1
|
Waiker DK, Verma A, Gajendra TA, Namrata, Roy A, Kumar P, Trigun SK, Srikrishna S, Krishnamurthy S, Davisson VJ, Shrivastava SK. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer's disease therapy. Eur J Med Chem 2024; 271:116409. [PMID: 38663285 DOI: 10.1016/j.ejmech.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 μM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 μM) along with good anti-Aβ aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 μM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aβ-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - T A Gajendra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Namrata
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
AlNajjar YT, Gabr M, ElHady AK, Salah M, Wilms G, Abadi AH, Becker W, Abdel-Halim M, Engel M. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects. Eur J Med Chem 2022; 227:113911. [PMID: 34710745 DOI: 10.1016/j.ejmech.2021.113911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
A role of Dyrk1A in the progression of Down syndrome-related Alzheimer's disease (AD) is well supported. However, the involvement of Dyrk1A in the pathogenesis of Parkinson's disease (PD) was much less studied, and it is not clear whether it would be promising to test Dyrk1A inhibitors in relevant PD models. Herein, we modified our previously published 1-(6-hydroxybenzo[d]thiazol-2-yl)-3-phenylurea scaffold of Dyrk1A inhibitors to obtain a new series of analogues with higher selectivity for Dyrk1A on the one hand, but also with a novel, additional activity as inhibitors of α-synuclein (α-syn) aggregation, a major pathogenic hallmark of PD. The phenyl acetamide derivative b27 displayed the highest potency against Dyrk1A with an IC50 of 20 nM and high selectivity over closely related kinases. Furthermore, b27 was shown to successfully target intracellular Dyrk1A and to inhibit SF3B1 phosphorylation in HeLa cells with an IC50 of 690 nM. In addition, two compounds among the Dyrk1A inhibitors, b1 and b20, also suppressed the aggregation of α-synuclein (α-syn) oligomers (with IC50 values of 10.5 μM and 7.8 μM, respectively). Both compounds but not the Dyrk1A reference inhibitor harmine protected SH-SY5Y neuroblastoma cells against α-syn-induced cytotoxicity, with b20 exhibiting a higher neuroprotective effect. Compound b1 and harmine were more efficient in protecting SH-SY5Y cells against 6-hydroxydopamine-induced cell death, an effect that was previously correlated to Dyrk1A inactivation in cells but not yet verified using chemical inhibitors. The presented dual inhibitors exhibited a novel activity profile encouraging for further testing in neurodegenerative disease models.
Collapse
Affiliation(s)
- Yasmeen T AlNajjar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, CA, 94305, United States
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, 12451, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:ijms22169098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.
Collapse
|
4
|
Weber C, Sipos M, Paczal A, Balint B, Kun V, Foloppe N, Dokurno P, Massey AJ, Walmsley DL, Hubbard RE, Murray J, Benwell K, Edmonds T, Demarles D, Bruno A, Burbridge M, Cruzalegui F, Kotschy A. Structure-Guided Discovery of Potent and Selective DYRK1A Inhibitors. J Med Chem 2021; 64:6745-6764. [PMID: 33975430 DOI: 10.1021/acs.jmedchem.1c00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors. Exploiting the structural differences in DYRK1A and its close homologue DYRK2, we were able to fine-tune the selectivity of our inhibitors. Our best compounds potently inhibited DYRK1A in the cell culture and in vivo and demonstrated drug-like properties. The inhibition of DYRK1A in vivo translated into dose-dependent tumor growth inhibition in a model of ovarian carcinoma.
