1
|
Hu YK, Liu YM, Bai XL, Ma C, Liao X. Screening of Monoamine Oxidase B Inhibitors from Fragaria nubicola by Ligand Fishing and Their Neuroprotective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:512-521. [PMID: 36562659 DOI: 10.1021/acs.jafc.2c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fragaria nubicola, known as Tibetan strawberry, is an edible plant possessing various health-promoting effects. However, its functional compositions were rarely studied. In this work, monoamine oxidase B (MAO-B) inhibitors in this plant were rapidly screened using the enzyme-functionalized magnetic nanoparticles coupled with UPLC-QTOF-MS. Two inhibitors, quercetin-3-O-β-d-glucuronide-6″-methyl ester (1) and kaempferol-3-O-β-d-glucuronide-6″-methyl ester (2), were identified from this plant with the IC50 values of 19.44 ± 1.17 and 22.63 ± 1.78 μM, respectively. Enzyme kinetic analysis and molecular docking were carried out to investigate the mechanism of inhibition. Contents of both compounds as well as those of total phenolics and flavonoids were quantified to be 24.76 ± 1.26, 35.59 ± 1.17, 837.67 ± 10.62, and 593.46 ± 10.37 μg/g, respectively. In addition, both compounds exhibited significant neuroprotective effects on 6-hydroxydopamine-induced PC12 cells. This is the first report on the neuroprotective components of F. nubicola, suggesting its potential for developing neuroprotective functional food.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi39217, United States
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chao Ma
- Phytochemistry Laboratory, Tibet Plateau Institute of Biology, Lhasa850001, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
| |
Collapse
|
2
|
Deng X, Yang J, Qing R, Yuan H, Yue P, Tian S. Suppressive role of lovastatin in intracerebral hemorrhage through repression of autophagy. Metab Brain Dis 2023; 38:361-372. [PMID: 36306000 DOI: 10.1007/s11011-022-01101-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
Statins possess critical function in the brain. Here, we intended to investigate the role of lovastatin in brain damage after intracerebral hemorrhage (ICH). A collagenase-induced ICH rat model was established followed by lovastatin treatment. Then, the effect of lovastatin on ICH-induced brain damage was explored with cognitive function, learning and memory abilities, and neurological damage of rats analyzed. Besides, brain water content, number of degenerate neurons, Nissl's body, and apoptosis of neurons were detected. Oxidative stress levels, inflammation, and autophagy levels in ICH were measured after treatment of lovastatin. Lovastatin improved the cognitive impairment of rats, enhanced their spatial learning and memory abilities, reduced nervous system damage, lesion area, and brain water content after ICH. Lovastatin was capable of reducing the number of degenerated neurons, the apoptosis level, autophagy level, and increasing the number of Nissl's body. Lovastatin inhibited the oxidative stress response and inflammatory factors in the brain tissue after ICH, and increased the expression of anti-inflammatory factor IL-10. Lovastatin inhibited AMPK/mTOR signaling pathway after ICH. Our study highlighted the suppressive role of lovastatin in ICH-induced brain damage.
Collapse
Affiliation(s)
- Xiong Deng
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Jinmei Yang
- Department of Nursing, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, 422001, People's Republic of China
| | - Ruqi Qing
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Heying Yuan
- Health Management Center, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, 422001, People's Republic of China
| | - Pinhua Yue
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Song Tian
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China.
| |
Collapse
|
3
|
Farawahida AH, Palmer J, Flint S. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int J Food Microbiol 2022; 379:109829. [PMID: 35863149 DOI: 10.1016/j.ijfoodmicro.2022.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Red fermented rice (RFR) is rice fermented using Monascus spp. This product contains monacolin K, providing health benefits including mitigation of diarrhoea and improving blood circulation. RFR can produce pigments that can act as natural colour and flavouring agents. However, Monascus spp. (a fungal starter to ferment RFR) can also produce the mycotoxin, citrinin (CIT) which is believed to have adverse effects on human health. CIT in RFR has been reported worldwide by using different methods of detection. This review focuses on the production of RFR by solid-state fermentation (SSF) and submerged fermentation (SmF), the occurrence of CIT in RFR, CIT quantification, the factors affecting the growth of Monascus spp., pigments and CIT production in RFR, and possible methods to reduce CIT in RFR. This review will help the food industries, researchers, and consumers understand the risk of consuming RFR, and the possibility of controlling CIT in RFR.
