1
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
2
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Dahlmann F, Griesbach CE, Torres-Boy AY, von Helden G, Peczuh MW, Pagel K, Greis K. Direct Experimental Characterization of a Sialyl Cation. Chemistry 2024:e202403724. [PMID: 39499170 DOI: 10.1002/chem.202403724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/07/2024]
Abstract
Sialic acids are monosaccharide residues involved in several biological processes. Controlling the stereoselectivity of sialylation reactions is challenging and mechanistic studies on the structure of its intermediate, the sialyl cation, are scarce. Here it is shown that a sialyl cation can be generated and isolated from an ionized sialic acid precursor. This short-lived species is structurally characterized for the first time using cryogenic infrared spectroscopy. In combination with quantum chemical calculations, the results reveal that the positive charge at the anomeric carbon of the sialyl cation is stabilized by remote participation of the C5-NHAc group leading to the formation of a bridged structure. In this structure, the β-side is shielded from nucleophilic attack, potentially explaining the α-selectivity of this building block in SN1-type sialylation reactions. Other modes of participation are energetically unfavored and cannot be observed experimentally.
Collapse
Affiliation(s)
- Franziska Dahlmann
- Department of Chemistry, Yale University, New Haven, 06520, Connecticut, USA
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020, Innsbruck, Austria
- Department of Chemical Engineering, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Caleb E Griesbach
- Department of Chemistry, University of Connecticut, 06269, Connecticut, USA
- Department of Chemistry, University of Toronto, M5S 3H6, Toronto, Canada
| | | | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Mark W Peczuh
- Department of Chemistry, University of Connecticut, 06269, Connecticut, USA
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Kim Greis
- Department of Chemistry, Yale University, New Haven, 06520, Connecticut, USA
- Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Ayyalasomayajula R, Boneva I, Ormaza D, Whyte A, Farook K, Gorlin Z, Yancey E, André S, Kaltner H, Cudic M. Synthesis and Thermodynamic Evaluation of Sialyl-Tn MUC1 Glycopeptides Binding to Macrophage Galactose-Type Lectin. Chembiochem 2024; 25:e202400391. [PMID: 38877657 PMCID: PMC11560554 DOI: 10.1002/cbic.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 μM for mono- to 1 μM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.
Collapse
Affiliation(s)
- Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Ivet Boneva
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - David Ormaza
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Andrew Whyte
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Kamran Farook
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Zachary Gorlin
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Evelyn Yancey
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Sabine André
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| |
Collapse
|
5
|
Çakar MM, Milčić N, Andreadaki T, Charnock S, Fessner WD, Blažević ZF. Kinetic characterization of two neuraminic acid synthases and evaluation of their application potential. Appl Microbiol Biotechnol 2024; 108:446. [PMID: 39167161 PMCID: PMC11339185 DOI: 10.1007/s00253-024-13277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Neuraminic acid synthases are an important yet underexplored group of enzymes. Thus, in this research, we performed a detailed kinetic and stability analysis and a comparison of previously known neuraminic acid synthase from Neisseria meningitidis, and a novel enzyme, PNH5, obtained from a metagenomic library. A systematic analysis revealed a high level of similarity of PNH5 to other known neuraminic acid synthases, except for its pH optimum, which was found to be at 5.5 for the novel enzyme. This is the first reported enzyme from this family that prefers an acidic pH value. The effect of different metal cofactors on enzyme activity, i.e. Co2+, Mn2+ and Mg2+, was studied systematically. The kinetics of neuraminic acid synthesis was completely elucidated, and an appropriate kinetic model was proposed. Enzyme stability study revealed that the purified enzyme exhibits changes in its structure during time as observed by differential light scattering, which cause a drop in its activity and protein concentration. The operational enzyme stability for the neuraminic acid synthase from N. meningitidis is excellent, where no activity drop was observed during the batch reactor experiments. In the case of PNH5, some activity drop was observed at higher concentration of substrates. The obtained results present a solid platform for the future application of these enzymes in the synthesis of sialic acids. KEY POINTS: • A novel neuraminic acid synthase was characterized. • The effect of cofactors on NeuS activity was elucidated. • Kinetic and stability characterization of two neuraminic acid synthases was performed.
