1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
4
|
Winkler DFH. Automated Solid-Phase Peptide Synthesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2103:59-94. [PMID: 31879919 DOI: 10.1007/978-1-0716-0227-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of solid-phase peptide synthesis by Bruce Merrifield paved the way for a synthesis carried out by machines. Automated peptide synthesis is a fast and convenient way of synthesizing many peptides simultaneously. This chapter tries to give a general guidance for the development of synthesis protocols for the peptide synthesizer. It also provides some suggestions for the modification of the synthesized peptides. Additionally, many examples of possible challenges during and after the synthesis are given in order to support the reader in finding the best synthesis strategy. Numerous references are given to many of the described matters.
Collapse
|
5
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
6
|
Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Pardoux É, Boturyn D, Roupioz Y. Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review. Molecules 2020; 25:E1998. [PMID: 32344585 PMCID: PMC7221689 DOI: 10.3390/molecules25081998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance is becoming a global issue due to its rapid growth. Potential new drugs as antimicrobial peptides (AMPs) are considered for several decades as promising candidates to circumvent this threat. Nonetheless, AMPs have also been used more recently in other settings such as molecular probes grafted on biosensors able to detect whole bacteria. Rapid, reliable and cost-efficient diagnostic tools for bacterial infection could prevent the spread of the pathogen from the earliest stages. Biosensors based on AMPs would enable easy monitoring of potentially infected samples, thanks to their powerful versatility and integrability in pre-existent settings. AMPs, which show a broad spectrum of interactions with bacterial membranes, can be tailored in order to design ubiquitous biosensors easily adaptable to clinical settings. This review aims to focus on the state of the art of AMPs used as the recognition elements of whole bacteria in label-free biosensors with a particular focus on the characteristics obtained in terms of threshold, volume of sample analysable and medium, in order to assess their workability in real-world applications.
Collapse
Affiliation(s)
- Éric Pardoux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
| |
Collapse
|
8
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria. Talanta 2019; 203:322-327. [DOI: 10.1016/j.talanta.2019.05.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
|
10
|
Tanaka M, Minamide T, Takahashi Y, Hanai Y, Yanagida T, Okochi M. Peptide Screening from a Phage Display Library for Benzaldehyde Recognition. CHEM LETT 2019. [DOI: 10.1246/cl.190318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Taisuke Minamide
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Takahashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yosuke Hanai
- Engineering Division, Industrial Solutions Company, Panasonic Corporation, 1006 Oaza Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Takeshi Yanagida
- Laboratory of Integrated Nanostructure Materials, Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
11
|
Hossein-Nejad-Ariani H, Althagafi E, Kaur K. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells. Sci Rep 2019; 9:2723. [PMID: 30804365 PMCID: PMC6389950 DOI: 10.1038/s41598-019-38574-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
The efficacy of chemotherapy for cancer treatment can be increased by targeted drug delivery to the cancer cells. This is particularly important for triple negative breast cancer (TNBC) for which chemotherapy is a major form of treatment. Here we designed and screened a library of 30 peptides starting with a previously reported epidermal growth factor receptor (EGFR) targeting peptide GE11 (YHWYGYTPQNVI). A direct peptide array-whole cell binding assay, where the peptides are conjugated to a cellulose membrane, was used to identify four peptides with enhanced binding to TNBC cells. Next, the four peptides were synthesized as FITC-labelled soluble peptides to study their direct uptake by TNBC cells using flow cytometry. The results showed that peptide analogue 22 had several fold higher uptake by the TNBC cells compared to the lead peptide GE11. The specific uptake of the peptide analogue 22 was confirmed by competition experiment using pure EGF protein. Further, peptide 22 showed dose dependent uptake by the TNBC MDA-MB-231 cells (105) with uptake saturating at around 2 μM peptide concentration. Thus, peptide 22 is a promising EGFR specific TNBC cell binding peptide that can be conjugated directly to a chemotherapeutic drug or to nanoparticles for targeted drug delivery to enhance the efficacy of chemotherapy for TNBC treatment.
Collapse
Affiliation(s)
- Hanieh Hossein-Nejad-Ariani
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Emad Althagafi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA.
| |
Collapse
|
12
|
Lv E, Ding J, Qin W. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Anal Chem 2018; 90:13600-13606. [PMID: 30335975 DOI: 10.1021/acs.analchem.8b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptide-based sandwich assays are promising tools in molecular detection, but may be restricted by the availability of "pairs" of affinity peptides. Herein, a new potentiometric sandwich assay for bacteria based on peptide pairs derived from an antimicrobial peptide (AMP) ligand is demonstrated. As a model, the original AMP with a well-defined structure for Listeria monocytogenes (LM) can be split into two fragments to serve as the peptide pairs for the sandwich assay. The recognition and binding of the short peptide pairs to the target can be verified by circular dichroism, flow cytometry, fluorometry, and optical microscopy. The potentiometric magnetic bead-based sandwich assay is designed by using horseradish peroxidase as a label. The enzyme can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to induce a potential change on a polymeric membrane ion-selective electrode. Under optimal conditions, the concentration of LM can be determined potentiometrically in a linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 with a detection limit of 10 CFU mL-1 (3σ). The proposed sensing strategy expands the applications of peptides in the field of bioassays.