Collapse
Affiliation(s)
- Abdul Halim Farawahida
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
Hu YK, Bai XL, Yuan H, Zhang Y, Ayeni EA, Liao X. Polyphenolic Glycosides from the Fruits Extract of Lycium ruthenicum Murr and Their Monoamine Oxidase B Inhibitory and Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7968-7980. [PMID: 35729693 DOI: 10.1021/acs.jafc.2c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruits ofLycium ruthenicum Murr have long been consumed as health food and used in folk medicine in China. Apart from the well-known polysaccharides, the active small molecular constituents in this fruit have not been fully studied. In this work, a systematic phytochemical study was carried out to investigate the small molecules and their potential health benefits. Nine new polyphenolic glycosides, lyciumserin A-I (1-9), together with 16 known compounds (10-25), were isolated and elucidated by high-resolution electrospray ionization mass spectrometry and comprehensive NMR analyses in combination with chemical hydrolysis. Compounds 1, 2, and 16 exhibited moderate inhibitory activity of monoamine oxidase B (MAO-B), while compounds 1 (50 μM) and 2 (100 μM) displayed significant neuroprotective effects (69.22 and 72.38% of cell viability, respectively) in the 6-hydroxydopamine-induced injury of the PC12 cell model (54.41%), comparable to the positive drug rasagiline (70.45%). The neuroprotective effect of 1 and 2 was further evidenced by the observation of the morphological change and fluorescein diacetate/propidium iodide staining. In addition, the levels of the major active compounds (1, 3, 5/6, and 16-18) vary from 21.5 to 892.3 μg/g. This is the first report on phenolic glycosides from the fruits ofL. ruthenicum Murr that possess both significant MAO-B inhibitory and neuroprotective effects, indicating the promising potential of the fruits for the development of health care products and even therapeutic agents for the treatment of Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Chen YP, Wu HT, Hwang IE, Chen FF, Yao JY, Yin Y, Chen MY, Liaw LL, Kuo YC. Identification of the high-yield monacolin K strain from Monascus spp. and its submerged fermentation using different medicinal plants. BOTANICAL STUDIES 2022; 63:20. [PMID: 35779152 PMCID: PMC9250582 DOI: 10.1186/s40529-022-00351-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Medical plants confer various benefits to human health and their bioconversion through microbial fermentation can increase efficacy, reduce toxicity, conserve resources and produce new chemical components. In this study, the cholesterol-lowering monacolin K genes and content produced by Monascus species were identified. The high-yield monacolin K strain further fermented with various medicinal plants. The antioxidant and anti-inflammatory activities, red pigment and monacolin K content, total phenolic content, and metabolites in the fermented products were analyzed. RESULTS Monacolin K was detected in Monascus pilosus (BCRC 38072), and Monascus ruber (BCRC 31533, 31523, 31534, 31535, and 33323). It responded to the highly homologous mokA and mokE genes encoding polyketide synthase and dehydrogenase. The high-yield monacolin K strain, M. ruber BCRC 31535, was used for fermentation with various medicinal plants. A positive relationship between the antioxidant capacity and total phenol content of the fermented products was observed after 60 days of fermentation, and both declined after 120 days of fermentation. By contrast, red pigment and monacolin K accumulated over time during fermentation, and the highest monacolin K content was observed in the fermentation of Glycyrrhiza uralensis, as confirmed by RT-qPCR. Moreover, Monascus-fermented medicinal plants including Paeonia lactiflora, Alpinia oxyphylla, G. uralensis, and rice were not cytotoxic. Only the product of Monascus-fermented G. uralensis significantly exhibited the anti-inflammatory capacity in a dose-dependent manner in lipopolysaccharide-induced Raw264.7 cells. The metabolites of G. uralensis with and without fermentation (60 days) were compared by LC/MS. 2,3-Dihydroxybenzoic acid, 3,4-dihydroxyphenylglycol, and 3-amino-4-hydroxybenzoate were considered to enhance the antioxidant and anti-inflammatory ability. CONCLUSIONS Given that highly homologous monacolin K and citrinin genes can be observed in Monascus spp., monacolin K produced by Monascus species without citrinin genes can be detected through the complementary methods of PCR and HPLC. In addition, the optimal fermentation time was important to the acquisition of antioxidants, red pigment and monacolin K. These bioactive substances were significantly affected by medicinal plants over fermentation time. Consequently, Monascus-fermented G. uralensis had a broad spectrum of biological activities.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Hong-Tan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ing-Er Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan
| | - Fang-Fang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Jeng-Yuan Yao
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Basic Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yiling Yin
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Meng-Yun Chen
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Li-Ling Liaw
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan
| | - Yang-Cheng Kuo
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan.