Collapse
Affiliation(s)
- Mehmet Mervan Çakar
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Nevena Milčić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | | | - Simon Charnock
- Prozomix Limited, Station Court, Haltwhistle, Northumberland, NE49 9HN, UK
| | - Wolf-Dieter Fessner
- Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287, Darmstadt, Germany
| | - Zvjezdana Findrik Blažević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Mamirgova ZZ, Zinin AI, Chizhov AO, Kononov LO. Synthesis of sialyl halides with various acyl protective groups. Carbohydr Res 2024; 536:109033. [PMID: 38295530 DOI: 10.1016/j.carres.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glycosyl halides are historically one of the first glycosyl donors used in glycosylation reactions, and interest in glycosylation reactions involving this class of glycosyl donors is currently increasing. New methods for their activation have been proposed and effective syntheses of oligosaccharides with their participation have been developed. At the same time, the possibilities of using these approaches to the synthesis of sialosides are restricted by the limited diversity of known sialyl halides (previously, mainly sialyl chlorides, less often sialyl bromides and sialyl fluorides, with acetyl (Ac) groups at the oxygen atoms and AcNH, Ac2N and N3 groups at C-5 were used). This work describes the synthesis of six new N-acetyl- and N-trifluoroacetyl-sialyl chlorides and bromides with O-chloroacetyl and O-trifluoroacetyl protective groups. Preparation of N,O-trifluoroacetyl protected derivatives was made possible due to development of the synthesis of sialic acid methyl ester pentaol with N-trifluoroacetyl group.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation.
| |
Collapse
|
7
|
Lőrincz EB, Herczeg M, Houser J, Rievajová M, Kuki Á, Malinovská L, Naesens L, Wimmerová M, Borbás A, Herczegh P, Bereczki I. Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase. Int J Mol Sci 2023; 24:17268. [PMID: 38139095 PMCID: PMC10743929 DOI: 10.3390/ijms242417268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
Collapse
Affiliation(s)
- Eszter Boglárka Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Josef Houser
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Rievajová
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Lenka Malinovská
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium;
| | - Michaela Wimmerová
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
- HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
9
|
Kim HM, Lee YM, Kim EH, Eun SW, Sung HK, Ko H, Youn SJ, Choi Y, Yamada W, Shin SM. Anti-Wrinkle Efficacy of Edible Bird's Nest Extract: A Randomized, Double-Blind, Placebo-Controlled, Comparative Study. Front Pharmacol 2022; 13:843469. [PMID: 35355724 PMCID: PMC8959461 DOI: 10.3389/fphar.2022.843469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate skin health's functional improvement, such as wrinkles, elasticity, moisture, and whitening, and safety following the consumption of "edible bird's nest extract" for 12 weeks by women. This single-center, double-blinded, parallel-group, placebo-controlled study included women aged 40-60 years. Our primary purpose was to assess improvement in skin wrinkles, elasticity, and moisture after 12 weeks using an SV700, cutometer, and corneometer, respectively, compared to baseline measurements. Our secondary purpose was to evaluate skin wrinkle, elasticity, and moisture changes at 4 and 8 weeks from baseline using the aforementioned equipment, and measure transdermal water loss and melanin and erythema indexes using a tewameter and mexameter, respectively. Experts performed the visual evaluation of skin wrinkles at 4, 8, and 12 weeks from baseline. The participants were randomly allocated in a 1:1 ratio into the edible bird's nest extract or the placebo group with 43 participants each, where they consumed 100 mg of the extract or placebo, respectively, daily for 12 weeks. The outcomes were measured at every visit. In this study, upon comparing changes in the skin elasticity value between the two intake groups at 12 weeks of ingestion, skin elasticity in the edible bird's nest extract group decreased significantly compared with that in the placebo group. Adverse reactions were absent in both groups. In the case of laboratory test results, changes before and after the ingestion of the extract were within the normal range, thus indicating no clinically significant difference. The edible bird's nest extract was effective in improving skin wrinkles. Moreover, it is beneficial for skin health and can be used as a skin nutritional supplement. Compared with the placebo, the edible bird's nest extract was identified as safe. Clinical Trial Registration: https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&search_page=M&pageSize=10&page=undefined&seq=21007&status=5&seq_group=20330, identifier KCT0006558.
