1
|
Strutt R, Xiong B, Abegg VF, Dittrich PS. Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening. LAB ON A CHIP 2024; 24:1064-1075. [PMID: 38356285 PMCID: PMC10898417 DOI: 10.1039/d3lc01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Bijing Xiong
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Vanessa Fabienne Abegg
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Shi L, Liu S, Li X, Huang X, Luo H, Bai Q, Li Z, Wang L, Du X, Jiang C, Liu S, Li C. Droplet microarray platforms for high-throughput drug screening. Mikrochim Acta 2023; 190:260. [PMID: 37318602 DOI: 10.1007/s00604-023-05833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
High-throughput screening platforms are fundamental for the rapid and efficient processing of large amounts of experimental data. Parallelization and miniaturization of experiments are important for improving their cost-effectiveness. The development of miniaturized high-throughput screening platforms is essential in the fields of biotechnology, medicine, and pharmacology. Currently, most laboratories use 96- or 384-well microtiter plates for screening; however, they have disadvantages, such as high reagent and cell consumption, low throughput, and inability to avoid cross-contamination, which need to be further optimized. Droplet microarrays, as novel screening platforms, can effectively avoid these shortcomings. Here, the preparation method of the droplet microarray, method of adding compounds in parallel, and means to read the results are briefly described. Next, the latest research on droplet microarray platforms in biomedicine is presented, including their application in high-throughput culture, cell screening, high-throughput nucleic acid screening, drug development, and individualized medicine. Finally, the challenges and future trends in droplet microarray technology are summarized.
Collapse
Affiliation(s)
- Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Xue Li
- Sichuan Hanyuan County People's Hospital, Hanyuan, 625300, China
| | - Xiwei Huang
- Ministry of Education Key Lab of RFCircuits and Systems, Hangzhou Dianzi University, Hangzhou, 310038, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563002, China
| | - Qianwen Bai
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563002, China
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu, 610054, China
| | - Cheng Jiang
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
3
|
Pérez-Cortez JE, Sánchez-Rodríguez VH, Gallegos-Martínez S, Chuck-Hernández C, Rodriguez CA, Álvarez MM, Trujillo-de Santiago G, Vázquez-Lepe E, Martínez-López JI. Low-Cost Light-Based GelMA 3D Bioprinting via Retrofitting: Manufacturability Test and Cell Culture Assessment. MICROMACHINES 2022; 14:55. [PMID: 36677116 PMCID: PMC9863692 DOI: 10.3390/mi14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Light-based bioprinter manufacturing technology is still prohibitively expensive for organizations that rely on accessing three-dimensional biological constructs for research and tissue engineering endeavors. Currently, most of the bioprinting systems are based on commercial-grade-based systems or modified DIY (do it yourself) extrusion apparatuses. However, to date, few examples of the adoption of low-cost equipment have been found for light-based bioprinters. The requirement of large volumes of bioinks, their associated cost, and the lack of information regarding the parameter selection have undermined the adoption of this technology. This paper showcases the retrofitting and assessing of a low-cost Light-Based 3D printing system for tissue engineering. To evaluate the potential of a proposed design, a manufacturability test for different features, machine parameters, and Gelatin Methacryloyl (GelMA) concentrations for 7.5% and 10% was performed. Furthermore, a case study of a previously seeded hydrogel with C2C12 cells was successfully implemented as a proof of concept. On the manufacturability test, deviational errors were found between 0.7% to 13.3% for layer exposure times of 15 and 20 s. Live/Dead and Actin-Dapi fluorescence assays after 5 days of culture showed promising results in the cell viability, elongation, and alignment of 3D bioprinted structures. The retrofitting of low-cost equipment has the potential to enable researchers to create high-resolution structures and three-dimensional in vitro models.
Collapse
Affiliation(s)
| | | | | | | | - Ciro A. Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
| | - Mario Moises Álvarez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
| | | | - Elisa Vázquez-Lepe
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
| | - J. Israel Martínez-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
- Centro de Investigación Numericalc, Monterrey 64000, NL, Mexico
| |
Collapse
|
4
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Yamaguchi S, Chujo K, Ohashi N, Minamihata K, Nagamune T. Photo‐Degradable Protein‐Polymer Hybrid Shells for Caging Living Cells. Chemistry 2022; 28:e202103941. [DOI: 10.1002/chem.202103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153–8904 Japan
| | - Kazuki Chujo
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| | - Noriyuki Ohashi
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Moto-oka Fukuoka 819–0395 Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| |
Collapse
|
6
|
Zhou X, Wu H, Wen H, Zheng B. Advances in Single-Cell Printing. MICROMACHINES 2022; 13:80. [PMID: 35056245 PMCID: PMC8778191 DOI: 10.3390/mi13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.
