1
|
Meng Y, Liu R, Wang L, Li F, Tian Y, Lu H. Binding affinity and conformational change predictions for a series of inhibitors with RuBisCO in a carbon dioxide gas and water environment by multiple computational methods. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
2
|
Sato R, Suzuki K, Yasuda Y, Suenaga A, Fukui K. RNAapt3D: RNA aptamer 3D-structural modeling database. Biophys J 2022; 121:4770-4776. [PMID: 36146935 PMCID: PMC9808543 DOI: 10.1016/j.bpj.2022.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
RNA aptamers are oligonucleotides with high binding affinity and specificity for target molecules and are expected to be a new generation of therapeutic molecules and targeted delivery materials. The tertiary structure of RNA molecules and RNA-protein interaction sites are increasingly important as potential targets for new drugs. The pathological mechanisms of diseases must be understood in detail to guide drug design. In developing RNA aptamers as drugs, information about the interaction mechanisms and structures of RNA aptamer-target protein complexes are useful. We constructed a database, RNA aptamer 3D-structural modeling (RNAapt3D), consisting of RNA aptamer data that are potential drug candidates. The database includes RNA sequences and computationally predicted RNA tertiary structures based on secondary structures and implements methods that can be used to predict unknown structures of RNA aptamer-target molecule complexes. RNAapt3D should enable the design of RNA aptamers for target molecules and improve the efficiency and productivity of candidate drug selection. RNAapt3D can be accessed at https://rnaapt3d.medals.jp.
Collapse
Affiliation(s)
- Ryuma Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koji Suzuki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yuichi Yasuda
- College of Humanities and Science, Department of Biosciences, Nihon University, Tokyo, Japan
| | - Atsushi Suenaga
- College of Humanities and Science, Department of Biosciences, Nihon University, Tokyo, Japan
| | - Kazuhiko Fukui
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| |
Collapse
|
3
|
Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W, Ma TY. IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology 2020; 159:1375-1389. [PMID: 32569770 DOI: 10.1053/j.gastro.2020.06.038] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Meghali Nighot
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Rana Al-Sadi
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | | | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico; Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
4
|
Jin L, Tan YL, Wu Y, Wang X, Shi YZ, Tan ZJ. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway. RNA (NEW YORK, N.Y.) 2019; 25:1532-1548. [PMID: 31391217 PMCID: PMC6795135 DOI: 10.1261/rna.071662.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yao Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Yan Y, Wen Z, Zhang D, Huang SY. Determination of an effective scoring function for RNA-RNA interactions with a physics-based double-iterative method. Nucleic Acids Res 2019; 46:e56. [PMID: 29506237 PMCID: PMC5961370 DOI: 10.1093/nar/gky113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/08/2018] [Indexed: 11/15/2022] Open
Abstract
RNA–RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA–RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA–RNA interactions based on a training set of 97 diverse RNA–RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA–RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA–RNA complexes.
Collapse
Affiliation(s)
- Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Zeyu Wen
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Di Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
6
|
Yamasaki S, Amemiya T, Yabuki Y, Horimoto K, Fukui K. ToGo-WF: prediction of RNA tertiary structures and RNA-RNA/protein interactions using the KNIME workflow. J Comput Aided Mol Des 2019; 33:497-507. [PMID: 30840170 PMCID: PMC7088279 DOI: 10.1007/s10822-019-00195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Recent progress in molecular biology has revealed that many non-coding RNAs regulate gene expression or catalyze biochemical reactions in tumors, viruses and several other diseases. The tertiary structure of RNA molecules and RNA–RNA/protein interaction sites are of increasing importance as potential targets for new medicines that treat a broad array of human diseases. Current RNA drugs are split into two groups: antisense RNA molecules and aptamers. In this report, we present a novel workflow to predict RNA tertiary structures and RNA–RNA/protein interactions using the KNIME environment, which enabled us to assemble a combination of RNA-related analytical tools and databases. In this study, three analytical workflows for comprehensive structural analysis of RNA are introduced: (1) prediction of the tertiary structure of RNA; (2) prediction of the structure of RNA–RNA complexes and analysis of their interactions; and (3) prediction of the structure of RNA–protein complexes and analysis of their interactions. In an RNA–protein case study, we modeled the tertiary structure of pegaptanib, an aptamer drug, and performed docking calculations of the pegaptanib-vascular endothelial growth factor complex using a fragment of the interaction site of the aptamer. We also present molecular dynamics simulations of the RNA–protein complex to evaluate the affinity of the complex by mutating bases at the interaction interface. The results provide valuable information for designing novel features of aptamer-protein complexes.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Molecular Profiling for Drug Discovery Research Center (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan. .,Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo (IMSUT), 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Takayuki Amemiya
- Molecular Profiling for Drug Discovery Research Center (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yukimitsu Yabuki
- Molecular Profiling for Drug Discovery Research Center (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,IMSBIO Co., Ltd, 4-21-1-601 Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-0013, Japan
| | - Katsuhisa Horimoto
- Molecular Profiling for Drug Discovery Research Center (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuhiko Fukui
- Molecular Profiling for Drug Discovery Research Center (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|