Collapse
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| |
Collapse
|
13
|
Okochi M, Muto M, Yanai K, Tanaka M, Onodera T, Wang J, Ueda H, Toko K. Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody. ACS COMBINATORIAL SCIENCE 2017; 19:625-632. [PMID: 28845964 DOI: 10.1021/acscombsci.7b00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complementarity-determining regions (CDRs) are sites on the variable chains of antibodies responsible for binding to specific antigens. In this study, a short peptide probe for recognition of 2,4,6-trinitrotoluene (TNT), was identified by testing sequences derived from the CDRs of an anti-TNT monoclonal antibody. The major TNT-binding site in this antibody was identified in the heavy chain CDR3 by antigen docking simulation and confirmed by an immunoassay using a spot-synthesis based peptide array comprising amino acid sequences of six CDRs in the variable region. A peptide derived from heavy chain CDR3 (RGYSSFIYWF) bound to TNT with a dissociation constant of 1.3 μM measured by surface plasmon resonance. Substitution of selected amino acids with basic residues increased TNT binding while substitution with acidic amino acids decreased affinity, an isoleucine to arginine change showed the greatest improvement of 1.8-fold. The ability to create simple peptide binders of volatile organic compounds from sequence information provided by the immune system in the creation of an immune response will be beneficial for sensor developments in the future.
Collapse
Affiliation(s)
- Mina Okochi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaki Muto
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kentaro Yanai
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takeshi Onodera
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jin Wang
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Ueda
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-18, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kiyoshi Toko
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate
School of Information Science and Electrical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Templier V, Roupioz Y. On the challenges of detecting whole Staphylococcus aureus cells with biosensors. J Appl Microbiol 2017; 123:1056-1067. [PMID: 28609570 DOI: 10.1111/jam.13510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Due to the increasing number of nosocomial infections and multidrug-resistant bacterial strains, Staphylococcus aureus is now a major worldwide concern. Rapid detection and characterization of this bacterium has become an important issue for biomedical applications. Biosensors are increasingly appearing as low-cost, easy-to-operate and fast alternatives for rapid detection. In this review, we will introduce the main characteristics of S. aureus and will focus on the interest of biosensors for a faster detection of whole S. aureus cells. In particular, we will review the most promising strategies in the choice of ligand for the design of selective and efficient biosensors. Their specific characteristics as well as their advantages and/or disadvantages will also be commented.
Collapse
Affiliation(s)
- V Templier
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| | - Y Roupioz
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017; 38:87-96. [PMID: 28399505 PMCID: PMC5494204 DOI: 10.1016/j.cbpa.2017.03.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs), including biofilms. Finally, we highlight AMPs already in use or under clinical trials.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Scott Reiling
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - D Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
16
|
Jiang K, Wang Y, Thakur G, Kotsuchibashi Y, Naicker S, Narain R, Thundat T. Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15225-15231. [PMID: 28437064 DOI: 10.1021/acsami.7b04178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10-9 to 1 × 10-4 mol L-1, whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10-11 mol L-1. We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.
Collapse
Affiliation(s)
- Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Yinan Wang
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Garima Thakur
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Yohei Kotsuchibashi
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Selvaraj Naicker
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2 V4, Canada
| |
Collapse
|
17
|
Finn MG. Technical Advances in Medicinal Chemistry. ACS COMBINATORIAL SCIENCE 2017; 19:277-278. [PMID: 28374995 DOI: 10.1021/acscombsci.7b00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Etayash H, Thundat T, Kaur K. Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy. Methods Mol Biol 2017; 1572:113-124. [PMID: 28299684 DOI: 10.1007/978-1-4939-6911-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have the ability to function as bio-recognition elements in the detection of bacteria. For instance, we showed that Leucocin A, an antimicrobial peptide from class IIa bacteriocins, binds gram-positive Listeria monocytogenes with higher affinity than other gram-positive bacteria like S. aureus, L. innocua, and E. faecalis. The binding was detected using impedance spectroscopy when Leucocin A immobilized on impedance electrodes binds bacteria from a sample. Here we highlight the strength of utilizing Leucocin A as a bio-recognition probe in biosensor platforms and provide details on its application in real-time bacterial detection using electrochemical impedance spectroscopy. A simple new generation impedance array analyzer is utilized that works at very low frequencies to identify interactions between peptide and the target bacteria.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1.
- Chapman University School of Pharmacy (CUSP), Chapman University, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA.
| |
Collapse
|
19
|
Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 2016; 86:1-7. [PMID: 27318103 DOI: 10.1016/j.bios.2016.05.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/01/2023]
Abstract
Foodborne pathogens pose a significant threat to human health worldwide. The identification of foodborne pathogens needs to be rapid, accurate and convenient. Here, we constructed a nanoparticle cluster (NPC) catalyzed signal amplification biosensor for foodborne pathogens visual detection. In this work, vancomycin (Van), a glycopeptide antibiotic for Gram-positive bacteria, was used as the first molecular recognition agent to capture Listeria monocytogenes (L. monocytogenes). Fe3O4 NPC modified aptamer, was used as the signal amplification nanoprobe, specifically recognize to the cell wall of L. monocytogenes. As vancomycin and aptamer recognize L. monocytogenes at different sites, the sandwich recognition showed satisfied specificity. Compared to individual Fe3O4 nanoparticle (NP), NPC exhibit collective effect-enhanced catalytic activity for the color reaction of chromogenic substrate. The change in absorbance or color could represent the concentration of target. Using the Fe3O4 NPC-based signal amplification method, L. monocytogenes whole cells could be directly assayed within a linear range of 5.4×10(3)-10(8) cfu/mL and a visual limit of detection of 5.4×10(3) cfu/mL. Fe3O4 NPC-based method was more sensitive than the Fe3O4 NP-based method. All these attractive characteristics of highly sensitivity, visual and labor-saving, make the biosensor possess a potential application for foodborne pathogenic bacteria detection.
Collapse
Affiliation(s)
- Lisha Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| |
Collapse
|
20
|
Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Sci Rep 2015; 5:13967. [PMID: 26434765 PMCID: PMC4593050 DOI: 10.1038/srep13967] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50-100 cancer cells mL(-1) from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Sarfuddin Azmi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| |
Collapse
|