1
|
Akbari B, Huber BR, Sherman JH. Unlocking the Hidden Depths: Multi-Modal Integration of Imaging Mass Spectrometry-Based and Molecular Imaging Techniques. Crit Rev Anal Chem 2023; 55:109-138. [PMID: 37847593 DOI: 10.1080/10408347.2023.2266838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multimodal imaging (MMI) has emerged as a powerful tool in clinical research, combining different imaging modes to acquire comprehensive information and enabling scientists and surgeons to study tissue identification, localization, metabolic activity, and molecular discovery, thus aiding in disease progression analysis. While multimodal instruments are gaining popularity, challenges such as non-standardized characteristics, custom software, inadequate commercial support, and integration issues with other instruments need to be addressed. The field of multimodal imaging or multiplexed imaging allows for simultaneous signal reproduction from multiple imaging strategies. Intraoperatively, MMI can be integrated into frameless stereotactic surgery. Recent developments in medical imaging modalities such as magnetic resonance imaging (MRI), and Positron Emission Topography (PET) have brought new perspectives to multimodal imaging, enabling early cancer detection, molecular tracking, and real-time progression monitoring. Despite the evidence supporting the role of MMI in surgical decision-making, there is a need for comprehensive studies to validate and perform integration at the intersection of multiple imaging technologies. They were integrating mass spectrometry-based technologies (e.g., imaging mass spectrometry (IMS), imaging mass cytometry (IMC), and Ion mobility mass spectrometry ((IM-IM) with medical imaging modalities, offering promising avenues for molecular discovery and clinical applications. This review emphasizes the potential of multi-omics approaches in tissue mapping using MMI integrated into desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI), allowing for sequential analyses of the same section. By addressing existing knowledge gaps, this review encourages future research endeavors toward multi-omics approaches, providing a roadmap for future research and enhancing the value of MMI in molecular pathology for diagnosis.
Collapse
Affiliation(s)
- Behnaz Akbari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bertrand Russell Huber
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, Massachusetts USA
- US Department of Veterans Affairs, National Center for PTSD, Boston, Massachusetts USA
| | - Janet Hope Sherman
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pantelaiou-Prokaki G, Mieczkowska I, Schmidt GE, Fritzsche S, Prokakis E, Gallwas J, Wegwitz F. HDAC8 suppresses the epithelial phenotype and promotes EMT in chemotherapy-treated basal-like breast cancer. Clin Epigenetics 2022; 14:7. [PMID: 35016723 PMCID: PMC8753869 DOI: 10.1186/s13148-022-01228-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is one of the most aggressive malignant diseases in women with an increased metastatic behavior and poor prognosis compared to other molecular subtypes of breast cancer. Resistance to chemotherapy is the main cause of treatment failure in BLBC. Therefore, novel therapeutic strategies counteracting the gain of aggressiveness underlying therapy resistance are urgently needed. The epithelial-to-mesenchymal transition (EMT) has been established as one central process stimulating cancer cell migratory capacity but also acquisition of chemotherapy-resistant properties. In this study, we aimed to uncover epigenetic factors involved in the EMT-transcriptional program occurring in BLBC cells surviving conventional chemotherapy. RESULTS Using whole transcriptome data from a murine mammary carcinoma cell line (pG-2), we identified upregulation of Hdac4, 7 and 8 in tumor cells surviving conventional chemotherapy. Subsequent analyses of human BLBC patient datasets and cell lines established HDAC8 as the most promising factor sustaining tumor cell viability. ChIP-sequencing data analysis identified a pronounced loss of H3K27ac at regulatory regions of master transcription factors (TFs) of epithelial phenotype like Gata3, Elf5, Rora and Grhl2 upon chemotherapy. Interestingly, impairment of HDAC8 activity reverted epithelial-TFs levels. Furthermore, loss of HDAC8 activity sensitized tumor cells to chemotherapeutic treatments, even at low doses. CONCLUSION The current study reveals a previously unknown transcriptional repressive function of HDAC8 exerted on a panel of transcription factors involved in the maintenance of epithelial cell phenotype, thereby supporting BLBC cell survival to conventional chemotherapy. Our data establish HDAC8 as an attractive therapeutically targetable epigenetic factor to increase the efficiency of chemotherapeutics.