Collapse
Affiliation(s)
- Hyung Mook Kim
- Global Cosmeceutical Center, Cheongju-si, South Korea.,College of Pharmacy, Chungbuk National University, Cheongju-si, South Korea
| | - Yong Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, South Korea
| | - Ee Hwa Kim
- Global Cosmeceutical Center, Cheongju-si, South Korea
| | | | - Hyun Kyung Sung
- Department of Pediatrics, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| | - Heung Ko
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| | | | | | - Wakana Yamada
- New Products Development Department, Oryza Oil & Fat Chemical Co., Ltd., Ichinomiya, Japan
| | - Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| |
Collapse
|
10
|
Abdullayev S, Roy R. Practical non-enzymatic synthesis of propargyl sialyl-α-(2-3’)-lactosamine trisaccharide using minimal protecting groups manipulation. Carbohydr Res 2022; 514:108543. [DOI: 10.1016/j.carres.2022.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
|
11
|
Li Z, Unione L, Liu L, Lang Y, de Vries RP, de Groot RJ, Boons GJ. Synthetic O-Acetylated Sialosides and their Acetamido-deoxy Analogues as Probes for Coronaviral Hemagglutinin-esterase Recognition. J Am Chem Soc 2022; 144:424-435. [PMID: 34967208 DOI: 10.1021/jacs.1c10329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
O-Acetylation is a common modification of sialic acids that can occur at carbons 4-, 7-, 8-, and/or 9. Acetylated sialosides are employed as receptors by several betacoronaviruses and toroviruses, and by influenza C and D viruses. The molecular basis by which these viruses recognize specific O-acetylated sialosides is poorly understood, and it is unknown how viruses have evolved to recognize specific O-acetylated sialosides expressed by their host. Here, we describe a chemoenzymatic approach that can readily provide sialoglycan analogues in which acetyl esters at C4 and/or C7 are replaced by stabilizing acetamide moieties. The analogues and their natural counterparts were used to examine the ligand requirements of the lectin domain of coronaviral hemagglutinin-esterases (HEs). It revealed that HEs from viruses targeting different host species exhibit different requirements for O-acetylation. It also showed that ester-to-amide perturbation results in decreased or loss of binding. STD NMR and molecular modeling of the complexes of the HE of BCoV with the acetamido analogues and natural counterparts revealed that binding is governed by the complementarity between the acetyl moieties of the sialosides and the hydrophobic patches of the lectin. The precise spatial arrangement of these elements is important, and an ester-to-amide perturbation results in substantial loss of binding. Molecular Dynamics simulations with HEs from coronaviruses infecting other species indicate that these viruses have adapted their HE specificity by the incorporation of hydrophobic or hydrophilic elements to modulate acetyl ester recognition.
Collapse
Affiliation(s)
- Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Yifei Lang
- Virology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584, The Netherlands
- Chemistry Department, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
13
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Hassan AA, Oscarson S. A General Method for the Divergent Synthesis of C‐9 Functionalised Sialic Acid Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abdullah A. Hassan
- Centre for Synthesis and Chemical Biology University College Dublin Dublin 4 Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology University College Dublin Dublin 4 Ireland
| |
Collapse
|
16
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Agusti R, Gallo-Rodriguez C, de Lederkremer RM. Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydr Res 2019; 479:48-58. [PMID: 31132642 DOI: 10.1016/j.carres.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal β-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-β-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.
Collapse
Affiliation(s)
- Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Goto K, Tamai H, Takeda Y, Tanaka HN, Mizuno T, Imamura A, Ishida H, Kiso M, Ando H. Total Synthesis of Sialyl Inositol Phosphosphingolipids CJP-2, CJP-3, and CJP-4 Isolated from Feather Star Comanthus japonica. Org Lett 2019; 21:4054-4057. [DOI: 10.1021/acs.orglett.9b01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kenta Goto
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideki Tamai
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoh Takeda
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takashi Mizuno
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Su S, Wang C. Molybdenum-Catalyzed Diastereoselective anti-Dihydroxylation of Secondary Allylic Alcohols. Org Lett 2019; 21:2436-2440. [PMID: 30896180 DOI: 10.1021/acs.orglett.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this protocol, we report a Mo-catalyzed anti-dihydroxylation of secondary allylic alcohols, providing a general method for the preparation of 1,2,3-triols bearing up to three continuous stereocenters with excellent diastereocontrol. The mechanistic studies reveal that this dihydroxylation reaction consists of two steps and up to excellent diastereomeric ratios of the final triol products can be achieved due to the high level of both diastereocontrol in the initial epoxidation and regiocontrol in the following hydrolysis in situ.
