1
|
Das NR, Sharma T, Toropov AA, Toropova AP, Tripathi MK, Achary PGR. Machine-learning technique, QSAR and molecular dynamics for hERG-drug interactions. J Biomol Struct Dyn 2023; 41:13766-13791. [PMID: 37021352 DOI: 10.1080/07391102.2023.2193641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/06/2023] [Indexed: 04/07/2023]
Abstract
One of the most well-known anti-targets defining medication cardiotoxicity is the voltage-dependent hERG K + channel, which is well-known for its crucial involvement in cardiac action potential repolarization. Torsades de Pointes, QT prolongation, and sudden death are all caused by hERG (the human Ether-à-go-go-Related Gene) inhibition. There is great interest in creating predictive computational (in silico) tools to identify and weed out potential hERG blockers early in the drug discovery process because testing for hERG liability and the traditional experimental screening are complicated, expensive and time-consuming. This study used 2D descriptors of a large curated dataset of 6766 compounds and machine learning approaches to build robust descriptor-based QSAR and predictive classification models for KCNH2 liability. Decision Tree, Random Forest, Logistic Regression, Ada Boosting, kNN, SVM, Naïve Bayes, neural network and stochastic gradient classification classifier algorithms were used to build classification models. If a compound's IC50 value was between 10 μM and less, it was classified as a blocker (hERG-positive), and if it was more, it was classified as a non-blocker (hERG-negative). Matthew's correlation coefficient formula and F1score were applied to compare and track the developed models' performance. Molecular docking and dynamics studies were performed to understand the cardiotoxicity relating to the hERG-gene. The hERG residues interacting after 100 ns are LEU:697, THR:708, PHE:656, HIS:674, HIS:703, TRP:705 and ASN:709 and the hERG-ligand-16 complex trajectory showed stable behaviour with lesser fluctuations in the entire simulation of 200 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nilima Rani Das
- Department of CA, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Tripti Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - P Ganga Raju Achary
- Department of Chemistry, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Maly J, Emigh AM, DeMarco KR, Furutani K, Sack JT, Clancy CE, Vorobyov I, Yarov-Yarovoy V. Structural modeling of the hERG potassium channel and associated drug interactions. Front Pharmacol 2022; 13:966463. [PMID: 36188564 PMCID: PMC9523588 DOI: 10.3389/fphar.2022.966463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated potassium channel, KV11.1, encoded by the human Ether-à-go-go-Related Gene (hERG), is expressed in cardiac myocytes, where it is crucial for the membrane repolarization of the action potential. Gating of the hERG channel is characterized by rapid, voltage-dependent, C-type inactivation, which blocks ion conduction and is suggested to involve constriction of the selectivity filter. Mutations S620T and S641A/T within the selectivity filter region of hERG have been shown to alter the voltage dependence of channel inactivation. Because hERG channel blockade is implicated in drug-induced arrhythmias associated with both the open and inactivated states, we used Rosetta to simulate the effects of hERG S620T and S641A/T mutations to elucidate conformational changes associated with hERG channel inactivation and differences in drug binding between the two states. Rosetta modeling of the S641A fast-inactivating mutation revealed a lateral shift of the F627 side chain in the selectivity filter into the central channel axis along the ion conduction pathway and the formation of four lateral fenestrations in the pore. Rosetta modeling of the non-inactivating mutations S620T and S641T suggested a potential molecular mechanism preventing F627 side chain from shifting into the ion conduction pathway during the proposed inactivation process. Furthermore, we used Rosetta docking to explore the binding mechanism of highly selective and potent hERG blockers - dofetilide, terfenadine, and E4031. Our structural modeling correlates well with much, but not all, existing experimental evidence involving interactions of hERG blockers with key residues in hERG pore and reveals potential molecular mechanisms of ligand interactions with hERG in an inactivated state.