Collapse
Affiliation(s)
| | | | | | - Bo Zheng
- Shenzhen Bay Laboratory, Institute of Cell Analysis, Shenzhen 518132, China; (X.Z.); (H.W.); (H.W.)
| |
Collapse
|
7
|
Baudis S, Behl M. High-Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromol Rapid Commun 2021; 43:e2100400. [PMID: 34460146 DOI: 10.1002/marc.202100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Indexed: 01/22/2023]
Abstract
High-throughput (HT) development of new multifunctional polymers is accomplished by the combination of different HT tools established in polymer sciences in the last decade. Important advances are robotic/HT synthesis of polymer libraries, the HT characterization of polymers, and the application of spatially resolved polymer library formats, explicitly microarray and gradient libraries. HT polymer synthesis enables the generation of material libraries with combinatorial design motifs. Polymer composition, molecular weight, macromolecular architecture, etc. may be varied in a systematic, fine-graded manner to obtain libraries with high chemical diversity and sufficient compositional resolution as model systems for the screening of these materials for the functions aimed. HT characterization allows a fast assessment of complementary properties, which are employed to decipher quantitative structure-properties relationships. Moreover, these methods facilitate the HT determination of important surface parameters by spatially resolved characterization methods, including time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Here current methods for the high-throughput robotic synthesis of multifunctional polymers as well as their characterization are presented and advantages as well as present limitations are discussed.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
8
|
Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A State‐of‐the‐Art Review of Laser‐Assisted Bioprinting and its Future Research Trends. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chaoran Dou
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| | - Victoria Perez
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| | - Jie Qu
- The University of Texas Rio Grande Valley Department of Mechanical Engineering Edinburg TX USA
- China University of Mining and Technology School of Electrical and Power Engineering Xuzhou Jiangsu Province China
| | - Andrew Tsin
- The University of Texas Rio Grande Valley School of Medicine Department of Molecular Science USA
| | - Ben Xu
- Mississippi State University Department of Mechanical Engineering Starkville MS USA
| | - Jianzhi Li
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| |
Collapse
|
9
|
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021; 26:333-366. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models-a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies-microextrusion, droplet-based/inkjet, and light-based/crosslinking-are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Collapse
Affiliation(s)
- Anh Tong
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Quang Long Pham
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Paul Abatemarco
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Austin Mathew
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Dhruv Gupta
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Siddharth Iyer
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Roman Voronov
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| |
Collapse
|
10
|
Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev 2020; 120:10793-10833. [PMID: 32902959 DOI: 10.1021/acs.chemrev.0c00008] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ben Pei
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianwei Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Dudman JPR, Ferreira AM, Gentile P, Wang X, Ribeiro RDC, Benning M, Dalgarno KW. Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation. Biofabrication 2020; 12:045024. [PMID: 32629440 DOI: 10.1088/1758-5090/aba2f8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling cell suspensions due to the agglomeration and sedimentation of cells during printing, leading to a deterioration in jetting performance. The objective of this work was to design and assess the effectiveness of a custom agitation system to maintain cellular dispersion within the ink reservoir during printing. The cell printing performance of an inkjet printer was assessed with and without the use of a custom agitation system, with biological characterisation performed to characterise the impact of the agitator on cellular viability and function. Cell printing performance was retained over a 2 h printing period when incorporating an agitated reservoir, with a gradual reduction in performance observed under a non-agitated configuration. Cell assays indicated that the agitation process did not significantly affect the viability, metabolic activity or morphology of the mesenchymal stromal cell (MSC) or chondrocyte cell types. This study therefore provides a new methodology to increase process reliability within DoD printing platforms when jetting cellularised material.
Collapse
Affiliation(s)
- Joseph P R Dudman
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Perez‐Toralla K, Olivera‐Torres A, Rose MA, Esfahani AM, Reddy K, Yang R, Morin SA. Facile Production of Large-Area Cell Arrays Using Surface-Assembled Microdroplets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000769. [PMID: 32775160 PMCID: PMC7404142 DOI: 10.1002/advs.202000769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Techniques that enable the spatial arrangement of living cells into defined patterns are broadly applicable to tissue engineering, drug screening, and cell-cell investigations. Achieving large-scale patterning with single-cell resolution while minimizing cell stress/damage is, however, technically challenging using existing methods. Here, a facile and highly scalable technique for the rational design of reconfigurable arrays of cells is reported. Specifically, microdroplets of cell suspensions are assembled using stretchable surface-chemical patterns which, following incubation, yield ordered arrays of cells. The microdroplets are generated using a microfluidic-based aerosol spray nozzle that enables control of the volume/size of the droplets delivered to the surface. Assembly of the cell-loaded microdroplets is achieved via mechanically induced coalescence using substrates with engineered surface-wettability patterns based on extracellular matrices. Robust cell proliferation inside the patterned areas is demonstrated using standard culture techniques. By combining the scalability of aerosol-based delivery and microdroplet surface assembly with user-defined chemical patterns of controlled functionality, the technique reported here provides an innovative methodology for the scalable generation of large-area cell arrays with flexible geometries and tunable resolution.
Collapse
Affiliation(s)
- Karla Perez‐Toralla
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
- Department of ChemistryUniversity of Nebraska‐LincolnLincolnNE68588USA
- Present address:
Laboratoire d'Etudes et de Recherches en ImmunoanalyseUniversité Paris‐Saclay, CEA, INRAE, Département Médicaments et Technologies pour la SantéGif‐sur‐Yvette91191France
| | - Angel Olivera‐Torres
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Mark A. Rose
- Department of ChemistryUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Keerthana Reddy
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Ruiguo Yang
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
- Nebraska Center for Integrated Biomolecular CommunicationUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Stephen A. Morin
- Department of ChemistryUniversity of Nebraska‐LincolnLincolnNE68588USA
- Nebraska Center for Materials and NanoscienceUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
13
|
Soitu C, Deroy C, Castrejón-Pita AA, Cook PR, Walsh EJ. Using Fluid Walls for Single-Cell Cloning Provides Assurance in Monoclonality. SLAS Technol 2019; 25:267-275. [PMID: 31815577 DOI: 10.1177/2472630319891135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-cell isolation and cloning are essential steps in many applications, ranging from the production of biotherapeutics to stem cell therapy. Having confidence in monoclonality in such applications is essential from both research and commercial perspectives, for example, to ensure that data are of high quality and regulatory requirements are met. Consequently, several approaches have been developed to improve confidence in monoclonality. However, ensuring monoclonality using standard well plate formats remains challenging, primarily due to edge effects; the solid wall around a well can prevent a clear view of how many cells might be in a well. We describe a method that eliminates such edge effects: solid confining walls are replaced by transparent fluid ones, and standard low-cost optics can confirm monoclonality.