Collapse
Affiliation(s)
- Shixia Su
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
20
|
Step-economy synthesis of β-steryl sialosides using a sialyl iodide donor. J Antibiot (Tokyo) 2019; 72:449-460. [PMID: 30886347 DOI: 10.1038/s41429-019-0165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022]
Abstract
Steryl glycosides are prevalent in nature and have unique biological activities dictated by sterol structure, sugar composition, and the stereochemical attachment of the aglycone. A single configurational switch can have profound biological consequences meriting the systematic study of structure and function relationships. Steryl congeners of N-acetyl neuraminic acid (NANA) impact neurobiological processes and may also mediate host/microbe interactions. In order to study these processes, a platform for the synthesis of β-steryl sialosides has been established. Promoter-free glycosidations using a novel α-linked sialyl iodide donor efficiently provide unique amphiphilic sialoglycoconjugates for examining bioactivities in various systems.
Collapse
|
21
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Xiong J, Zhang C, Xu D. Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product. J Mol Model 2018; 24:297. [PMID: 30259133 DOI: 10.1007/s00894-018-3822-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive human pathogenic bacterium, which is the main cause of pneumonia and meningitis in children and the elderly. Three sialidases (or neuraminidases) encoded from Streptococcus pneumoniae could catalyze the cleavage of sialic acid linkages. This mechanism is directly connected with infection, apoptosis, and signaling, and usually considered to be one of the critical virulence factors. Type C neuraminidase (NanC) is unique because its primary product of Neu5Ac2en is considered to be an inhibitor to the other two sialidases. Experimentally, there are two different pathways for the formation mechanism of Neu5Ac2en catalyzed by NanC. In this work, a combined quantum mechanical and molecular mechanical approach was employed in all calculations. Starting from the covalent sialylated intermediate, we first examined the reaction to Neu5Ac2en and found the reaction prefers a direct proton abstraction mechanism rather than the water mediated proton abstraction mechanism. Free energy profiles can confirm that Neu5Ac2en is the major product of NanC. Functional roles of some important residues were also investigated, e.g., D315 acts as the proton acceptor during the formation of Neu5Ac2en, while the general base for the hydrolytic reaction to Neu5Ac. This study can facilitate the understanding of the catalytic mechanism of NanC and has the potential to aid in future inhibitor design studies.
Collapse
Affiliation(s)
- Jing Xiong
- MOE Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Chunchun Zhang
- Analytical&Testing Center, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
23
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
24
|
Fan P, Su S, Wang C. Molybdenum-Catalyzed Hydroxyl-Directed Anti-Dihydroxylation of Allylic and Homoallylic Alcohols. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pei Fan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Shixia Su
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
25
|
Xiao A, Li Y, Li X, Santra A, Yu H, Li W, Chen X. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal 2018; 8:43-47. [PMID: 29713561 PMCID: PMC5920526 DOI: 10.1021/acscatal.7b03257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialidase transition state analog inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en, DANA) has played a leading role in developing clinically used anti-influenza virus drugs. Taking advantage of the Neu5Ac2en-forming catalytic property of Streptococcus pneumoniae sialidase SpNanC, an effective one-pot multienzyme (OPME) strategy has been developed to directly access Neu5Ac2en and its C-5, C-9, and C-7-analogs from N-acetylmannosamine (ManNAc) and analogs. The obtained Neu5Ac2en analogs can be further derivatized at various positions to generate a larger inhibitor library. Inhibition studies demonstrated improved selectivity of several C-5- or C-9-modified Neu5Ac2en derivatives against several bacterial sialidases. The study provides an efficient enzymatic method to access sialidase inhibitors with improved selectivity.
Collapse
Affiliation(s)
- An Xiao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xixuan Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
26
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
27
|
Concise synthesis of 2,7-anhydrosialic acid derivatives and its application. Carbohydr Res 2017; 453-454:44-53. [DOI: 10.1016/j.carres.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
|
28
|
Itoh H, Pichierri F, Kobayashi A. UV absorption of n-alkyl 1-thio-β-d-glucopyranosides and its utilization in chromatographic separation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Wu YF, Tsai YF. Assistance of the C-7,8-Picoloyl Moiety for Directing the Glycosyl Acceptors into the α-Orientation for the Glycosylation of Sialyl Donors. Org Lett 2017; 19:4171-4174. [PMID: 28753308 DOI: 10.1021/acs.orglett.7b01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient α-sialylation method for many primary hydroxyl acceptors that include 6-OH glycosides has been developed. 7,8-Di-O-picoloyl sialyl glycoside was used as the glycosyl donor, and α-glycoconjugation was controlled by using the 7,8-di-O-picoloyl moiety in CH2Cl2. The methodology was successfully applied to the total synthesis of ganglioside Hp-s1 possessing neuritogenic activity.