| |
Collapse
|
6
|
Kaya Tilki E, Engür Öztürk S, Özarda MG, Cantürk Z, Dikmen M. Investigation of the neuroprotective and neuritogenic effects of halotolerant Penicillium flavigenum-derived sorbicillin-like compounds on PC-12 Adh cells. Cytotechnology 2021; 73:801-813. [PMID: 34776630 DOI: 10.1007/s10616-021-00498-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is an adult-onset neurodegenerative condition caused by oxidative stress and mitochondrial malfunction. In this study, the neuroprotective and neuritogenic activity of water fraction (Sw-fr) containing sorbicillin-like active metabolites of halotolerant P. flavigenum isolated from Salt Lake in Konya, Turkey were investigated on a 6-hydroxydopamine (6-OHDA)-induced PD in vitro PC-12 Adh cell model. Firstly, Sw-fr containing sorbicillin-like active metabolites were extracted from P. flavigenum and was compared with a sorbicillin standard by liquid chromatography-mass spectrometry (LC-MS). Then, the effects of non-cytotoxic concentrations of Sw-fr on the 6-OHDA-induced PD cell model were investigated via real-time cell proliferation analysis using the RTCA DP instrument. The effects of these concentrations on mitochondrial membrane integrity, caspase-3 were investigated by flow cytometry. Neurite outgrowth analysis and immunofluorescence staining were used to explore the neuritogenic effects of neuroprotective doses. By improving PC-12 Adh cell viability, decreasing reactive oxygen species production, and reducing apoptotic cell death, 1 and 10 μg/mL Sw-fr and sorbicillin standard proved neuroprotective against 6-OHDA-induced neurotoxicity. Furthermore, 1 and 10 µg/mL Sw-fr significantly induced neurite outgrowth. As a result, sorbicillin-like active metabolites containing Sw-fr were found to have neuroprotective and neuritogenic effects. Sorbicillin-like metabolites obtained from fungi may be novel natural medicines for neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00498-9.
Collapse
Affiliation(s)
- Elif Kaya Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey
| | - Selin Engür Öztürk
- Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Mustafa Güçlü Özarda
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey
| |
Collapse
|
7
|
Chaudhary V, Katyal P, Poonia AK, Kaur J, Puniya AK, Panwar H. Natural pigment from Monascus: The production and therapeutic significance. J Appl Microbiol 2021; 133:18-38. [PMID: 34569683 DOI: 10.1111/jam.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The present review highlights the advantages of using natural colorant over the synthetic one. We have discussed the fermentation parameters that can enhance the productivity of Monascus pigment on agricultural wastes. BACKGROUND Food industry is looking for natural colours because these can enhance the esthetic value, attractiveness, and acceptability of food while remaining nontoxic. Many synthetic food colours (Azorubine Carmoisine, quinoline) have been prohibited due to their toxicity and carcinogenicity. Increasing consumer awareness towards the food safety has forced the manufacturing industries to look for suitable alternatives. In addition to safety, natural colorants have been found to have nutritional and therapeutic significance. Among the natural colorants, microbial pigments can be considered as a viable option because of scalability, easier production, no seasonal dependence, cheaper raw materials and easier extraction. Fungi such as Monascus have a long history of safety and therefore can be used for production of biopigments. METHOD The present review summarizes the predicted biosynthetic pathways and pigment gene clusters in Monascus purpureus. RESULTS The challenges faced during the pilot-scale production of Monascus biopigment and taming it by us of low-cost agro-industrial substrates for solid state fermentation has been suggested. CONCLUSION Keeping in mind, therapeutic properties of Monascus pigments and their derivatives, they have huge potential for industrial and pharmaceutical application. APPLICATION Though the natural pigments have wide scope in the food industry. However, stabilization of pigment is the greatest challenge and attempts are being made to overcome this by complexion with hydrocolloids or metals and by microencapsulation.