Collapse
Affiliation(s)
- Garyfallia Pantelaiou-Prokaki
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Iga Mieczkowska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Sonja Fritzsche
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Matsuda S, Hattori Y, Matsumiya K, McQuade P, Yamashita T, Aida J, Sandiego CM, Gouasmat A, Carroll VM, Barret O, Tamagnan G, Koike T, Kimura H. Design, Synthesis, and Evaluation of [ 18F]T-914 as a Novel Positron-Emission Tomography Tracer for Lysine-Specific Demethylase 1. J Med Chem 2021; 64:12680-12690. [PMID: 34423983 DOI: 10.1021/acs.jmedchem.1c00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histone methylation is associated with the pathophysiology of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) catalyzes histone demethylation in a flavin adenine dinucleotide (FAD)-dependent manner. Thus, inhibiting LSD1 enzyme activity could offer a novel way to treat neurodevelopmental disorders. Assessing LSD1 target engagement using positron-emission tomography (PET) imaging could aid in developing therapeutic LSD1 inhibitors. In this study, PET probes based on 4-(2-aminocyclopropyl)benzamide derivatives that bind irreversibly to FAD found in LSD1 were examined. By optimizing the profiles of brain penetrance and brain-penetrant metabolites, T-914 (1g) was identified as a suitable PET tracer candidate. PET studies in nonhuman primates demonstrated that [18F]1g had heterogeneous brain uptake, which corresponded to known LSD1 expression levels. Moreover, brain uptake of [18F]1g was reduced by coadministration of unlabeled 1g, demonstrating blockable binding. These data suggest that [18F]1g warrants further investigation as a potential PET tracer candidate for assessing target engagement of LSD1.
Collapse
Affiliation(s)
- Satoru Matsuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasushi Hattori
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouta Matsumiya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Paul McQuade
- Quantitative Translational Science - Imaging, Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Tohru Yamashita
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Christine M Sandiego
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Alexandra Gouasmat
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Vincent M Carroll
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Olivier Barret
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gilles Tamagnan
- XingImaging LLC, 760 Temple Street, New Haven, Connecticut 06510, United States
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
4
|
Sun M, Xiao H, Hong H, Zhang A, Zhang Y, Liu Y, Zhu L, Kung HF, Qiao J. Rapid screening of nine unradiolabeled candidate compounds as PET brain imaging agents using cassette-wave microdosing and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:28-38. [PMID: 31100605 DOI: 10.1016/j.jchromb.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022]
Abstract
The R&D of PET imaging agents is a complex system engineering, simplifying screening steps and increasing screening efficiency have become popular issues. The purpose of this study is to develop a new screening procedure using cassette-wave microdosing and LC-MS/MS to enhance the screening throughput of unradiolabeled candidate compounds as PET imaging agents. Nine compounds were divided into 3 sets and made into 3 cassettes. Fifteen rats were randomly divided into 3 groups, and every animal received three intravenous bolus injections at three different time points; the doses were at microdose levels. This dosing approach takes advantage of temporal and spatial differences and is likened to an input wave; therefore, this approach was named cassette-wave microdosing. The samples of different brain regions such as the hypothalamus, striatum, hippocampus, cortex, cerebellum and the remainder of the brain were detected by LC-MS/MS analysis. The research potential of the compounds as PET imaging agents is evaluated in terms of brain biodistribution data. The screening method is rapid, highly efficient, reliable and reduces animal usage. Additionally, it can shorten the evaluation process of radiopharmaceuticals and enhance the screening throughput of PET radiopharmaceuticals without the use of radioactive agents.
Collapse
Affiliation(s)
- Mingyue Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Hao Xiao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yajing Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|
5
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
6
|
Collier TL, Dahl K, Stephenson NA, Holland JP, Riley A, Liang SH, Vasdev N. Recent applications of a single quadrupole mass spectrometer in 11C, 18F and radiometal chemistry. J Fluor Chem 2018; 210:46-55. [PMID: 30410189 PMCID: PMC6217822 DOI: 10.1016/j.jfluchem.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mass spectrometry (MS) has longstanding applications in radiochemistry laboratories, stemming from carbon-dating. However, research on the development of radiotracers for molecular imaging with either positron emission tomography (PET) or single photon emission computed tomography has yet to take full advantage of MS. This inertia has been attributed to the relatively low concentrations of radiopharmaceutical formulations and lack of access to the required MS equipment due to the high costs for purchase and maintenance of specialized MS systems. To date, single quadrupole (SQ)-MS coupled to liquid chromatography (LC) systems is the main form of MS that has been used in radiochemistry laboratories. These LC/MS systems are primarily used for assessing the chemical purity of radiolabeling precursor or standard molecules but also have applications in the determination of metabolites. Herein, we highlight personal experiences using a compact SQ-MS in our PET radiochemistry laboratories, to monitor the small amounts of carrier observed in most radiotracer preparations, even at high molar activities. The use of a SQ-MS in the observation of the low mass associated with non-radioactive species which are formed along with the radiotracer from the trace amounts of carrier found is demonstrated. Herein, we describe a pre-concentration system to detect dilute radiopharmaceutical formulations and metabolite analyses by SQ-MS. Selected examples where SQ-MS was critical for optimization of radiochemical reactions and for unequivocal characterization of radiotracers are showcased. We also illustrate examples where SQ-MS can be applied in identification of radiometal complexes and development of a new purification methodology for Pd-catalyzed radiofluorination reactions, shedding light on the identity of metal complexes present in the labelling solution.
