic diseases. In the present study, different libraries of substituted diamines totalling 78 compounds have been synthesized on solid support and their activities against malaria and leishmania parasites have been determined. Most active compounds demonstrated submicromolar activities against both organisms and their structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Guillermo R Labadie
- Department of Medicinal Chemistry, School of Pharmacy, National Center of Natural Product Research, University of Mississippi, University, MS 38677, USA
| | | | | |
Collapse
|
22
|
Woycechowsky KJ, Hook BA, Raines RT. Catalysis of protein folding by an immobilized small-molecule dithiol. Biotechnol Prog 2003; 19:1307-14. [PMID: 12892495 DOI: 10.1021/bp0257123] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isomerization of non-native disulfide bonds often limits the rate of protein folding. Small-molecule dithiols can catalyze this process. Here, a symmetric trithiol, tris(2-mercaptoacetamidoethyl)amine, is designed on the basis of criteria known to be important for efficient catalysis of oxidative protein folding. The trithiol is synthesized and attached to two distinct solid supports via one of its three sulfhydryl groups. The resulting immobilized dithiol has an apparent disulfide E degrees ' = -208 mV, which is close to that of protein disulfide isomerase (E degrees ' = -180 mV). Incubation of the dithiol immobilized on a TentaGel resin with a protein containing non-native disulfide bonds produced only a 2-fold increase in native protein. This dithiol appeared to be inaccessible to protein. In contrast, incubation of the dithiol immobilized on styrene-glycidyl methacrylate microspheres with the non-native protein produced a 17-fold increase in native protein. This increase was 1.5-fold greater than that of a monothiol immobilized on the microspheres. Thus, the choice of both the solid support and thiol can affect catalysis of protein folding. The use of dithiol-decorated microspheres is an effective new strategy for preparative protein folding in vitro.
Collapse
Affiliation(s)
- Kenneth J Woycechowsky
- Department of Biochemistry and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
De Luca S, Ulhaq S, Dixon MJ, Essex J, Bradley M. Solid-phase synthesis of a focused library of trypanothione reductase inhibitors. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00438-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ulijn RV, Baragaña B, Halling PJ, Flitsch SL. Protease-catalyzed peptide synthesis on solid support. J Am Chem Soc 2002; 124:10988-9. [PMID: 12224940 DOI: 10.1021/ja026912d] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct enzymatic synthesis of peptides from amino acids is widely used as a useful alternative to chemical synthesis. However, good yields of such enzyme-catalyzed reactions require altered reaction conditions to overcome the bias for hydrolysis in aqueous medium. We argue that the synthesis/hydrolysis equilibrium can be shifted toward synthesis in aqueous medium by immobilizing the amine on solid support. In this report, we show the first examples of solid-phase peptide synthesis catalyzed by a protease in bulk aqueous buffer.
Collapse
Affiliation(s)
- Rein V Ulijn
- Department of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
| | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Notable limitations have previously prevented the wide application of split synthesis. However, recent developments in highly condensed and miniaturized biological screening and single-bead analysis methods have argued for a revival of split combinatorial synthesis. Although there are still many challenges, we are now in a much better position to accomplish high-throughput analysis and screening of one-bead-one-compound libraries.
Collapse
Affiliation(s)
- Bing Yan
- ChemRx Division of Discovery Partners International, 385 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
D'Silva C, Daunes S. The therapeutic potential of inhibitors of the trypanothione cycle. Expert Opin Investig Drugs 2002; 11:217-31. [PMID: 11829713 DOI: 10.1517/13543784.11.2.217] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an urgent need for new drugs in the treatment of human African trypanosomiasis, Chagas' disease and leishmaniasis. This article provides an overview of current drugs, formulations and their deficiencies. Targets for the design of new drugs and the rational provided for targeting enzymes of the trypanothione cycle are described. Biochemical aspects of the cycle and the currently investigated target trypanothione reductase are discussed as are the several classes of inhibitors and their in vitro potencies. Evidence is provided for considering the tryparedoxins as a new target for antiprotozoal chemotherapy and a summary of glutathione-based inhibitors with significant in vitro activity is reported.
Collapse
Affiliation(s)
- Claudius D'Silva
- Department of Chemistry & Materials, The Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | | |
Collapse
|
28
|
|
29
|
|