Collapse
Affiliation(s)
- Vishu Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priya Katyal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anuj Kumar Poonia
- Department of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jaspreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Evaluation of Chemical Compositions, Antioxidant Capacity and Intracellular Antioxidant Action in Fish Bone Fermented with Monascus purpureus. Molecules 2021; 26:molecules26175288. [PMID: 34500721 PMCID: PMC8434028 DOI: 10.3390/molecules26175288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fish bones (FBs) are aquatic by-products that are sources of antioxidant-active peptides, calcium dietary supplements, and biomedical materials. Usually, fermentation of these by-products via microorganisms brings desirable changes, enhancing their value. This study investigates the value addition of FB when fermented with Monascus purpureus (MP) for different time intervals, such as 3 days (F3) and 6 days (F6). The results indicate that the soluble protein, peptide, amino acid and total phenol content, as well as the antioxidant capacity (DPPH, ABTS+ radical scavenging activity, and relative reducing power), of F3 and F6 were significantly increased after fermentation. Furthermore, the ROS contents of F3 and F6 were reduced to a greater extent than that of hydrogen peroxide (H2O2) in Clone-9 cells. The MMP integrity, as well as the SOD, CAT, and GPx activity, of F3 and F6 were also increased significantly compared to the H2O2 in Clone-9 cells. Notably, F3 and F6 displayed significant reductions in ROS content, as well as elevate, SOD activity and MMP integrity in Clone-9 cells, when compared with the native FB. These results indicate that the FBs fermented with MP for 3 days (F3), and 6 days (F6) have antioxidant capacity, with possible applications as natural food supplements.
Collapse
|
9
|
Xie L, Zhu G, Shang J, Chen X, Zhang C, Ji X, Zhang Q, Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signal 2021; 87:110122. [PMID: 34438015 DOI: 10.1016/j.cellsig.2021.110122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Lovastatin, a secondary metabolite isolated from fungi, is often used as a representative drug to reduce blood lipid concentration and treat hypercholesterolemia. Its structure is similar to that of HMG-CoA. Lovastatin inhibits the binding of the substrate to HMG-CoA reductase, and strongly competes with HMG-CoA reductase (HMGR), thereby exerting a hypolipidemic effect. Further, its safety has been confirmed in vivo and in vitro. Lovastatin also has anti-inflammatory, anti-cancer, and neuroprotective effects. Therefore, the biological activity of lovastatin, especially its anti-cancer effect, has garnered research attention. Several in vitro studies have confirmed that lovastatin has a significant inhibitory effect on cancer cell viability in a variety of cancers (such as breast, liver, cervical, lung, and colon cancer). At the same time, lovastatin can also increase the sensitivity of some types of cancer cells to chemotherapeutic drugs and strengthen their therapeutic effect. Lovastatin inhibits cell proliferation and regulates cancer cell signaling pathways, thereby inducing apoptosis and cell cycle arrest. This article reviews the structure, biosynthetic pathways, and applications of lovastatin, focusing on the anti-cancer effects and mechanisms of action.
Collapse
Affiliation(s)
- Liguo Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Guodong Zhu
- Yunnan Minzu University, Library, Kunming 650500, China.
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuemei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chunting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochem Res 2021; 46:3325-3341. [PMID: 34432181 DOI: 10.1007/s11064-021-03434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and oxidative stress cooperate to compromise the function of the central nervous system (CNS). Colloidal platinum nanoparticles (Pt NPs) are ideal candidates for reducing the deleterious effects of neuroinflammation since they act as free radical scavengers. Here we evaluated the effects of Pt NPs on several markers of lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. BV-2 cells were treated with increased dilutions (1-100 ppm) of Colloidal Pt and/or LPS (1-10 µg/mL) at different exposure times. Three different protocols of exposure were used combining Pt NPs and LPS: (a) conditioning-protective effect (pre-post-treat), (b) therapeutic effect (co-treat) and (c) conditioning-therapeutic effect (pre-co-treat). After exposure to LPS for 24 h, cells were used for assessment of cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, apoptosis and caspase-3 levels, cell proliferation, mitochondrial membrane potential, inducible nitric oxide (iNOS) activity, pro-inflammatory cytokine (IL-1β, TNF-α and IL-6) levels, and phagocytic activity. Low concentrations (below or equal to 10 ppm) of Colloidal Pt prevented or ameliorated the LPS-induced increase in ROS formation, loss of mitochondrial membrane potential, induction of apoptosis, increase in LDH release, increase in pro-inflammatory cytokines and iNOS, inhibition of phagocytosis linked to microglial persistence in the M1 phase phenotype, loss of cell adhesion, differentiation and/or proliferation, as well as loss of cell viability. These protective effects were evident when cells were preconditioned with Pt NPs prior to LPS treatment. Collectively, the findings demonstrate that at low concentrations, Pt NPs can regulate the function and phenotype of BV-2 cells, activating protective mechanisms to maintain the microglial homeostasis and reduce inflammatory events triggered by the inflammatory insults induced by LPS. These preventive/protective effects on the LPS pro-inflammatory model are linked to the antioxidant properties and phagocytic activity of these NPs.