Collapse
Affiliation(s)
- Cristian Soitu
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Cyril Deroy
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Edmond J Walsh
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Abstract
Single-cell analysis serves as an important approach to study cell functions and interactions. Catering to the demand of Big Data Era, fast reactions for single cells and paralleled high-throughput analysis have become an urgent need. Microdroplet in microfluidics has advantages of modularity and integrity, as well as high throughput and sensitivity, which present great potential in the field of single-cell analysis. This review is carried out on three aspects to introduce microdroplet chips for single-cell analysis: droplet formation, droplet detection and practical functions. Structures of droplet formation are categorized into three types, including T-shaped channel, flow-involved channel and three-dimensional micro-vortice. The detection methods, including fluorescence, Raman spectroscopy, mass spectroscopy and electrochemical detection, are summarized from applications. Both pros and cons for existing techniques are reviewed and discussed. The functions of microdroplets-on-chip cover cell culture, nucleic acid test and cell identification. For each field, principles/mechanisms and/or schematic images are laconically introduced. Microdroplet in microfluidics has become a major research direction in single-cell analysis. With updated methods of droplet formation such as inertial ordering and micro-vortice, microdroplets-based biochips will expect high throughput detection and high-accuracy trace detection for clinical diagnosis in the near future.
Collapse
Affiliation(s)
- Aihui Wang
- 1 Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,2 State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,3 School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aynur Abdulla
- 1 Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,2 State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- 1 Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,2 State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Chatzimichail S, Supramaniam P, Ces O, Salehi-Reyhani A. Counting Proteins in Single Cells with Addressable Droplet Microarrays. J Vis Exp 2018. [PMID: 30035757 DOI: 10.3791/56110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Often cellular behavior and cellular responses are analyzed at the population level where the responses of many cells are pooled together as an average result masking the rich single cell behavior within a complex population. Single cell protein detection and quantification technologies have made a remarkable impact in recent years. Here we describe a practical and flexible single cell analysis platform based on addressable droplet microarrays. This study describes how the absolute copy numbers of target proteins may be measured with single cell resolution. The tumor suppressor p53 is the most commonly mutated gene in human cancer, with more than 50% of total cancer cases exhibiting a non-healthy p53 expression pattern. The protocol describes steps to create 10 nL droplets within which single human cancer cells are isolated and the copy number of p53 protein is measured with single molecule resolution to precisely determine the variability in expression. The method may be applied to any cell type including primary material to determine the absolute copy number of any target proteins of interest.
Collapse
Affiliation(s)
| | | | - Oscar Ces
- Institute of Chemical Biology, Department of Chemistry, Imperial College London
| | - Ali Salehi-Reyhani
- Institute of Chemical Biology, Department of Chemistry, Imperial College London;
| |
Collapse
|
16
|
Piro B, Mattana G, Reisberg S. Transistors for Chemical Monitoring of Living Cells. BIOSENSORS 2018; 8:E65. [PMID: 29973542 PMCID: PMC6164306 DOI: 10.3390/bios8030065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
We review here the chemical sensors for pH, glucose, lactate, and neurotransmitters, such as acetylcholine or glutamate, made of organic thin-film transistors (OTFTs), including organic electrochemical transistors (OECTs) and electrolyte-gated OFETs (EGOFETs), for the monitoring of cell activity. First, the various chemicals that are produced by living cells and are susceptible to be sensed in-situ in a cell culture medium are reviewed. Then, we discuss the various materials used to make the substrate onto which cells can be grown, as well as the materials used for making the transistors. The main part of this review discusses the up-to-date transistor architectures that have been described for cell monitoring to date.
Collapse
Affiliation(s)
- Benoît Piro
- University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris CEDEX 13, France.
| | - Giorgio Mattana
- University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris CEDEX 13, France.
| | - Steeve Reisberg
- University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris CEDEX 13, France.
| |
Collapse
|
17
|
Abstract
Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into any pattern by creating liquid walls of fluorocarbon. Microfluidic arrangements suitable for cell culture are made in minutes using materials familiar to biologists. The versatility of the method is demonstrated by creating analogs of a common platform in cell biology, the microtiter plate. Using this vehicle, we demonstrate many manipulations required for cell culture and downstream analysis, including feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome editing, and fixation plus immunolabeling (when fluid walls are reconfigured during use). We also show that mammalian cells grow and respond to stimuli normally, and worm eggs develop into adults. This simple approach provides biologists with an entrée into microfluidics.
