1
|
Satam V, Babu B, Patil P, Brien KA, Olson K, Savagian M, Lee M, Mepham A, Jobe LB, Bingham JP, Pett L, Wang S, Ferrara M, Bruce CD, Wilson WD, Lee M, Hartley JA, Kiakos K. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide. Bioorg Med Chem Lett 2015; 25:3681-5. [PMID: 26122210 DOI: 10.1016/j.bmcl.2015.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).
Collapse
Affiliation(s)
- Vijay Satam
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Balaji Babu
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kimberly A Brien
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kevin Olson
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Mia Savagian
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Megan Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Andrew Mepham
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Laura Beth Jobe
- Department of Chemistry, Erskine College, Due West, SC 29639, United States
| | - John P Bingham
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Maddi Ferrara
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - Chrystal D Bruce
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States.
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| |
Collapse
|
2
|
Bruce CD, Ferrara MM, Manka JL, Davis ZS, Register J. Dynamic hydrogen bonding and DNA flexibility in minor groove binders: molecular dynamics simulation of the polyamide f-ImPyIm bound to the Mlu1 (MCB) sequence 5'-ACGCGT-3' in 2:1 motif. J Mol Recognit 2015; 28:325-37. [PMID: 25711379 DOI: 10.1002/jmr.2448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/10/2014] [Accepted: 11/09/2014] [Indexed: 12/28/2022]
Abstract
Molecular dynamics simulations of the DNA 10-mer 5'-CCACGCGTGG-3' alone and complexed with the formamido-imidazole-pyrrole-imidazole (f-ImPyIm) polyamide minor groove binder in a 2:1 fashion were conducted for 50 ns using the pbsc0 parameters within the AMBER 12 software package. The change in DNA structure upon binding of f-ImPyIm was evaluated via minor groove width and depth, base pair parameters of Slide, Twist, Roll, Stretch, Stagger, Opening, Propeller, and x-displacement, dihedral angle distributions of ζ, ε, α, and γ determined using the Curves+ software program, and hydrogen bond formation. The dynamic hydrogen bonding between the f-ImPyIm and its cognate DNA sequence was compared to the static image used to predict sequence recognition by polyamide minor groove binders. Many of the predicted hydrogen bonds were present in less than 50% of the simulation; however, persistent hydrogen bonds between G5/15 and the formamido group of f-ImPyIm were observed. It was determined that the DNA is wider in the Complex than without the polyamide binder; however, there is flexibility in this particular sequence, even in the presence of the f-ImPyIm as evidenced by the range of minor groove widths the DNA exhibits and the dynamics of the hydrogen bonding that binds the two f-ImPyIm ions to the minor groove. The Complex consisting of the DNA and the 2 f-ImPyIm binders shows slight fraying of the 5' end of the 10-mer at the end of the simulation, but the portion of the oligomer responsible for recognition and binding is stable throughout the simulation. Several structural changes in the Complex indicate that minor groove binders may have a more active role in inhibiting transcription than just preventing binding of important transcription factors.
Collapse
Affiliation(s)
- Chrystal D Bruce
- Department of Chemistry, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA
| | | | | | | | | |
Collapse
|
3
|
Wang S, Chai Y, Babu B, Satam V, Lee M, David Wilson W. Conformational modulation of DNA by polyamide binding: structural effects of f-Im-Py-Im based derivatives on 5'-ACGCGT-3'. J Mol Recognit 2014; 26:331-40. [PMID: 23784989 DOI: 10.1002/jmr.2273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/13/2022]
Abstract
The DNA sequence 5'-ACGCGT-3' is in the core site of the Mlu 1 cell-cycle box, a transcriptional element in the promoter region of human Dbf4 gene that is highly correlated with a large number of aggressive solid cancers. The polyamide formamido-imidazole-pyrrole-imidazole-amine(+) (f-Im-Py-Im-Am(+) ) can target the minor groove of 5'-ACGCGT-3' as an antiparallel stacked dimer and has shown good activity in inhibiting transcription factor binding. Recently, f-Im-Py-Im-Am(+) derivatives that involve different orthogonally positioned substituents were synthesized to target the same binding site, and some of them have displayed improved binding and pharmacological properties. In this study, the gel electrophoresis-ligation ladders assay was used to evaluate the conformational effects of f-Im-Py-Im-Am(+) and derivatives on the target DNA, an essential factor for establishing the molecular basis of polyamide-DNA complexes and their transcription factor inhibition. The results show that the ACGCGT site in DNA has a relatively wide minor groove and a B-form like overall structure. After binding with f-Im-Py-Im-Am(+) derivatives, the DNA conformation is changed as indicated by the different mobilities in the gel. These conformational effects on DNA will at least help to point to the mechanism for the observed Mlu 1 inhibition activity of these polyamides. Therefore, modulating DNA transcription by locking the DNA shape or altering the minor groove geometry to affect the binding affinity of certain transcription factors is an attractive possible therapeutic mechanism for polyamides. Some of the substituents are charged with electrostatic interactions with DNA phosphate groups, and their charge effects on DNA gel mobility have been observed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
4
|
Chai Y, Paul A, Rettig M, Wilson WD, Boykin DW. Design and synthesis of heterocyclic cations for specific DNA recognition: from AT-rich to mixed-base-pair DNA sequences. J Org Chem 2014; 79:852-66. [PMID: 24422528 PMCID: PMC3985508 DOI: 10.1021/jo402599s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/18/2023]
Abstract
The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an H-bond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site -AAAGTTT- more strongly than the -AAATTT- site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling.