Collapse
|
11
|
Zhang Y, Chen Z, Wen Q, Xiong Z, Cao X, Zheng Z, Zhang Y, Huang Z. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food Funct 2021; 11:5738-5748. [PMID: 32555902 DOI: 10.1039/d0fo00691b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lovastatin/monacolin K (MK) is used as a lipid lowering drug, due to its effective hypercholesterolemic properties, comparable to synthetic statins. Lovastatin's biosynthetic pathway and gene cluster composition have been studied in depth in Aspergillus terreus. Evidence shows that the MK biosynthetic pathway and gene cluster in Monascus sp. are similar to those of lovastatin in A. terreus. Currently, research efforts have been focusing on the metabolic regulation of MK/lovastatin synthesis, and the evidence shows that a combination of extracellular and intracellular factors is essential for proper MK/lovastatin metabolism. Here, we comprehensively review the research progress on MK/lovastatin biosynthetic pathways, its synthetic precursors and inducing substances and metabolic regulation, with a view to providing reference for future research on fungal metabolism regulation and metabolic engineering for MK/lovastatin production.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiting Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyou Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixiao Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Cao
- Key Laboratory of Crop Biotechnology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Zhenghuai Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yangxin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China and China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Zhou LC, Liang YF, Huang Y, Yang GX, Zheng LL, Sun JM, Li Y, Zhu FL, Qian HW, Wang R, Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 219:113426. [PMID: 33848787 DOI: 10.1016/j.ejmech.2021.113426] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) has become a major obstacle in its treatment. An effective approach is to develop multifunctional agents that simultaneously target multiple pathological processes. Here, a series of diosgenin-indole compounds were designed, synthesized and evaluated for their neuroprotective effects against H2O2 (hydrogen peroxide), 6-OHDA (6-hydroxydopamine) and Aβ (beta amyloid) damages. Preliminary structure-activities relationship revealed that the introduction of indole fragment and electron-donating group at C-5 on ring indole could be beneficial for neuroprotective activities. Results indicated that compound 5b was the most promising candidate against cellular damage induced by H2O2 (52.9 ± 1.9%), 6-OHDA (38.4 ± 2.4%) and Aβ1-42 (54.4 ± 2.7%). Molecular docking study suggested the affinity for 5b bound to Aβ1-42 was -40.59 kcal/mol, which revealed the strong binding affinity of 5b to Aβ1-42. The predicted values of brain/blood partition coefficient (-0.733) and polar surface area (85.118 Å2) indicated the favorable abilities of BBB permeation and absorption of 5b. In addition, 5b significantly decreased ROS (reactive oxygen species) production induced by H2O2. In the following in vivo experiment, 5b obviously attenuated memory and learning impairments of Aβ-injected mice. In summary, compound 5b could be considered as a promising dual-functional neuroprotective agent against AD.