Collapse
|
18
|
Luo Y, Lin X, Huang P. 3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. Macromol Biosci 2018; 18:e1800034. [PMID: 29687598 DOI: 10.1002/mabi.201800034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/12/2018] [Indexed: 12/14/2022]
Abstract
It is promising that artificial tissues/organs for clinical application can be produced via 3D bioprinting of living cells and biomaterials. The construction of microstructures biomimicking native tissues is crucially important to create artificial tissues with biological functions. For instance, the fabrication of vessel-like networks to supply cells with initial nutrient and oxygen, and the arrangement of multiple types of cells for creating lamellar/complex tissues through 3D bioprinting are widely reported. The current advances in 3D bioprinting of artificial tissues from the view of construction of biomimetic microstructures, especially the fabrication of lamellar, vascular, and complex structures are summarized. In the end, the conclusion and perspective of 3D bioprinting for clinical applications are elaborated.
Collapse
Affiliation(s)
- Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xin Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
19
|
Messner JJ, Glenn HL, Meldrum DR. Laser-fabricated cell patterning stencil for single cell analysis. BMC Biotechnol 2017; 17:89. [PMID: 29258486 PMCID: PMC5735507 DOI: 10.1186/s12896-017-0408-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.
Collapse
Affiliation(s)
| | - Honor L Glenn
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., P.O. Box 877101, Tempe, AZ, 85287-7101, USA.
| |
Collapse
|
20
|
Yang W, Yu H, Li G, Wei F, Wang Y, Liu L. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. LAB ON A CHIP 2017; 17:4243-4252. [PMID: 29152631 DOI: 10.1039/c7lc01101f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cells are frequently studied because they are basic structural, functional, and biological units of living organisms. Extracting features from cellular behaviors can facilitate decision making in medical diagnoses and represents an important aspect in the development of biomedical engineering. Previous studies have just focused on either the individual cell or cell clusters separately, which leads to a great lack of information. Microwell technologies could address the challenges of in vitro cellular studies, from individual cell studies to 3D functional assays, by providing more information from smaller sample volumes and enabling the incorporation of low-cost high-throughput assays in the drug discovery process. To this end, the present study describes an easy-to-use method for fabricating a versatile microwell chip that utilizes a digital micro-mirror device printing system, and the chip can be employed in multidimensional cellular analysis, ranging from the single cell to the 3D spheroid level. The microwell manufacturing process, using a digital mask in place of a conventional physical mask, is based on shadowed light and is full of flexibility. Three different dimensions (single cell (1D), cell monolayer (2D) and cell spheroid (3D)) of one cell type can be formed using a microwell array and the analyses of biological characteristics are achieved separately. Single cells and cell clusters can be controlled via customized geometries of microfabricated selectively adhesive poly(ethylene glycol) diacrylate (PEGDA) wells. The effects of shape on cellular growth and hybrid tissue layers were investigated by peeling off the microwells. Furthermore, 3D multicellular spheroids were successfully established in a controllable and high-throughput format. Preclinical drug screening was investigated and distinct differences were observed in the tolerance response to drug testing between the 2D and 3D conditions. The study results further demonstrate that the high-density microwell chip is an easy-to-use multidimensional cellular analysis and rapid drug screening technique, and it could be easily adapted for a wide range of biological research applications.
Collapse
Affiliation(s)
- Wenguang Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110000, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang W, Li N, Zeng H, Nakajima H, Lin JM, Uchiyama K. Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis. Anal Chem 2017; 89:8674-8677. [DOI: 10.1021/acs.analchem.7b02624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Weifei Zhang
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nan Li
- Department
of Chemistry, Beijing Key Laboratory of Microanalytical Methods and
Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry
and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hulie Zeng
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department
of Chemistry, Beijing Key Laboratory of Microanalytical Methods and
Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry
and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Katsumi Uchiyama
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
22
|
Garcia-Cordero JL, Fan ZH. Sessile droplets for chemical and biological assays. LAB ON A CHIP 2017; 17:2150-2166. [PMID: 28561839 DOI: 10.1039/c7lc00366h] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sessile droplets are non-movable droplets spanning volumes in the nL-to-μL range. The sessile-droplet-based platform provides a paradigm shift from the conventional, flow-based lab-on-a-chip philosophy, yet offering similar benefits: low reagent/sample consumption, high throughput, automation, and most importantly flexibility and versatility. Moreover, the platform relies less heavily on sophisticated fabrication techniques, often sufficient with a hydrophobic substrate, and no pump is required for operation. In addition, exploiting the physical phenomena that naturally arise when a droplet evaporates, such as the coffee-ring effect or Marangoni flow, can lead to fascinating applications. In this review, we introduce the physics of droplets, and then focus on the different types of chemical and biological assays that have been implemented in sessile droplets, including analyte concentration, particle separation and sorting, cell-based assays, and nucleic acid amplification. Finally, we provide our perspectives on this unique micro-scale platform.
Collapse
Affiliation(s)
- Jose L Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Via del Conocimiento 201, Parque PIIT, Apodaca, NL, CP. 66628 Mexico.
| | | |
Collapse
|
23
|
Sklare SC, Richey WL, Vinson BT, Chrisey DB. Directed self-assembly software for single cell deposition. Int J Bioprint 2017; 3:006. [PMID: 33094190 PMCID: PMC7575622 DOI: 10.18063/ijb.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022] Open
Abstract
Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the surface of the system’s potential and for LDW to be utilized to its fullest, there are many distinct hardware and software components that must be integrated and communicate seamlessly. In this perspective article, we detail the development of novel graphical user interface (GUI) software to improve LDW capability and functionality. The main modules in the control software correspond to cell transfer, microbead fabrication, and micromachining. The modules make the control of each of these features, and the management of printing programs that utilize one or more features, to be facile. The software also addresses problems related to construct scale-up, print speed, experimental conditions, and management of sensor data. The control software and possibilities for integrated sensor data are presented.