Collapse
Affiliation(s)
- Jan Maly
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Aiyana M. Emigh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Kazuharu Furutani
- Department of Pharmacology, Tokushima Bunri University, Tokushima, Japan
| | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Koulgi S, Jani V, Nair V, Saini JS, Phukan S, Sonavane U, Joshi R, Kamboj R, Palle V. Molecular dynamics of hERG channel: insights into understanding the binding of small molecules for detuning cardiotoxicity. J Biomol Struct Dyn 2021; 40:5996-6012. [PMID: 33494645 DOI: 10.1080/07391102.2021.1875883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evaluation of cardiotoxicity potential of new chemical entities (NCEs) has lately become one of the stringent filters in the drug discovery and development process. Cardiotoxicity is caused mainly by the inhibition of human ether-a-go-go related gene (hERG) channel protein. Inhibition of the hERG channel leads to a life-threatening condition known as cardiac arrhythmia. Knowledge of the structural behaviour of the hERG would aid greatly in the design of new drug molecules that do not interact with the protein and add to the safety index. In this study, a computational model for the active-state of hERG was developed. This model was equilibrated by performing the molecular dynamics simulations for 100 ns followed by clustering and selection of a representative structure based on the largest populated cluster. To study the changes in the protein structure on inhibition, three inhibitory ligands, namely, dofetilide, cisapride and terfenadine were docked, followed by molecular dynamics simulations of 200 ns for the apo and each ligand-bound structure. It was observed that docking and simulation studies of the hERG model exhibited noticeable conformational changes in the protein upon ligand-binding. A significant change in the kink of the S6-transmembrane helix was observed. Inter-chain distances between the crucial residues Y652 and F656 (present below the ion-selectivity filter), their side-chain orientation and hydrogen bonding indicated a probable collapse of the pore. These changes may infer the initiation in transition of hERG from an open to an inactive state. Hence, these findings would help in designing compounds devoid of hERG inhibition with reduced cardiotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Panchawati, Pashan, Pune
| | - Vinod Jani
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Panchawati, Pashan, Pune
| | | | - Jagmohan S Saini
- Novel Drug Discovery and Development, Lupin Research Park, Pune, India
| | - Samiron Phukan
- Novel Drug Discovery and Development, Lupin Research Park, Pune, India
| | - Uddhavesh Sonavane
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Panchawati, Pashan, Pune
| | - Rajendra Joshi
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Panchawati, Pashan, Pune
| | - Raj Kamboj
- Novel Drug Discovery and Development, Lupin Research Park, Pune, India
| | - Venkata Palle
- Novel Drug Discovery and Development, Lupin Research Park, Pune, India
| |
Collapse
|
4
|
Zhang X, Wang B, Liu Z, Zhou Y, Du L. How to Fluorescently Label the Potassium Channel: A Case in hERG. Curr Med Chem 2020; 27:3046-3054. [DOI: 10.2174/0929867326666181129094455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential
role in cardiac action potential repolarization, is responsible for inherited and druginduced
long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation
of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å
resolution. This report focuses primarily on summarizing the design rationale and application
of several fluorescent probes that target hERG channels, which enables dynamic and real-time
monitoring of potassium pore channel affinity to further advance the understanding of the
channels.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Beilei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur J Med Chem 2020; 195:112290. [PMID: 32283295 DOI: 10.1016/j.ejmech.2020.112290] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
All along the drug development process, one of the most frequent adverse side effects, leading to the failure of drugs, is the cardiac arrhythmias. Such failure is mostly related to the capacity of the drug to inhibit the human ether-à-go-go-related gene (hERG) cardiac potassium channel. The early identification of hERG inhibition properties of biological active compounds has focused most of attention over the years. In order to prevent the cardiac side effects, a great number of in silico, in vitro and in vivo assays have been performed. The main goal of these studies is to understand the reasons of these effects, and then to give information or instructions to scientists involved in drug development to avoid the cardiac side effects. To evaluate anticipated cardiovascular effects, early evaluation of hERG toxicity has been strongly recommended for instance by the regulatory agencies such as U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Thus, following an initial screening of a collection of compounds to find hits, a great number of pharmacomodulation studies on the novel identified chemical series need to be performed including activity evaluation towards hERG. We provide in this concise review clear guidelines, based on described examples, illustrating successful optimization process to avoid hERG interactions as cases studies and to spur scientists to develop safe drugs.