Collapse
Affiliation(s)
- Csaba Weber
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Melinda Sipos
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Balazs Balint
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Vilibald Kun
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | | | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | | | | | | | - James Murray
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Karen Benwell
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Thomas Edmonds
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Didier Demarles
- Technologie Servier, 27 Rue Eugène Vignat, 45000 Orleans, France
| | - Alain Bruno
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mike Burbridge
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Francisco Cruzalegui
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| |
Collapse
|
5
|
Purgatorio R, Gambacorta N, Catto M, de Candia M, Pisani L, Espargaró A, Sabaté R, Cellamare S, Nicolotti O, Altomare CD. Pharmacophore Modeling and 3D-QSAR Study of Indole and Isatin Derivatives as Antiamyloidogenic Agents Targeting Alzheimer's Disease. Molecules 2020; 25:E5773. [PMID: 33297547 PMCID: PMC7731220 DOI: 10.3390/molecules25235773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Thirty-six novel indole-containing compounds, mainly 3-(2-phenylhydrazono) isatins and structurally related 1H-indole-3-carbaldehyde derivatives, were synthesized and assayed as inhibitors of beta amyloid (Aβ) aggregation, a hallmark of pathophysiology of Alzheimer's disease. The newly synthesized molecules spanned their IC50 values from sub- to two-digit micromolar range, bearing further information into structure-activity relationships. Some of the new compounds showed interesting multitarget activity, by inhibiting monoamine oxidases A and B. A cell-based assay in tau overexpressing bacterial cells disclosed a promising additional activity of some derivatives against tau aggregation. The accumulated data of either about ninety published and thirty-six newly synthesized molecules were used to generate a pharmacophore hypothesis of antiamyloidogenic activity exerted in a wide range of potencies, satisfactorily discriminating the 'active' compounds from the 'inactive' (poorly active) ones. An atom-based 3D-QSAR model was also derived for about 80% of 'active' compounds, i.e., those achieving finite IC50 values lower than 100 μM. The 3D-QSAR model (encompassing 4 PLS factors), featuring acceptable predictive statistics either in the training set (n = 45, q2 = 0.596) and in the external test set (n = 14, r2ext = 0.695), usefully complemented the pharmacophore model by identifying the physicochemical features mainly correlated with the Aβ anti-aggregating potency of the indole and isatin derivatives studied herein.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain; (A.E.); (R.S.)
| | - Raimon Sabaté
- Institute of Nanoscience and Nanotechnology (IN2UB), Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain; (A.E.); (R.S.)
| | - Saverio Cellamare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (R.P.); (N.G.); (M.d.C.); (L.P.); (S.C.); (O.N.); (C.D.A.)
| |
Collapse
|
6
|
Jiang X, Zhou J, Wang Y, Chen L, Duan Y, Huang J, Liu C, Chen Y, Liu W, Sun H, Feng F, Qu W. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur J Med Chem 2020; 207:112751. [DOI: 10.1016/j.ejmech.2020.112751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 08/09/2020] [Indexed: 12/28/2022]
|
7
|
Saeedi M, Safavi M, Allahabadi E, Rastegari A, Hariri R, Jafari S, Bukhari SNA, Mirfazli SS, Firuzi O, Edraki N, Mahdavi M, Akbarzadeh T. Thieno[2,3-b]pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease. Arch Pharm (Weinheim) 2020; 353:e2000101. [PMID: 32657467 DOI: 10.1002/ardp.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022]
Abstract
In search of safer tacrine analogs, various thieno[2,3-b]pyridine amine derivatives were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs). Among the synthesized compounds, compounds 5e and 5d showed the highest activity towards acetylcholinesterase and butyrylcholinesterase, with IC50 values of 1.55 and 0.23 µM, respectively. The most active ChE inhibitors (5e and 5d) were also candidates for further complementary assays, such as kinetic and molecular docking studies as well as studies on inhibitory activity towards amyloid-beta (βA) aggregation and β-secretase 1, neuroprotectivity, and cytotoxicity against HepG2 cells. Our results indicated efficient anti-Alzheimer's activity of the synthesized compounds.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Emad Allahabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafari
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Saudi Arabia
| | - Seyedeh S Mirfazli
- Department of Medicinal Chemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer's Therapeutics. Int J Mol Sci 2020; 21:E703. [PMID: 31973122 PMCID: PMC7038192 DOI: 10.3390/ijms21030703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Aging-associated neurodegenerative diseases, which are characterized by progressive neuronal death and synapses loss in human brain, are rapidly growing affecting millions of people globally. Alzheimer's is the most common neurodegenerative disease and it can be caused by genetic and environmental risk factors. This review describes the amyloid-β and Tau hypotheses leading to amyloid plaques and neurofibrillary tangles, respectively which are the predominant pathways for the development of anti-Alzheimer's small molecule inhibitors. The function and structure of the druggable targets of these two pathways including β-secretase, γ-secretase, and Tau are discussed in this review article. Computer-Aided Drug Design including computational structure-based design and ligand-based design have been employed successfully to develop inhibitors for biomolecular targets involved in Alzheimer's. The application of computational molecular modeling for the discovery of small molecule inhibitors and modulators for β-secretase and γ-secretase is summarized. Examples of computational approaches employed for the development of anti-amyloid aggregation and anti-Tau phosphorylation, proteolysis and aggregation inhibitors are also reported.