Collapse
Affiliation(s)
- Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Advion, Inc., Ithaca, New York, USA
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nickeisha A. Stephenson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P. Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Riley
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Zhang X, Dunlow R, Blackman BN, Swenson RE. Optimization of 18 F-syntheses using 19 F-reagents at tracer-level concentrations and liquid chromatography/tandem mass spectrometry analysis: Improved synthesis of [ 18 F]MDL100907. J Labelled Comp Radiopharm 2018; 61:427-437. [PMID: 29336065 DOI: 10.1002/jlcr.3606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
Traditional radiosynthetic optimization faces the challenges of high radiation exposure, cost, and inability to perform serial reactions due to tracer decay. To accelerate tracer development, we have developed a strategy to simulate radioactive 18 F-syntheses by using tracer-level (nanomolar) non-radioactive 19 F-reagents and LC-MS/MS analysis. The methodology was validated with fallypride synthesis under tracer-level 19 F-conditions, which showed reproducible and comparable results with radiosynthesis, and proved the feasibility of this process. Using this approach, the synthesis of [18 F]MDL100907 was optimized under 19 F-conditions with greatly improved yield. The best conditions were successfully transferred to radiosynthesis. A radiochemical yield of 19% to 22% was achieved with the radiochemical purity >99% and the molar activity 38.8 to 53.6 GBq/ μmol (n = 3). The tracer-level 19 F-approach provides a high-throughput and cost-effective process to optimize radiosynthesis with reduced radiation exposure. This new method allows medicinal and synthetic chemists to optimize radiolabeling conditions without the need to use radioactivity.
Collapse
Affiliation(s)
- Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Ryan Dunlow
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Burchelle N Blackman
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
8
|
Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening. J Pharm Biomed Anal 2018. [PMID: 29533858 DOI: 10.1016/j.jpba.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cassette dosing is also known as N-in-One dosing: several compounds are simultaneously administrated to a single animal and then the samples are rapidly detected by LC-MS/MS. This approach is a successful strategy to enhance the efficiency of drug discovery and reduce animal usage. However, no report on the utility of the cassette approach in radiotracer discovery has appeared in the literature. This study designed a cassette microdose with LC-MS/MS method to enhance the throughput for screening radiopharmaceutical biodistribution in the rat brain directly. Three unradiolabeled compounds (FPBM FPBM2 and AV-133) were chosen as model drugs administrated intravenously to the rats as a cassette as opposed to discrete study. The rat brain biodistribution data, target localization, the differential uptake ratio (%ID/g) and the brain tissue-specific binding ratio were obtained by the LC-MS/MS analysis. These data matched very well with the values obtained by the standard radioactivity measurements. Moreover, no significant differences between discrete dosing and cassette dosing were observed. By circumventing the need for radiolabeled molecules, this method may be high-throughput and safe for the research and development of new PET imaging agents. The combination of cassette microdosing and LC-MS/MS would be a medium throughput screening tool at an early stage in the discovery/development process of PET imaging agents.