Collapse
Affiliation(s)
- Samuel C Sklare
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, United States of America
| | - Winona L Richey
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, United States of America
| | - Benjamin T Vinson
- Bioinnovation Program, Tulane University, New Orleans, LA, 70118, United States of America
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, United States of America.,Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, United States of America
| |
Collapse
|
24
|
Kim YK, Park JA, Yoon WH, Kim J, Jung S. Drop-on-demand inkjet-based cell printing with 30- μm nozzle diameter for cell-level accuracy. BIOMICROFLUIDICS 2016; 10:064110. [PMID: 27990212 PMCID: PMC5135712 DOI: 10.1063/1.4968845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/14/2016] [Indexed: 05/05/2023]
Abstract
We present drop-on-demand inkjet-based mammalian cell printing with a 30-μm nozzle diameter for cell-level accuracy. High-speed imaging techniques have been used to analyze the go-and-stop movement of cells inside the nozzle under a pulsed pressure generated by a piezo-actuator and the jet formation after ejection. Patterning of an array of 20 × 20 dots on a glass substrate reveals that each printed drop contains 1.30 cells on average at the cell concentration of 5.0 × 106 cells ml-1 for the very small nozzle, whereas larger nozzles with the diameter of 50 and 80 μm deliver 2.57 and 2.88 cells per drop, respectively. The effects of the size and concentration of printed cells on the number of cells have also been investigated. Furthermore, the effect of the nozzle diameter on printed cells has been evaluated through an examination of viability, proliferation, and morphology of cells by using a live/dead assay kit, CCK-8 assay, and cellular morphology imaging, respectively. We believe that the 30-μm inkjet nozzle can be used for precise cell deposition without any damages to the printed mammalian cells.
Collapse
Affiliation(s)
- Young Kwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Ju An Park
- Department of Creative IT Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Woong Hee Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | | |
Collapse
|
25
|
Berthuy OI, Muldur SK, Rossi F, Colpo P, Blum LJ, Marquette CA. Multiplex cell microarrays for high-throughput screening. LAB ON A CHIP 2016; 16:4248-4262. [PMID: 27731880 DOI: 10.1039/c6lc00831c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microarray technology was developed in the early 1990s to measure the transcription levels of thousands of genes in parallel. The basic premise of high-density arraying has since been expanded to create cell microarrays. Cells on chip are powerful experimental tools for high-throughput and multiplex screening of samples or cellular functions. Miniaturization increases assay throughput while reducing both reagent consumption and cell population heterogeneity effect, making these systems attractive for a wide range of assays, from drug discovery to toxicology, stem cell research and therapy. It is usual to functionalize the surface of a substrate to design cell microarrays. One form of cell microarrays, the transfected cell microarray, wherein plasmid DNA or siRNA spotted on the surface of a substrate is reverse-transfected locally into adherent cells, has become a standard tool for parallel cell-based analysis. With the advent of technology, cells can also be directly spotted onto functionalized surfaces using robotic fluid-dispensing devices or printed directly on bio-ink material. We are providing herein an overview of the latest developments in optical cell microarrays allowing high-throughput and high-content analysis.
Collapse
Affiliation(s)
- Ophélie I Berthuy
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Sinan K Muldur
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - François Rossi
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Pascal Colpo
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Loïc J Blum
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Christophe A Marquette
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| |
Collapse
|
26
|
Liberski AR. Three-dimensional printing of alginate: From seaweeds to heart valve scaffolds. QSCIENCE CONNECT 2016. [DOI: 10.5339/connect.2016.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) printing is a resourceful technology that offers a large selection of solutions that are readily adaptable to tissue engineering of artificial heart valves (HVs). Different deposition techniques could be used to produce complex architectures, such as the three-layered architecture of leaflets. Once the assembly is complete, the growth of cells in the scaffold would enable the deposition of cell-specific extracellular matrix proteins. 3D printing technology is a rapidly evolving field that first needs to be understood and then explored by tissue engineers, so that it could be used to create efficient scaffolds. On the other hand, to print the HV scaffold, a basic understanding of the fundamental structural and mechanical aspects of the HV should be gained. This review is focused on alginate that can be used as a building material due to its unique properties confirmed by the successful application of alginate-based biomaterials for the treatment of myocardial infarction in humans. Within the field of biomedicine, there is a broad scope for the application of alginate including wound healing, cell transplantation, delivery of bioactive agents, such as chemical drugs and proteins, heat burns, acid reflux, and weight control applications. The non-thrombogenic nature of this polymer has made it an attractive candidate for cardiac applications, including scaffold fabrication for heart valve tissue engineering (HVTE). The next essential property of alginate is its ability to form films, fibers, beads, and virtually any shape in a variety of sizes. Moreover, alginate possesses several prime properties that make it suitable for use in free-form fabrication techniques. The first property is its ability, when dissolved, to increase the viscosity of aqueous solutions, which is particularly important in formulating extrudable mixtures for 3D printing. The second property is its ability to form gels in mild conditions, for example, by adding calcium salt to an aqueous solution of alginate. The latter property is a basis for reactive extrusion- and inkjet printing-based solid free-form fabrication. Both techniques enable the production of scaffolds for cell encapsulation, which increases the seeding efficiency of fabricated structures. The objective of this article is to review methods for the fabrication of alginate hydrogels in the context of HVTE.