Collapse
Affiliation(s)
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, Vari 16672, Greece;
| | - Lefteris C. Zacharia
- Department of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus
| |
Collapse
|
9
|
Kumari A, Sharma R, Shrivastava N, Somvanshi P, Grover A. Bleomycin modulates amyloid aggregation in β-amyloid and hIAPP. RSC Adv 2020; 10:25929-25946. [PMID: 35518630 PMCID: PMC9055351 DOI: 10.1039/d0ra04949b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 12/06/2022] Open
Abstract
Aberrant misfolding and amyloid aggregation, which result in amyloid fibrils, are frequent and critical pathological incidents in various neurodegenerative disorders. Multiple drugs or inhibitors have been investigated to avert amyloid aggregation in individual peptides, exhibiting sequence-dependent inhibition mechanisms. Establishing or inventing inhibitors capable of preventing amyloid aggregation in a wide variety of amyloid peptides is quite a daunting task. Bleomycin (BLM), a complex glycopeptide, has been widely used as an antibiotic and antitumor drug due to its ability to inhibit DNA metabolism, and as an antineoplastic, especially for solid tumors. In this study, we investigated the dual inhibitory effects of BLM on Aβ aggregation, associated with Alzheimer's disease and hIAPP, which is linked to type 2 diabetes, using both computational and experimental techniques. Combined results from drug repurposing and replica exchange molecular dynamics simulations demonstrate that BLM binds to the β-sheet region considered a hotspot for amyloid fibrils of Aβ and hIAPP. BLM was also found to be involved in β-sheet destabilization and, ultimately, in its reduction. Further, experimental validation through in vitro amyloid aggregation assays was obtained wherein the fibrillar load was decreased for the BLM-treated Aβ and hIAPP peptides in comparison to controls. For the first time, this study shows that BLM is a dual inhibitor of Aβ and hIAPP amyloid aggregation. In the future, the conformational optimization and processing of BLM may help develop various efficient sequence-dependent inhibitors against amyloid aggregation in various amyloid peptides. Bleomycin acts as a dual inhibitor against both amyloid β and human islet amyloid polypeptide by binding to the β-sheet grooves considered as the amyloids hotspot.![]()
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
- School of Biotechnology
| | - Ritika Sharma
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | | | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| |
Collapse
|
10
|
Silva T, Mohamed T, Shakeri A, Rao PPN, Soares da Silva P, Remião F, Borges F. Repurposing nitrocatechols: 5-Nitro-α-cyanocarboxamide derivatives of caffeic acid and caffeic acid phenethyl ester effectively inhibit aggregation of tau-derived hexapeptide AcPHF6. Eur J Med Chem 2019; 167:146-152. [PMID: 30771602 DOI: 10.1016/j.ejmech.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022]
Abstract
Polyphenols like caffeic acid and its phenethyl ester have been associated with potent anti-aggregating activity. Accordingly, we screened a library of polyphenols and synthetic derivatives thereof for their capacity to inhibit tau-aggregation using a thioflavin T-based fluorescence method. Our results show that the nitrocatechol scaffold is required for a significant anti-aggregating activity, which is enhanced by introducing bulky substituents at the side chain. A remarkable increase in activity was observed for α-cyanocarboxamide derivatives 26-27. Molecular docking studies showed that the amide bond provides superior conformational stability in the steric zipper assembly of tau, which drives the increase in activity. We also found that derivatives 24-27 were potent chelators of copper(II) - a property of pharmacological significance in abnormal protein aggregation. These small molecules can provide promising leads to develop new drugs for tauopathies and AD. These findings open a new window on the repurposing of nitrocatechols beyond their established role as catechol-O-methyltransferase inhibitors.