Collapse
Affiliation(s)
- Amanda Garrido
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Alban Lepailleur
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
6
|
Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe the Impact of Water Molecules on Conformational Changes of hERG Inhibitors in Drug Trapping Phenomenon. Int J Mol Sci 2019; 20:ijms20143385. [PMID: 31295848 PMCID: PMC6678931 DOI: 10.3390/ijms20143385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Human ether a-go-go related gene (hERG) or KV11.1 potassium channels mediate the rapid delayed rectifier current (IKr) in cardiac myocytes. Drug-induced inhibition of hERG channels has been implicated in the development of acquired long QT syndrome type (aLQTS) and fatal arrhythmias. Several marketed drugs have been withdrawn for this reason. Therefore, there is considerable interest in developing better tests for predicting drugs which can block the hERG channel. The drug-binding pocket in hERG channels, which lies below the selectivity filter, normally contains K+ ions and water molecules. In this study, we test the hypothesis that these water molecules impact drug binding to hERG. We developed 3D QSAR models based on alignment independent descriptors (GRIND) using docked ligands in open and closed conformations of hERG in the presence (solvated) and absence (non-solvated) of water molecules. The ligand–protein interaction fingerprints (PLIF) scheme was used to summarize and compare the interactions. All models delineated similar 3D hERG binding features, however, small deviations of about ~0.4 Å were observed between important hotspots of molecular interaction fields (MIFs) between solvated and non-solvated hERG models. These small changes in conformations do not affect the performance and predictive power of the model to any significant extent. The model that exhibits the best statistical values was attained with a cryo_EM structure of the hERG channel in open state without water. This model also showed the best R2 of 0.58 and 0.51 for the internal and external validation test sets respectively. Our results suggest that the inclusion of water molecules during the docking process has little effect on conformations and this conformational change does not impact the predictive ability of the 3D QSAR models.
Collapse
|
7
|
Żołek T, Qile M, Kaźmierczak P, Bloothooft M, van der Heyden MAG, Maciejewska D. Drug-likeness of linear pentamidine analogues and their impact on the hERG K+channel – correlation with structural features. RSC Adv 2019; 9:38355-38371. [PMID: 35540224 PMCID: PMC9082326 DOI: 10.1039/c9ra08404e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
The pentamidines with S atoms or sulfanilide groups in the linker have favorable drug-likeness parameters and low toxicity.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Muge Qile
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Paweł Kaźmierczak
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Meye Bloothooft
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
8
|
Mayr F, Vieider C, Temml V, Stuppner H, Schuster D. Open-Access Activity Prediction Tools for Natural Products. Case Study: hERG Blockers. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:177-238. [PMID: 31621014 DOI: 10.1007/978-3-030-14632-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interference with the hERG potassium ion channel may cause cardiac arrhythmia and can even lead to death. Over the last few decades, several drugs, already on the market, and many more investigational drugs in various development stages, have had to be discontinued because of their hERG-associated toxicity. To recognize potential hERG activity in the early stages of drug development, a wide array of computational tools, based on different principles, such as 3D QSAR, 2D and 3D similarity, and machine learning, have been developed and are reviewed in this chapter. The various available prediction tools Similarity Ensemble Approach, SuperPred, SwissTargetPrediction, HitPick, admetSAR, PASSonline, Pred-hERG, and VirtualToxLab™ were used to screen a dataset of known hERG synthetic and natural product actives and inactives to quantify and compare their predictive power. This contribution will allow the reader to evaluate the suitability of these computational methods for their own related projects. There is an unmet need for natural product-specific prediction tools in this field.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Christian Vieider
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria.
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
9
|
Abstract
Beyond finding inhibitors that show high binding affinity to the respective target, there is the challenge of optimizing their properties with respect to metabolic and toxicological issues, as well as further off-target effects. To reduce the experimental effort of synthesizing and testing actual substances in corresponding assays, virtual screening has become an indispensable toolbox in preclinical development. The scope of application covers the prediction of molecular properties including solubility, metabolic liability and binding to antitargets, such as the hERG channel. Furthermore, prediction of binding sites and drugable targets are emerging aspects of virtual screening. Issues involved with the currently applied computational models including machine learning algorithms are outlined, such as limitations to the accuracy of prediction and overfitting.