Collapse
Affiliation(s)
- Li-Cheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying-Fan Liang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Li Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He-Wen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
13
|
Amauroderma rugosum Protects PC12 Cells against 6-OHDA-Induced Neurotoxicity through Antioxidant and Antiapoptotic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6683270. [PMID: 33628381 PMCID: PMC7889343 DOI: 10.1155/2021/6683270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/01/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
Amauroderma rugosum (AR) is a dietary mushroom in the Ganodermataceae family whose pharmacological activity and medicinal value have rarely been reported. In this study, the antioxidant capacity and neuroprotective effects of AR were investigated. The aqueous extract of AR was confirmed to contain phenolic compounds, polysaccharides, and triterpenes. The results of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and total antioxidant capacity assays revealed that AR extract scavenged reactive oxygen species. Moreover, AR extract decreased the cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis of PC12 cells induced by 6-hydroxydopamine (6-OHDA). In addition, 6-OHDA upregulated the expressions of proapoptotic proteins and downregulated the Akt (protein kinase B)/mTOR- (mammalian target of rapamycin-) and MEK (mitogen-activated protein kinase kinase)/ERK- (extracellular signal-regulated kinases-) dependent signaling pathways. These effects of 6-OHDA were abolished or partially reversed by AR extract. Furthermore, the neuroprotective effects of AR in 6-OHDA-treated PC12 cells were significantly abolished by Akt and MEK inhibitor. Thus, AR extract possesses neuroprotective effects, probably through its antioxidant and antiapoptotic effects. These findings suggest the potential application of AR in the prevention or treatment of oxidative stress-related neurodegenerative diseases such as Parkinson's disease.
Collapse
|
14
|
Rau M, Köppel-Fürer K, Knechtle B. [Doctor, Do You Know Red Yeast Rice?]. PRAXIS 2021; 110:207-220. [PMID: 33726520 DOI: 10.1024/1661-8157/a003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doctor, Do You Know Red Yeast Rice? Abstract. We present cases of patients with high total cholesterol who wanted to use an alternative therapy for lowering cholesterol. An improvement in the lipid profile was found in all patients, and all tolerated the product made from red rice yeast very well. No side effects were observed. The patients who take red fermented rice consciously choose an alternative agent in the field of phytotherapy because they already have to take several conventional medicines and are no longer willing to use an additional drug of this kind. Another reason is that they no longer want to put up with the side effects they suffered from when using a common lipid-lowering drug.
Collapse
Affiliation(s)
- Monika Rau
- Medbase St. Gallen am Vadianplatz, St. Gallen
| | | | | |
Collapse
|
15
|
Chen Y, Hao Y, Liu Q, Wu B, Liu Y, Zhang Z, Tian C, Ning X, Guo Y, Wang X, Liu J. Design, Synthesis and Biological Evaluation of Novel (
E
)‐Hydroxystyryl Aralkyl Sulfones as Neuroprotective Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202001401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Chen
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Yameng Hao
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Qian Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Bolin Wu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Yunqi Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical SciencesBeijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center Beijing 100191 China
| | - Ying Guo
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| |
Collapse
|
16
|
Peng L, Ai‐lati A, Liu S, Ji Z, Mao J, Che X. Effects of Chinese medicines on monacolin K production and related genes transcription of Monascus ruber in red mold rice fermentation. Food Sci Nutr 2020; 8:2134-2142. [PMID: 32328280 PMCID: PMC7174227 DOI: 10.1002/fsn3.1511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Monacolin K (MK) is a secondary metabolite synthesized by polyketide synthases of Monascus spp. In this study, the combined supplementation of three medicines, including Citri Reticulatae Pericarpium (CRP), Fructus crataegi (FC), and Radix Angelicae Dahuricae (RAD), were mixed with nonglutinous rice and were optimized by response surface methodology to enhance the production of MK in fermented red mold rice (RMR). Under the optimum condition, MK production achieved 3.60 mg/g, which was 41.18% higher than RMR without medicines. The improved MK production was mainly caused by the up-regulated transcription level of mokA, mokB, mokF, mokH, mokI, and mplaeA. Meanwhile, the inhibitory effect of Poria cocos (PC) on MK production (only 0.436 mg/g) was caused by significantly down-regulated transcription of six tested genes. Therefore, this study is beneficial for better understanding of the possible mechanism of enhanced MK production by optimization of fermentation conditions.