Collapse
|
27
|
Cells on chip for multiplex screening. Biosens Bioelectron 2016; 76:29-37. [DOI: 10.1016/j.bios.2015.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
|
28
|
Cheng E, Yu H, Ahmadi A, Cheung KC. Investigation of the hydrodynamic response of cells in drop on demand piezoelectric inkjet nozzles. Biofabrication 2016; 8:015008. [DOI: 10.1088/1758-5090/8/1/015008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Mogi K, Shirataki C, Kihara K, Kuwahara H, Hongoh Y, Yamamoto T. Trapping and isolation of single prokaryotic cells in a micro-chamber array using dielectrophoresis. RSC Adv 2016. [DOI: 10.1039/c6ra21229h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The vast majority of prokaryotic species are difficult or impossible to culture in laboratories, which makes it difficult to study these organisms using conventional biochemical techniques.
Collapse
Affiliation(s)
- K. Mogi
- Department of Mechanical Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - C. Shirataki
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - K. Kihara
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - H. Kuwahara
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Y. Hongoh
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - T. Yamamoto
- Department of Mechanical Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
30
|
Yang F, Dong B, Nie K, Shi H, Wu Y, Wang H, Liu Z. Light-Directed Synthesis of High-Density Peptide Nucleic Acid Microarrays. ACS COMBINATORIAL SCIENCE 2015; 17:608-14. [PMID: 26339951 DOI: 10.1021/acscombsci.5b00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide nucleic acids (PNAs) are a class of nucleic acid mimics that can bind to the complementary DNA or RNA with high specificity and sensitivity. PNA-based microarrays have distinct characteristics and have improved performance in many aspects compared to DNA microarrays. A new set of PNA monomers has been synthesized and used as the building blocks for the preparation of high density PNA microarrays. These monomers have their backbones protected by the photolabile group 2-(2-nitrophenyl)propyloxy carbonyl (NPPOC), and their exocyclic amino groups protected by amide carbonyl groups. A light-directed synthesis system was designed and applied to the in situ synthesis of a PNA microarray with a density of over 10,000 probes per square centimeter. This PNA microarray was able to detect single and multiple base-mismatches correctly with a high discrimination ratio.
Collapse
Affiliation(s)
- Feipeng Yang
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Bo Dong
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Kaixuan Nie
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Huanhuan Shi
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Yanqi Wu
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Hongyin Wang
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Zhengchun Liu
- Department
of Biomedical
Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| |
Collapse
|
31
|
Karsten SL, Tarhan MC, Kudo LC, Collard D, Fujita H. Point-of-care (POC) devices by means of advanced MEMS. Talanta 2015; 145:55-9. [PMID: 26459443 DOI: 10.1016/j.talanta.2015.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022]
Abstract
Microelectromechanical systems (MEMS) have become an invaluable technology to advance the development of point-of-care (POC) devices for diagnostics and sample analyses. MEMS can transform sophisticated methods into compact and cost-effective microdevices that offer numerous advantages at many levels. Such devices include microchannels, microsensors, etc., that have been applied to various miniaturized POC products. Here we discuss some of the recent advances made in the use of MEMS devices for POC applications.
Collapse
Affiliation(s)
- Stanislav L Karsten
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA; Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Mehmet C Tarhan
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Lili C Kudo
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA
| | - Dominique Collard
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hiroyuki Fujita
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
32
|
Drachuk I, Suntivich R, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL, Stone M, Tsukruk VV. Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomater Sci Eng 2015; 1:287-294. [DOI: 10.1021/ab500085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Svetlana Harbaugh
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Morley Stone
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Schoendube J, Wright D, Zengerle R, Koltay P. Single-cell printing based on impedance detection. BIOMICROFLUIDICS 2015; 9:014117. [PMID: 25759750 PMCID: PMC4327922 DOI: 10.1063/1.4907896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/29/2015] [Indexed: 05/07/2023]
Abstract
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl-800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%-17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.
Collapse
Affiliation(s)
| | - D Wright
- Zurich Instruments AG , Technoparkstrasse 1, 8005 Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Röttgermann PJF, Alberola AP, Rädler JO. Cellular self-organization on micro-structured surfaces. SOFT MATTER 2014; 10:2397-2404. [PMID: 24623049 DOI: 10.1039/c3sm52419a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micro-patterned surfaces are frequently used in high-throughput single-cell studies, as they allow one to image isolated cells in defined geometries. Commonly, cells are seeded in excess onto the entire chip, and non-adherent cells are removed from the unpatterned sectors by rinsing. Here, we report on the phenomenon of cellular self-organization, which allows for autonomous positioning of cells on micro-patterned surfaces over time. We prepared substrates with a regular lattice of protein-coated adhesion sites surrounded by PLL-g-PEG passivated areas, and studied the time course of cell ordering. After seeding, cells randomly migrate over the passivated surface until they find and permanently attach to adhesion sites. Efficient cellular self-organization was observed for three commonly used cell lines (HuH7, A549, and MDA-MB-436), with occupancy levels typically reaching 40-60% after 3-5 h. The time required for sorting was found to increase with increasing distance between adhesion sites, and is well described by the time-to-capture in a random-search model. Our approach thus paves the way for automated filling of cell arrays, enabling high-throughput single-cell analysis of cell samples without losses.