Collapse
|
9
|
Wong YC, Ilkova T, van Wijk RC, Hartman R, de Lange ECM. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. Eur J Pharm Sci 2017; 111:514-525. [PMID: 29106979 DOI: 10.1016/j.ejps.2017.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. METHODS Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. RESULTS In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). CONCLUSION For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob C van Wijk
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017; 12:1207-1218. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Willem van den Brink
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yumi Yamamoto
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Wilhelmus E A de Witte
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yin Cheong Wong
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| |
Collapse
|
11
|
Approaches for the discovery of novel positron emission tomography radiotracers for brain imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0221-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Koga K, Maeda J, Tokunaga M, Hanyu M, Kawamura K, Ohmichi M, Nakamura T, Nagai Y, Seki C, Kimura Y, Minamimoto T, Zhang MR, Fukumura T, Suhara T, Higuchi M. Development of TASP0410457 (TASP457), a novel dihydroquinolinone derivative as a PET radioligand for central histamine H3 receptors. EJNMMI Res 2016; 6:11. [PMID: 26860293 PMCID: PMC4747952 DOI: 10.1186/s13550-016-0170-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/30/2016] [Indexed: 11/14/2022] Open
Abstract
Background Histamine H3 receptor (H3R) is a potential therapeutic target of sleep- and cognition-related disorders. The purpose of the present study is to develop a novel positron emission tomography (PET) ligand for H3Rs from dihydroquinolinone derivatives, which we previously found to have high affinity with these receptors. Methods Six compounds were selected from a dihydroquinolinone compound library based on structural capability for 11C labeling and binding affinity for H3Rs. Their in vivo kinetics in the rat brain were examined in a comparative manner by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Chemicals with appropriate kinetic properties were then labeled with 11C and evaluated in rats and monkeys using PET. Results Of the six compounds, TASP0410457 (also diminutively called TASP457) and TASP0434988 exhibited fast kinetics and relatively high brain uptakes in ex vivo LC-MS/MS and were selected as candidate PET imaging agents. PET data in rat brains were mostly consistent with LC-MS/MS findings, and rat and monkey PET scans demonstrated that [11C]TASP0410457 was superior to [11C]TASP0434988 for high-contrast H3R PET imaging. In the monkey brain PET, distribution volume for [11C]TASP0410457 could be quantified, and receptor occupancy by a nonradioactive compound was measurable using this radioligand. The specific binding of [11C]TASP0410457 to H3Rs was confirmed by autoradiography using rat and monkey brain sections. Conclusions We developed [11C]TASP0410457 as a radioligand enabling a robust quantification of H3Rs in all brain regions and demonstrated the utility of ex vivo LC-MS/MS and in vivo PET assays for selecting appropriate imaging tracers. [11C]TASP0410457 will help to examine the implication of H3Rs in neuropsychiatric disorders and to characterize emerging therapeutic agents targeting H3Rs. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0170-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazumi Koga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.,Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan.,Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Jun Maeda
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Masaki Tokunaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Masayuki Hanyu
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Mari Ohmichi
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Toshio Nakamura
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Yuji Nagai
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Chie Seki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Yasuyuki Kimura
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Toshimitsu Fukumura
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.
| |
Collapse
|
13
|
Wu X, Zhou X, Zhang S, Zhang Y, Deng A, Han J, Zhu L, Kung HF, Qiao J. Brain uptake of a non-radioactive pseudo-carrier and its effect on the biodistribution of [(18)F]AV-133 in mouse brain. Nucl Med Biol 2015; 42:630-6. [PMID: 25910857 DOI: 10.1016/j.nucmedbio.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION 9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. METHODS The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. RESULTS The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. CONCLUSION The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application.
Collapse
Affiliation(s)
- Xianying Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xue Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuxian Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Aifang Deng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jie Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Hank F Kung
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|
14
|
Barth V, Need A. Identifying novel radiotracers for PET imaging of the brain: application of LC-MS/MS to tracer identification. ACS Chem Neurosci 2014; 5:1148-53. [PMID: 24828747 DOI: 10.1021/cn500072r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear medicine imaging biomarker applications are limited by the radiotracers available. Radiotracers enable the measurement of target engagement, or occupancy in relation to plasma exposure. These tracers can also be used as pharmacodynamic biomarkers to demonstrate functional consequences of binding a target. More recently, radiotracers have also been used for patient tailoring in Alzheimer's disease seen with amyloid imaging. Radiotracers for the central nervous system (CNS) are challenging to identify, as they require a unique intersection of multiple properties. Recent advances in tangential technologies, along with the use of iterative learning for the purposes of deriving in silico models, have opened up additional opportunities to identify radiotracers. Mass spectral technologies and in silico modeling have made it possible to measure and predict in vivo characteristics of molecules to indicate potential tracer performance. By analyzing these data alongside other measures, it is possible to delineate guidelines to increase the likelihood of selecting compounds that can perform as radiotracers or serve as the best starting point to develop a radiotracer following additional structural modification. The application of mass spectrometry based technologies is an efficient way to evaluate compounds as tracers in vivo, but more importantly enables the testing of potential tracers that have either no label site or complex labeling chemistry which may deter assessment by traditional means; therefore, use of this technology allows for more rapid iterative learning. The ability to differentially distribute toward target rich tissues versus tissue with no/less target present is a unique defining feature of a tracer. By testing nonlabeled compounds in vivo and analyzing tissue levels by LC-MS/MS, rapid assessment of a compound's ability to differentially distribute in a manner consistent with target expression biology guides the focus of chemistry resources for both designing and labeling tracer candidates. LC-MS/MS has only recently been used for de novo tracer identification; however, this connection of mass spectral technology to imaging has initiated engagement from a wider community that brings diverse backgrounds into the tracer discovery arena.
Collapse
Affiliation(s)
- Vanessa Barth
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Anne Need
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|