Collapse
Affiliation(s)
- Lin Peng
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
| | - Aisikaer Ai‐lati
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
| | - Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
- State Key Laboratory of Food Science & TechnologyJiangnan UniversityWuxiChina
| | - Xin Che
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Chinese Rice WineShaoxingChina
| |
Collapse
|
17
|
Liu YH, Lee CJ, Chen LC, Lee TL, Hsieh YY, Han CH, Yang CH, Huang WJ, Hou WC. Acetylcholinesterase inhibitory activity and neuroprotection in vitro, molecular docking, and improved learning and memory functions of demethylcurcumin in scopolamine-induced amnesia ICR mice. Food Funct 2020; 11:2328-2338. [PMID: 32118214 DOI: 10.1039/c9fo02339a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, demethylcurcumin (DC), a minor constituent in curcuminoids, showed better anti-acetylcholinesterase (anti-AChE) activities, anti-amyloid β peptide aggregation, neuroprotective activities in 6-hydroxydopamine-treated SH-SY5Y cell models, and anti-nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages than those of curcumin. Based on molecular docking analyses with AChE, the meta-hydroxyl group in DC, nonexistent in curcumin, showed the formation of hydrogen bonds with Ser293 and Tyr341 in the binding sites of AChE. For animal experiments, scopolamine-induced amnesia ICR mice were used to analyze the learning and memory functions of DC in comparison with the positive control donepezil. Mice fed with DC (50 mg kg-1) or donepezil (5 mg kg-1) showed improvement and a significant difference compared to those in the control group (P < 0.05, 0.01, or 0.001) in a passive avoidance test and in a water maze probe test. The brain extracts of the mice in the DC or donepezil group showed reduced AChE activities and higher ORAC activities and also showed a significant difference compared to those in the control group (P < 0.05, 0.01, or 0.001). DC might be beneficial for developing functional foods or as a lead compound for the treatment of degenerative disorders.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fakheri F, Abdanipour A, Parivar K, Anarkooli IJ, Rastegar H. Lovastatin alters neurotrophin expression in rat hippocampus-derived neural stem cells in vitro. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zhu B, Qi F, Wu J, Yin G, Hua J, Zhang Q, Qin L. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front Pharmacol 2019; 10:1449. [PMID: 31849687 PMCID: PMC6901015 DOI: 10.3389/fphar.2019.01449] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Red yeast rice (RYR), a Chinese traditional folk medicine produced by the fermentation of cooked rice kernels with a Monascaceae mold, Monascus purpureus, has long been used to treat blood circulation stasis, indigestion, diarrhea, and limb weakness in East Asian countries. This article provides a systematic review of the traditional uses, chemistry, biological activities, and toxicology of RYR to highlight its future prospects in the field of medicine. The literature reviewed for this article was obtained from the Web of Science, Elsevier, SciFinder, PubMed, CNKI, ScienceDirect, and Google Scholar, as well as Ph.D. and M.Sc. dissertations, published prior to July 2019. More than 101 chemical constituents have been isolated from RYR, mainly consisting of monacolins, pigments, organic acids, sterols, decalin derivatives, flavonoids, polysaccharides, and other compounds. Crude extracts of RYR, as well as its isolated compounds, possess broad pharmacological properties with hypolipidemic, anti-atherosclerotic, anti-cancer, neurocytoprotective, anti-osteoporotic, anti-fatigue, anti-diabetic, and anti-hypertensive activities. However, further studies are needed to characterize its diverse chemical constituents and the toxicological actions of the main bioactive compounds. New pharmacological trials addressing the overlooked traditional uses of RYR, such as in the treatment of indigestion and diarrhea, are required.