Collapse
Affiliation(s)
- Peter J F Röttgermann
- Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | | | | |
Collapse
|
35
|
Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1412-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Jones MC, Kobie JJ, Delouise LA. Characterization of cell seeding and specific capture of B cells in microbubble well arrays. Biomed Microdevices 2014; 15:453-63. [PMID: 23358874 DOI: 10.1007/s10544-013-9745-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of micro-well array systems for use in high-throughput screening of rare cells requires a detailed understanding of the factors that impact the specific capture of cells in wells and the distribution statistics of the number of cells deposited into wells. In this study we investigate the development of microbubble (MB) well array technology for sorting antigen-specific B-cells. Using Poisson statistics we delineate the important role that the fractional area of MB well opening and the cell seeding density have on determining cell seeding distribution in wells. The unique architecture of the MB well hinders captured cells from escaping the well and provides a unique microenvironmental niche that enables media changes as needed for extended cell culture. Using cell lines and primary B and T cells isolated from human peripheral blood we demonstrate the use of affinity capture agents coated in the MB wells to enrich for the selective capture of B cells. Important differences were noted in the efficacy of bovine serum albumin to block the nonspecific adsorption of primary cells relative to cell lines as well as the efficacy of the capture coatings using mixed primary B and T cells samples. These results emphasize the importance of using primary cells in technology development and suggest the need to utilize B cell capture agents that are insensitive to cell activation.
Collapse
Affiliation(s)
- Meghan C Jones
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | | |
Collapse
|
37
|
Gross A, Schöndube J, Niekrawitz S, Streule W, Riegger L, Zengerle R, Koltay P. Single-Cell Printer. ACTA ACUST UNITED AC 2013; 18:504-18. [DOI: 10.1177/2211068213497204] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
|
39
|
Du GS, Pan JZ, Zhao SP, Zhu Y, den Toonder JMJ, Fang Q. Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 2013; 85:6740-7. [PMID: 23786644 DOI: 10.1021/ac400688f] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We performed cell-based drug combination screening using an integrated droplet-based microfluidic system based on the sequential operation droplet array (SODA) technique. In the system, a tapered capillary connected with a syringe pump was used for multistep droplet manipulations. An oil-covered two-dimensional droplet array chip fixed in an x-y-z translation stage was used as the platform for cell culture and analysis. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel in the semiopen droplet array, using multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Long-term cell culture as long as 11 days was performed in oil-covered 500 nL droplets by changing the culture medium in each droplet every 24 h. The present system was applied in parallel schedule-dependent drug combination screening for A549 nonsmall lung cancer cells with the cell cycle-dependent drug flavopiridol and two anticancer drugs of paclitaxel and 5-fluorouracil. The highest inhibition efficiency was obtained with a schedule combination of 200 nM flavopiridol followed by 100 μM 5-fluorouracil. The drug consumption for each screening test was substantially decreased to 5 ng-5 μg, corresponding to 10-1000-fold reductions compared with traditional drug screening systems with 96-well or 384-well plates. The present work provides a novel and flexible droplet-based microfluidic approach for performing cell-based screening with complex and multistep operation procedures.
Collapse
Affiliation(s)
- Guan-Sheng Du
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 2013; 405:5785-805. [DOI: 10.1007/s00216-013-7013-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
41
|
Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 2013; 97:4243-58. [PMID: 23525900 DOI: 10.1007/s00253-013-4853-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 02/01/2023]
Abstract
The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.
Collapse
Affiliation(s)
- Cameron J Ferris
- Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
42
|
Dobes NC, Dhopeshwarkar R, Henley WH, Ramsey JM, Sims CE, Allbritton NL. Laser-based directed release of array elements for efficient collection into targeted microwells. Analyst 2013; 138:831-8. [PMID: 23223411 PMCID: PMC3558317 DOI: 10.1039/c2an36342a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cell separation strategy capable of the systematic isolation and collection of moderate to large numbers (25-400) of single cells into a targeted microwell is demonstrated. An array of microfabricated, releasable, transparent micron-scale pedestals termed pallets and an array of microwells in poly(dimethylsiloxane) (PDMS) were mated to enable selective release and retrieval of individual cells. Cells cultured on a pallet array mounted on a custom designed stage permitted the array to be positioned independently of the microwell locations. Individual pallets containing cells were detached in a targeted fashion using a pulsed Nd:YAG laser. The location of the laser focal point was optimized to transfer individual pallets to designated microwells. In a large-scale sort (n = 401), the accuracy, defined as placing a pallet in the intended well, was 94% and the collection efficiency was 100%. Multiple pallets were observed in only 4% of the targeted wells. In cell sorting experiments, the technique provided a yield and purity of target cells identified by their fluorescence signature of 91% and 93%, respectively. Cell viability based on single-cell cloning efficiency at 72 h post collection was 77%.
Collapse
Affiliation(s)
- Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Rahul Dhopeshwarkar
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - W. Hampton Henley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - J. Michael Ramsey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
43
|
Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M. Bio-ink for on-demand printing of living cells. Biomater Sci 2013; 1:224-230. [DOI: 10.1039/c2bm00114d] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Plessy C, Desbois L, Fujii T, Carninci P. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types. Bioessays 2012; 35:131-40. [PMID: 23281054 PMCID: PMC3583089 DOI: 10.1002/bies.201200093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells.