Collapse
Affiliation(s)
- Yun Chai
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ananya Paul
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Michael Rettig
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - W. David Wilson
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - David W. Boykin
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
5
|
Chattopadhyay SK, Maitra R, Kundu I, Jana M, Mandal SK, Khuda-Bukhsh AR. Acridone-Pterocarpan Conjugate: A Hybrid Molecular Probe for Recognition of Nucleic Acids. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Chavda S, Babu B, Patil P, Plaunt A, Ferguson A, Lee M, Tzou S, Sjoholm R, Rice T, Mackay H, Ramos J, Wang S, Lin S, Kiakos K, Wilson WD, Hartley JA, Lee M. Design, synthesis, and DNA binding characteristics of a group of orthogonally positioned diamino, N-formamido, pyrrole- and imidazole-containing polyamides. Bioorg Med Chem 2013; 21:3907-18. [PMID: 23647824 DOI: 10.1016/j.bmc.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023]
Abstract
Orthogonally positioned diamino/dicationic polyamides (PAs) have good water solubility and enhanced binding affinity, whilst retaining DNA minor groove and sequence specificity compared to their monoamino/monocationic counterparts. The synthesis and DNA binding properties of the following diamino PAs: f-IPI (3a), f-IPP (4), f-PIP (5), and f-PPP (6) are described. P denotes the site where a 1-propylamino group is attached to the N1-position of the heterocycle. Binding of the diamino PAs to DNA was assessed by DNase I footprinting, thermal denaturation, circular dichroism titration, biosensor surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) studies. According to SPR studies, f-IPI (3a) bound more strongly (K(eq)=2.4×10(8) M(-1)) and with comparable sequence selectivity to its cognate sequence 5'-ACGCGT-3' when compared to its monoamino analog f-IPI (1). The binding of f-IPI (3a) to 5'-ACGCGT-3' via the stacked dimer motif was balanced between enthalpy and entropy, and that was quite different from the enthalpy-driven binding of its monoamino parent f-IPI (1). f-IPP (4) also bound more strongly to its cognate sequence 5'-ATGCAT-3' (K(eq)=7.4×10(6) M(-1)) via the side-by-side stacked motif than its monoamino analog f-IPP (2a). Although f-PPP (6) bound via a 1:1 motif, it bound strongly to its cognate sequence 5'-AAATTT-3' (K(eq)=4.8×10(7) M(-1)), 15-times higher than the binding of its monoamino analog f-PPP (2c), albeit f-PPP bound via the stacked motif. Finally, f-PIP (5) bound to its target sequence 5'-ATCGAT-3' as a stacked dimer and it has the lowest affinity among the diamino PAs tested (Keq <1×10(5) M(-1)). This was about two times lower in affinity than the binding of its monoamino analog f-PIP (2b). The results further demonstrated that the 'core rules' of DNA recognition by monoamino PAs also apply to their diamino analogs. Specifically, PAs that contain a stacked IP core structure bind most strongly (highest binding constants) to their cognate GC doublet, followed by the binding of PAs with a stacked PP structure to two degenerate AT base pairs, and finally the binding of PAs with a PI core to their cognate CG doublet.
Collapse
Affiliation(s)
- Sameer Chavda
- Division of Natural and Applied Sciences and Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Salvia MV, Addison F, Alniss HY, Buurma NJ, Khalaf AI, Mackay SP, Anthony NG, Suckling CJ, Evstigneev MP, Santiago AH, Waigh RD, Parkinson JA. Thiazotropsin aggregation and its relationship to molecular recognition in the DNA minor groove. Biophys Chem 2013; 179:1-11. [PMID: 23714424 DOI: 10.1016/j.bpc.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
Aggregated states have been alluded to for many DNA minor groove binders but details of the molecule-on-molecule relationship have either been under-reported or ignored. Here we report our findings from ITC and NMR measurements carried out with AIK-18/51, a compound representative of the thiazotropsin class of DNA minor groove binders. The free aqueous form of AIK-18/51 is compared with that found in its complex with cognate DNA duplex d(CGACTAGTCG)2. Molecular self-association of AIK-18/51 is consistent with anti-parallel, face-to-face dimer formation, the building block on which the molecule aggregates. This underlying structure is closely allied to the form found in the ligand's DNA complex. NMR chemical shift and diffusion measurements yield a self-association constant Kass=(61±19)×10(3)M(-1) for AIK-18/51 that fits with a stepwise self-assembly model and is consistent with ITC data. The deconstructed energetics of this assembly process are reported with respect to a design strategy for ligand/DNA recognition.