Collapse
Affiliation(s)
- Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tarek Mohamed
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Arash Shakeri
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Patrício Soares da Silva
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
Gandini A, Bartolini M, Tedesco D, Martinez-Gonzalez L, Roca C, Campillo NE, Zaldivar-Diez J, Perez C, Zuccheri G, Miti A, Feoli A, Castellano S, Petralla S, Monti B, Rossi M, Moda F, Legname G, Martinez A, Bolognesi ML. Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. J Med Chem 2018; 61:7640-7656. [DOI: 10.1021/acs.jmedchem.8b00610] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Annachiara Gandini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | | | - Carlos Roca
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Josefa Zaldivar-Diez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Concepción Perez
- Instituto de Quimica Medica, CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Alessandra Feoli
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Castellano
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Martina Rossi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, I-20133 Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Ana Martinez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
12
|
Kieffer C, Babin V, Jouanne M, Slimani I, Berhault Y, Legay R, Sopková-de Oliveira Santos J, Rault S, Voisin-Chiret AS. Sequential one pot double C H heteroarylation of thiophene using bromopyridines to synthesize unsymmetrical 2,5-bipyridylthiophenes. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139:153-167. [PMID: 28800454 DOI: 10.1016/j.ejmech.2017.07.070] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative brain disorder in which many biological dysfunctions are involved. Among them, two main types of lesions were discovered and widely studied: the amyloid plaques and the neurofibrillary tangles (NFTs). These two lesions are caused by the dysfunction and the accumulation of two proteins which are, respectively, the beta-amyloid peptide and the tau protein. The process that leads these two proteins to aggregate is complex and is the subject of current studies. After a brief description of the aggregation mechanisms, we will provide an overview of new therapeutic agents targeting the different dysfunctions and toxic species found during aggregation.
Collapse
Affiliation(s)
- Marie Jouanne
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Sylvain Rault
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Anne-Sophie Voisin-Chiret
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France.
| |
Collapse
|
14
|
Bálint B, Wéber C, Cruzalegui F, Burbridge M, Kotschy A. Structure-Based Design and Synthesis of Harmine Derivatives with Different Selectivity Profiles in Kinase versus Monoamine Oxidase Inhibition. ChemMedChem 2017; 12:932-939. [PMID: 28264138 DOI: 10.1002/cmdc.201600539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/06/2017] [Indexed: 12/16/2023]
Abstract
Dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome, in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases, could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand, harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design, we synthesized a collection of harmine analogues with tunable selectivity toward these two enzymes. Modifications at the 7-position typically decreased affinity for DYRK1A, whereas substitution at the 9-position had a similar effect on MAO-A inhibition but DYRK1A inhibition was maintained. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition.
Collapse
Affiliation(s)
- Balázs Bálint
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7, 1031, Budapest, Hungary
| | - Csaba Wéber
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7, 1031, Budapest, Hungary
| | - Francisco Cruzalegui
- Institute de Recherche Servier, 50 Rue Carnot, Suresnes, 92150, France
- Present address: Pierre Fabre R&D Centre, 3 Av. Hubert Curien, 31035, Toulouse Cedex 1, France
| | - Mike Burbridge
- Institute de Recherche Servier, 50 Rue Carnot, Suresnes, 92150, France
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7, 1031, Budapest, Hungary
| |
Collapse
|
15
|
Cornec AS, Monti L, Kovalevich J, Makani V, James MJ, Vijayendran KG, Oukoloff K, Yao Y, Lee VMY, Trojanowski JQ, Smith AB, Brunden KR, Ballatore C. Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases. J Med Chem 2017; 60:5120-5145. [PMID: 28530811 PMCID: PMC5483893 DOI: 10.1021/acs.jmedchem.7b00475] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is a complex, multifactorial disease in which different
neuropathological mechanisms are likely involved, including those
associated with pathological tau and Aβ species as well as neuroinflammation.
In this context, the development of single multitargeted therapeutics
directed against two or more disease mechanisms could be advantageous.
Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing
activity and structural similarities with known NSAIDs, we conducted
structure–activity relationship studies that led to the identification
of multitargeted prototypes with activities as MT-stabilizing agents
and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX)
pathways. Several examples are brain-penetrant and exhibit balanced
multitargeted in vitro activity in the low μM range. As brain-penetrant
MT-stabilizing agents have proven effective against tau-mediated neurodegeneration
in animal models, and because COX- and 5-LOX-derived eicosanoids are
thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles
provide tools to explore novel multitargeted strategies for AD and
other neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Sophie Cornec
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ludovica Monti
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jane Kovalevich
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Vishruti Makani
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael J James
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Krishna G Vijayendran
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yuemang Yao
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Mariano M, Hartmann RW, Engel M. Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2. Eur J Med Chem 2016; 112:209-216. [PMID: 26896709 DOI: 10.1016/j.ejmech.2016.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/14/2022]
Abstract
The dual-specificity tyrosine-regulated kinase 1A (Dyrk1A) has gathered much interest as a pharmacological target in Alzheimer's disease (AD), but it plays a role in malignant brain tumors as well. As both diseases are multi-factorial, further protein kinases, such as Clk1 and CK2, were proposed to contribute to the pathogenesis. We designed a new class of α-benzylidene-γ-butyrolactone inhibitors that showed low micromolar potencies against Dyrk1A and/or Clk1 and a good selectivity profile among the most frequently reported off-target kinases. A systematic replacement of the heterocyclic moiety gave access to further inhibitor classes with interesting selectivity profiles, demonstrating that the benzylidene heterocycles provide a versatile tool box for developing inhibitors of the CMGC kinase family members Dyr1A/1B, Clk1/4 and CK2. Efficacy for the inhibition of Dyrk1A-mediated tau phosphorylation was demonstrated in a cell-based assay. Multi-targeted but not non-specific kinase inhibitors were also obtained, that co-inhibited the lipid kinases PI3Kα/γ. These compounds were shown to inhibit the proliferation of U87MG cells in the low micromolar range. Based on the molecular properties, the inhibitors described here hold promise for CNS activity.
Collapse
Affiliation(s)
- Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf W Hartmann
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D 66123 Saarbrücken, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
17
|
Multitarget strategies in Alzheimer's disease: benefits and challenges on the road to therapeutics. Future Med Chem 2016; 8:697-711. [DOI: 10.4155/fmc-2016-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial syndrome, for which effective cures are urgently needed. Seeking for enhanced therapeutic efficacy, multitarget drugs have been increasingly sought after over the last decades. They offer the attractive prospect of tackling intricate network effects, but with the benefits of a single-molecule therapy. Herein, we highlight relevant progress in the field, focusing on acetylcholinesterase inhibition and amyloid pathways as two pivotal features in multitarget design strategies. We also discuss the intertwined relationship between selected molecular targets and give a brief glimpse into the power of multitarget agents as pharmacological probes of Alzheimer's disease molecular mechanisms.
Collapse
|
18
|
Stotani S, Giordanetto F, Medda F. DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem 2016; 8:681-96. [PMID: 27073990 DOI: 10.4155/fmc-2016-0013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.g., loss of neuronal connections and neuronal death) have been identified in affected patients. In addition to the accumulation of β-amyloid plaques in the brain tissue, aberrant phosphorylation of tau proteins has proved to increase neuronal death. DYRK1A phosphorylates tau on 11 different Ser/Thr residues, resulting in the formation of aggregates called 'neurofibrillary tangles' which, together with amyloid plaques, could be responsible for dementia, neuronal degeneration and cell death. Small molecule inhibition of DYRK1A could thus represent an interesting approach toward the treatment of Alzheimer's and other neurodegenerative diseases. Herein we review the current progress in the identification and development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
- DE Shaw Research, 120W 45th Street, New York, NY 10036, USA
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| |
Collapse
|
19
|
Prati F, De Simone A, Armirotti A, Summa M, Pizzirani D, Scarpelli R, Bertozzi SM, Perez DI, Andrisano V, Perez-Castillo A, Monti B, Massenzio F, Polito L, Racchi M, Sabatino P, Bottegoni G, Martinez A, Cavalli A, Bolognesi ML. 3,4-Dihydro-1,3,5-triazin-2(1H)-ones as the First Dual BACE-1/GSK-3β Fragment Hits against Alzheimer's Disease. ACS Chem Neurosci 2015; 6:1665-82. [PMID: 26171616 DOI: 10.1021/acschemneuro.5b00121] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the main obstacles toward the discovery of effective anti-Alzheimer drugs is the multifactorial nature of its etiopathology. Therefore, the use of multitarget-directed ligands has emerged as particularly suitable. Such ligands, able to modulate different neurodegenerative pathways, for example, amyloid and tau cascades, as well as cognitive and neurogenic functions, are fostered to come. In this respect, we report herein on the first class of BACE-1/GSK-3β dual inhibitors based on a 3,4-dihydro-1,3,5-triazin-2(1H)-one skeleton, whose hit compound 1 showed interesting properties in a preliminary investigation. Notably, compound 2, endowed with well-balanced potencies against the two isolated enzymes (IC50 of 16 and 7 μM against BACE-1 and GSK-3β, respectively), displayed effective neuroprotective and neurogenic activities and no neurotoxicity in cell-based assays. It also showed good brain permeability in a pharmacokinetic assessment in mice. Overall, triazinone derivatives, thanks to the simultaneous modulation of multiple points of the diseased network, might emerge as suitable candidates to be tested in in vivo Alzheimer's disease models.