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangyuan Qi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Yin
- Department of Pharmacy, Hangzhou Twin-Horse Biotechnology Co., Ltd., Hangzhou, China
| | - Jinwei Hua
- Institute of Traditional Chinese Medicine, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Qiaoyan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Xiong Z, Cao X, Wen Q, Chen Z, Cheng Z, Huang X, Zhang Y, Long C, Zhang Y, Huang Z. An overview of the bioactivity of monacolin K / lovastatin. Food Chem Toxicol 2019; 131:110585. [DOI: 10.1016/j.fct.2019.110585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
|
21
|
Structure-activity relationship studies of (E)-3,4-dihydroxystyryl alkyl sulfones as novel neuroprotective agents based on improved antioxidant, anti-inflammatory activities and BBB permeability. Eur J Med Chem 2019; 171:420-433. [DOI: 10.1016/j.ejmech.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023]
|
22
|
Gut microbiome-based secondary metabolite biosynthetic gene clusters detection in Parkinson’s disease. Neurosci Lett 2019; 696:93-98. [DOI: 10.1016/j.neulet.2018.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/11/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
|
23
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
24
|
Marques NF, Castro AA, Mancini G, Rocha FL, Santos ARS, Prediger RD, De Bem AF, Tasca CI. Atorvastatin Prevents Early Oxidative Events and Modulates Inflammatory Mediators in the Striatum Following Intranasal 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Administration in Rats. Neurotox Res 2017; 33:549-559. [DOI: 10.1007/s12640-017-9840-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
|
25
|
Kim B, Hong VM, Yang J, Hyun H, Im JJ, Hwang J, Yoon S, Kim JE. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function. Prev Nutr Food Sci 2016; 21:297-309. [PMID: 28078251 PMCID: PMC5216880 DOI: 10.3746/pnf.2016.21.4.297] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/13/2016] [Indexed: 12/26/2022] Open
Abstract
Around the world, fermentation of foods has been adopted over many generations, primarily due to their commercial significance with enriched flavors and high-profile nutrients. The increasing application of fermented foods is further promoted by recent evidence on their health benefits, beyond the traditionally recognized effects on the digestive system. With recent advances in the understanding of gut-brain interactions, there have also been reports suggesting the fermented food's efficacy, particularly for cognitive function improvements. These results are strengthened by the proposed biological effects of fermented foods, including neuroprotection against neurotoxicity and reactive oxygen species. This paper reviews the beneficial health effects of fermented foods with particular emphasis on cognitive enhancement and neuroprotective effects. With an extensive review of fermented foods and their potential cognitive benefits, this paper may promote commercially feasible applications of fermented foods as natural remedies to cognitive problems.
Collapse
Affiliation(s)
- Binna Kim
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Veronica Minsu Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jeongwon Yang
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejung Hyun
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jooyeon Jamie Im
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soon Chun Hyang University Hospital, Seoul 04401, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Mukai K, Nagai K, Egawa Y, Ouchi A, Nagaoka SI. Kinetic Study of Aroxyl-Radical-Scavenging and α-Tocopherol-Regeneration Rates of Five Catecholamines in Solution: Synergistic Effect of α-Tocopherol and Catecholamines. J Phys Chem B 2016; 120:7088-97. [PMID: 27346174 DOI: 10.1021/acs.jpcb.6b04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detailed kinetic studies have been performed for reactions of aroxyl (ArO(•)) and α-tocopheroxyl (α-Toc(•)) radicals with five catecholamines (CAs) (dopamine (DA), norepinephrine (NE), epinephrine (EN), and 5- and 6-hydroxydopamine (5- and 6-OHDA)) and two catechins (epicatechin (EC) and epigallocatechin gallate (EGCG)) to clarify the free-radical-scavenging activity of CAs. Second-order rate constants (ks and kr) for reactions of ArO(•) and α-Toc(•) radicals with the above antioxidants were measured in 2-propanol/water (5:1, v/v) solution at 25.0 °C, using single- and double-mixing stopped-flow spectrophotometries, respectively. Both the rate constants (ks and kr) increased in the order NE < EN < DA < EC < 5-OHDA < EGCG < 6-OHDA. The ks and kr values of 6-OHDA are large and comparable to the corresponding values of ubiquinol-10 and sodium ascorbate, which show high free-radical-scavenging activity. The ultraviolet-visible absorption of α-Toc(•) (λmax = 428 nm), which was produced by the reaction of α-tocopherol (α-TocH) with ArO(•), disappeared under the coexistence of CAs due to the α-TocH-regeneration reaction. The results suggest that the CAs may contribute to the protection from oxidative damage in nervous systems, by scavenging free radicals (such as lipid peroxyl radical) and regenerating α-TocH from the α-Toc(•) radical.
Collapse
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Kanae Nagai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Yoshifumi Egawa
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Shin-Ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| |
Collapse
|
27
|
Tseng WT, Hsu YW, Pan TM. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease. Food Funct 2016; 7:752-762. [DOI: 10.1039/c5fo00976f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
TheMonascus purpureusNTU 568-fermented rice extract contains antioxidants DMA and DFC, and it could reduce behavioral, neuronal, and biochemical characteristics in 6-OHDA-lesion rats.
Collapse
Affiliation(s)
- Wei-Ting Tseng
- Department of Biochemical Science and Technology
- College of Life Science
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Ya-Wen Hsu
- SunWay Biotechnology Company
- Taipei 11494
- Taiwan
| | - Tzu-Ming Pan
- Department of Biochemical Science and Technology
- College of Life Science
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|