Collapse
Affiliation(s)
- Marie-Virginie Salvia
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu Y, Chai Y, Kumar A, Tidwell RR, Boykin DW, Wilson WD. Designed compounds for recognition of 10 base pairs of DNA with two at binding sites. J Am Chem Soc 2012; 134:5290-9. [PMID: 22369366 DOI: 10.1021/ja211628j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Short AT base pair sequences that are separated by a small number of GCs are common in eukaryotic parasite genomes. Cell-permeable compounds that bind effectively and selectively to such sequences present an attractive therapeutic approach. Compounds with linked, one or two amidine-benzimidazole-phenyl (ABP) motifs were designed, synthesized, and evaluated for binding to adjacent AT sites by biosensor-surface plasmon resonance (SPR). A surprising feature of the linked ABP motifs is that a set of six similar compounds has three different minor groove binding modes with the target sequences. Compounds with one ABP bind independently to two separated AT sites. Unexpectedly, compounds with two ABP motifs can bind strongly either as monomers or as cooperative dimers to the full site. The results are supported by mass spectrometry and circular dichroism, and models to explain the different binding modes are presented.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | | | | | | | | | | |
Collapse
|
9
|
Satam V, Babu B, Chavda S, Savagian M, Sjoholm R, Tzou S, Ramos J, Liu Y, Kiakos K, Lin S, David Wilson W, Hartley JA, Lee M. Novel diamino imidazole and pyrrole-containing polyamides: Synthesis and DNA binding studies of mono- and diamino-phenyl-ImPy*Im polyamides designed to target 5'-ACGCGT-3'. Bioorg Med Chem 2011; 20:693-701. [PMID: 22222156 DOI: 10.1016/j.bmc.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Pyrrole- and imidazole-containing polyamides are widely investigated as DNA sequence selective binding agents that have potential use as gene control agents. The key challenges that must be overcome to realize this goal is the development of polyamides with low molar mass so the molecules can readily diffuse into cells and concentrate in the nucleus. In addition, the molecules must have appreciable water solubility, bind DNA sequence specifically, and with high affinity. It is on this basis that the orthogonally positioned diamino/dicationic polyamide Ph-ImPy*Im 5 was designed to target the sequence 5'-ACGCGT-3'. Py* denotes the pyrrole unit that contains a N-substituted aminopropyl pendant group. The DNA binding properties of diamino polyamide 5 were determined using a number of techniques including CD, ΔT(M), DNase I footprinting, SPR and ITC studies. The effects of the second amino moiety in Py* on DNA binding affinity over its monoamino counterpart Ph-ImPyIm 3 were assessed by conducting DNA binding studies of 3 in parallel with 5. The results confirmed the minor groove binding and selectivity of both polyamides for the cognate sequence 5'-ACGCGT-3'. The diamino/dicationic polyamide 5 showed enhanced binding affinity and higher solubility in aqueous media over its monoamino/monocationic counterpart Ph-ImPyIm 3. The binding constant of 5, determined from SPR studies, was found to be 1.5 × 10(7)M(-1), which is ∼3 times higher than that for its monoamino analog 3 (4.8 × 10(6)M(-1)). The affinity of 5 is now approaching that of the parent compound f-ImPyIm 1 and its diamino equivalent 4. The advantages of the design of diamino polyamide 5 over 1 and 4 are its sequence specificity and the ease of synthesis compared to the N-terminus pyrrole analog 2.
Collapse
Affiliation(s)
- Vijay Satam
- Division of Natural and Applied Sciences, Department of Chemistry, Hope College, 35 East, 12th Street, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Babu B, Liu Y, Plaunt A, Riddering C, Ogilvie R, Westrate L, Davis R, Ferguson A, Mackay H, Rice T, Chavda S, Wilson D, Lin S, Kiakos K, Hartley JA, Lee M. Design, synthesis and DNA binding properties of orthogonally positioned diamino containing polyamide f-IPI. Biochem Biophys Res Commun 2011; 404:848-52. [DOI: 10.1016/j.bbrc.2010.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 11/15/2022]
|