Collapse
|
10
|
New potential binding determinant for hERG channel inhibitors. Sci Rep 2016; 6:24182. [PMID: 27067805 PMCID: PMC4828713 DOI: 10.1038/srep24182] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/23/2016] [Indexed: 11/08/2022] Open
Abstract
Human ether-à-go-go related gene (hERG) 1 channels conduct the rapid delayed rectifier K+ current (IKr) and are essential for the repolarization of the cardiac action potential. hERG1 inhibition by structurally diverse drugs may lead to life threatening arrhythmia. Putative binding determinants of hERG1 channel blockers include T623, S624 and V625 on the pore helix, and residues G648, Y652 and F656, located on segment S6. We and others have previously hypothesized that additional binding determinants may be located on helix S5, which is in close contact with the S6 segments. In order to test this hypothesis, we performed a detailed investigation combining ionic current measurements with two-microelectrode voltage clamp and molecular modeling techniques. We identified a novel aromatic high affinity binding determinant for blockers located in helix S5, F557, which is equally potent as Y652. Modeling supports a direct interaction with the outer pore helix.
Collapse
|
11
|
Wang B, Liu Z, Ma Z, Li M, Du L. Astemizole Derivatives as Fluorescent Probes for hERG Potassium Channel Imaging. ACS Med Chem Lett 2016; 7:245-9. [PMID: 26985309 DOI: 10.1021/acsmedchemlett.5b00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/20/2016] [Indexed: 01/28/2023] Open
Abstract
The detection and imaging of hERG potassium channels in living cells can provide useful information for hERG-correlation studies. Herein, three small-molecule fluorescent probes, based on the potent hERG channel inhibitor astemizole, for the imaging of hERG channels in hERG-transfected HEK293 cells (hERG-HEK293) and human colorectal cancer cells (HT-29), are described. These probes are expected to be applied in the physiological and pathological studies of hERG channels.
Collapse
Affiliation(s)
- Beilei Wang
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Linder T, Bernsteiner H, Saxena P, Bauer F, Erker T, Timin E, Hering S, Stary-Weinzinger A. Drug trapping in hERG K + channels: (not) a matter of drug size? MEDCHEMCOMM 2016; 7:512-518. [PMID: 28337337 PMCID: PMC5292991 DOI: 10.1039/c5md00443h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of hERG K+ channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone and a bulky derivative (MW: 647.24 g mol-1) were studied by making use of electrophysiological measurements in combination with molecular dynamics simulations. Our study suggests that the hERG cavity is able to accommodate very bulky compounds without disturbing gate closure.
Collapse
Affiliation(s)
- Tobias Linder
- Department of Pharmacology and Toxicology , University of Vienna , Austria .
| | - Harald Bernsteiner
- Department of Pharmacology and Toxicology , University of Vienna , Austria .
| | - Priyanka Saxena
- Department of Pharmacology and Toxicology , University of Vienna , Austria .
| | - Florian Bauer
- Department of Pharmaceutical Chemistry , University of Vienna , Austria
| | - Thomas Erker
- Department of Pharmaceutical Chemistry , University of Vienna , Austria
| | - Eugen Timin
- Department of Pharmacology and Toxicology , University of Vienna , Austria .
| | - Steffen Hering
- Department of Pharmacology and Toxicology , University of Vienna , Austria .
| | | |
Collapse
|
13
|
Computational investigations of hERG channel blockers: New insights and current predictive models. Adv Drug Deliv Rev 2015; 86:72-82. [PMID: 25770776 DOI: 10.1016/j.addr.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to address such issues at the hit selection stage. In order to prioritize molecules during the early drug discovery phase and to reduce the risk of drug attrition due to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to predict the potential hERG blockage of new drug candidates. In this review, we will describe the current in silico methods developed and applied to predict and to understand the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS and how systemic approaches can help in the drug safety decision.
Collapse
|
14
|
Abstract
The voltage-gated potassium channel encoded by hERG carries a delayed rectifying potassium current (IKr) underlying repolarization of the cardiac action potential. Pharmacological blockade of the hERG channel results in slowed repolarization and therefore prolongation of action potential duration and an increase in the QT interval as measured on an electrocardiogram. Those are possible to cause sudden death, leading to the withdrawals of many drugs, which is the reason for hERG screening. Computational in silico prediction models provide a rapid, economic way to screen compounds during early drug discovery. In this review, hERG prediction models are classified as 2D and 3D quantitative structure–activity relationship models, pharmacophore models, classification models, and structure based models (using homology models of hERG).
Collapse
|