Collapse
Affiliation(s)
- Charles Plessy
- RIKEN Omics Science Center, Suehiro-chô, Tsurumi-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
45
|
Ellis SR, Ferris CJ, Gilmore KJ, Mitchell TW, Blanksby SJ, in het Panhuis M. Direct Lipid Profiling of Single Cells from Inkjet Printed Microarrays. Anal Chem 2012; 84:9679-83. [DOI: 10.1021/ac302634u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shane R. Ellis
- ARC Centre of Excellence
for
Free Radical Chemistry and Biotechnology, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
- Soft Materials Group, School
of Chemistry, University of Wollongong,
Wollongong, NSW 2522, Australia
| | - Cameron J. Ferris
- Soft Materials Group, School
of Chemistry, University of Wollongong,
Wollongong, NSW 2522, Australia
- Intelligent Polymer Research Institute,
ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kerry J. Gilmore
- Intelligent Polymer Research Institute,
ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- School of Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen J. Blanksby
- ARC Centre of Excellence
for
Free Radical Chemistry and Biotechnology, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marc in het Panhuis
- Soft Materials Group, School
of Chemistry, University of Wollongong,
Wollongong, NSW 2522, Australia
- Intelligent Polymer Research Institute,
ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
46
|
Zhou Y, Pang Y, Huang Y. Openly Accessible Microfluidic Liquid Handlers for Automated High-Throughput Nanoliter Cell Culture. Anal Chem 2012; 84:2576-84. [DOI: 10.1021/ac203469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ying Zhou
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yuhong Pang
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yanyi Huang
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Wang Y, Shah P, Phillips C, Sims CE, Allbritton NL. Trapping cells on a stretchable microwell array for single-cell analysis. Anal Bioanal Chem 2012; 402:1065-72. [PMID: 22086401 PMCID: PMC3249509 DOI: 10.1007/s00216-011-5535-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/26/2022]
Abstract
There is a need for a technology that can be incorporated into routine laboratory procedures to obtain a continuous, quantitative, fluorescence-based measurement of the dynamic behaviors of numerous individual living cells in parallel, while allowing other manipulations, such as staining, rinsing, and even retrieval of targeted cells. Here, we report a simple, low-cost microarray platform that can trap cells for dynamic single-cell analysis of mammalian cells. The elasticity of polydimethylsiloxane (PDMS) was utilized to trap tens of thousands of cells on an array. The PDMS microwell array was stretched by a tube through which cells were loaded on the array. Cells were trapped on the array by removal of the tube and relaxation of the PDMS. Once that was accomplished, the cells remained trapped on the array without continuous application of an external force and permitted subsequent manipulations, such as staining, rinsing, imaging, and even isolation of targeted cells. We demonstrate the utility of this platform by multicolor analysis of trapped cells and monitoring in individual cells real-time calcium flux after exposure to the calcium ionophore ionomycin. Additionally, a proof of concept for target cell isolation was demonstrated by using a microneedle to locally deform the PDMS membrane in order to retrieve a particular cell from the array.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pavak Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695, USA
| | - Colleen Phillips
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
48
|
Shemesh J, Nir A, Bransky A, Levenberg S. Coalescence-assisted generation of single nanoliter droplets with predefined composition. LAB ON A CHIP 2011; 11:3225-3230. [PMID: 21826345 DOI: 10.1039/c0lc00730g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate the generation of highly accurate nanoliter droplets with a predefined composition. This composition control over a single droplet is achieved by merging two droplets with known concentrations and defined volumes. A forced coalescence is accomplished by synchronizing two piezoelectric-based active droplet generators. A microscope-mounted CCD camera is used to record, quantify and monitor the process to assure its high fidelity. The device is disposable, surfactant free, simple to operate and does not require microelectrode fabrication. It delivers a single on-demand droplet with adjustable high resolution mixing ratios up to 9 at a volume range of 1-10 nanoliters. The presented platform offers, for the first time, a means to perform droplet-based high-throughput screening in the nanoliter range.
Collapse
Affiliation(s)
- Jonathan Shemesh
- Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel 32000
| | | | | | | |
Collapse
|
49
|
Shin DS, Seo JH, Sutcliffe JL, Revzin A. Photolabile micropatterned surfaces for cell capture and release. Chem Commun (Camb) 2011; 47:11942-4. [PMID: 21970983 DOI: 10.1039/c1cc15046d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for capture and release of cells was developed using a photolabile linker and antibody-attached glass surface with a poly(ethylene glycol) (PEG)-pattern.
Collapse
Affiliation(s)
- Dong-Sik Shin
- Department of Biomedical Engineering, University of California, Davis, 451 East Health Sciences Dr #2619, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
50
|
Zhou X, Boey F, Huo F, Huang L, Zhang H. Chemically functionalized surface patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2273-89. [PMID: 21678549 DOI: 10.1002/smll.201002381] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Indexed: 05/24/2023]
Abstract
Patterning substrates with versatile chemical functionalities from micro- to nanometer scale is a long-standing and interesting topic. This review provides an overview of a range of techniques commonly used for surface patterning. The first section briefly introduces conventional micropatterning tools, such as photolithography and microcontact printing. The second section focuses on the currently used nanolithographic techniques, for example, scanning probe lithography (SPL), and their applications in surface patterning. Their advantages and disadvantages are also demonstrated. In the last section, dip-pen nanolithography (DPN) is emphatically illustrated, with a particular stress on the patterning and applications of biomolecules.
Collapse
Affiliation(s)
- Xiaozhu Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|