Collapse
Affiliation(s)
- Federica Prati
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department
of Pharmacy and Biotechonology, University of Bologna, via Belmeloro
6/Selmi 3, 40126 Bologna, Italy
| | - Angela De Simone
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department
for Life Quality Studies, University of Bologna, Corso D’Augusto
237, 47921 Rimini, Italy
| | - Andrea Armirotti
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Daniela Pizzirani
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Rita Scarpelli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Daniel I. Perez
- Centro de Investigaciones
Biologicas, CIB-CSIC, Ramiro de Maetzu
9, 28040 Madrid, Spain
| | - Vincenza Andrisano
- Department
for Life Quality Studies, University of Bologna, Corso D’Augusto
237, 47921 Rimini, Italy
| | - Ana Perez-Castillo
- Instituto de Investigaciones
Biomédicas, CSIC-UAM, Arturo
Duperier, 4, 28029 Madrid, Spain
- Centro Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Nicolás
Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Barbara Monti
- Department
of Pharmacy and Biotechonology, University of Bologna, via Belmeloro
6/Selmi 3, 40126 Bologna, Italy
| | - Francesca Massenzio
- Department
of Pharmacy and Biotechonology, University of Bologna, via Belmeloro
6/Selmi 3, 40126 Bologna, Italy
| | - Letizia Polito
- Fondazione Golgi
Cenci, Corso San Martino 10, 20081 Abbiategrasso, Italy
| | - Marco Racchi
- Department
of Drug Sciences-Pharmacology, University of Pavia, viale Taramelli
12, 27100 Pavia, Italy
| | - Piera Sabatino
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Giovanni Bottegoni
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Ana Martinez
- Centro de Investigaciones
Biologicas, CIB-CSIC, Ramiro de Maetzu
9, 28040 Madrid, Spain
| | - Andrea Cavalli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department
of Pharmacy and Biotechonology, University of Bologna, via Belmeloro
6/Selmi 3, 40126 Bologna, Italy
| | - Maria L. Bolognesi
- Department
of Pharmacy and Biotechonology, University of Bologna, via Belmeloro
6/Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
20
|
Rüben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS One 2015; 10:e0132453. [PMID: 26192590 PMCID: PMC4508061 DOI: 10.1371/journal.pone.0132453] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A) with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau) without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.
Collapse
Affiliation(s)
- Katharina Rüben
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Anne Wurzlbauer
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Agnes Walte
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Franz Bracher
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
Affiliation(s)
- Ramzi Abbassi
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Terrance G Johns
- MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
22
|
Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents. Bioorg Med Chem 2015; 23:4442-4452. [PMID: 26116179 DOI: 10.1016/j.bmc.2015.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/30/2022]
Abstract
Tremendous efforts have been dedicated to the development of effective therapeutics against Alzheimer's disease, which represents the most common debilitating neurodegenerative disease. Multifunctional agents are molecules designed to have simultaneous effects on different pathological processes. Such compounds represent an emerging strategy for the development of effective treatments against Alzheimer's disease. Here, we report on the synthesis and biological evaluation of a series of nitroxoline-based analogs that were designed by merging the scaffold of 8-hydroxyquinoline with that of a known selective butyrylcholinesterase inhibitor that has promising anti-Alzheimer properties. Most strikingly, compound 8g inhibits self-induced aggregation of the amyloid beta peptide (Aβ1-42), inhibits with sub-micromolar potency butyrylcholinesterase (IC50=215 nM), and also selectively complexes Cu(2+). Our study thus designates this compound as a promising multifunctional agent for therapeutic treatment of Alzheimer's disease. The crystal structure of human butyrylcholinesterase in complex with compound 8g is also solved, which suggests ways to further optimize compounds featuring the 8-hydroxyquinoline scaffold.
Collapse
|
23
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|