Collapse
Affiliation(s)
- Yu-Fa Wu
- Department of Chemistry, Chung Yuan Christian University , Chung Li District, Taoyuan 32023, Taiwan
| | - Yow-Fu Tsai
- Department of Chemistry, Chung Yuan Christian University , Chung Li District, Taoyuan 32023, Taiwan
| |
Collapse
|
30
|
Synthesis and In Vitro Anti-Influenza Virus Evaluation of Novel Sialic Acid (C-5 and C-9)-Pentacyclic Triterpene Derivatives. Molecules 2017. [PMID: 28640212 PMCID: PMC6152041 DOI: 10.3390/molecules22071018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug resistant variants of the influenza virus has led to a great need to identify novel and effective antiviral agents. In our previous study, a series of sialic acid (C-2 and C-4)-pentacyclic triterpene conjugates have been synthesized, and a five-fold more potent antiviral activity was observed when sialic acid was conjugated with pentacyclic triterpene via C-4 than C-2. It was here that we further reported the synthesis and anti-influenza activity of novel sialic acid (C-5 and C-9)-pentacyclic triterpene conjugates. Their structures were confirmed by ESI-HRMS, 1H-NMR, and 13C-NMR spectroscopic analyses. Two conjugates (26 and 42) showed strong cytotoxicity to MDCK cells in the CellTiter-Glo assay at a concentration of 100 μM. However, they showed no significant cytotoxicity to HL-60, Hela, and A549 cell lines in MTT assay under the concentration of 10 μM (except compound 42 showed weak cytotoxicity to HL-60 cell line (10 μM, ~53%)). Compounds 20, 28, 36, and 44 displayed weak potency to influenza A/WSN/33 (H1N1) virus (100 μM, ~20–30%), and no significant anti-influenza activity was found for the other conjugates. The data suggested that both the C-5 acetylamide and C-9 hydroxy of sialic acid were important for its binding with hemagglutinin during viral entry into host cells, while C-4 and C-2 hydroxy were not critical for the binding process and could be replaced with hydrophobic moieties. The research presented herein had significant implications for the design of novel antiviral inhibitors based on a sialic acid scaffold.
Collapse
|
31
|
Bartlett SL, Keiter KM, Johnson JS. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile α-Keto Esters. J Am Chem Soc 2017; 139:3911-3916. [PMID: 28252953 DOI: 10.1021/jacs.7b00943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Enantioconvergent arylation reactions of boronic acids and racemic β-stereogenic α-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of β-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization.
Collapse
Affiliation(s)
- Samuel L Bartlett
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Kimberly M Keiter
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
32
|
Norimura Y, Yamamoto D, Makino K. Synthesis of sialic acid derivatives based on chiral substrate-controlled stereoselective aldol reactions using pyruvic acid oxabicyclo[2.2.2]octyl orthoester. Org Biomol Chem 2017; 15:640-648. [DOI: 10.1039/c6ob02412b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The synthesis of sialic acids and their analogs was accomplished based on substrate-controlled asymmetric aldol reactions using pyruvic acid oxabicyclo[2.2.2]octyl orthoester.
Collapse
Affiliation(s)
- Yusuke Norimura
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 1088641
- Japan
| | - Daisuke Yamamoto
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 1088641
- Japan
| | - Kazuishi Makino
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 1088641
- Japan
| |
Collapse
|
33
|
Zhang L, Li L, Bai S, Zhou X, Wang P, Li M. Access to Diosgenyl Glycoconjugates via Gold(I)-Catalyzed Etherification of Diosgen-3-yl ortho-Hexynylbenzoate. Org Lett 2016; 18:6030-6033. [DOI: 10.1021/acs.orglett.6b02963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Zhang
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Linfeng Li
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorda Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Shujin Bai
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Xin Zhou
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Peng Wang
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Ming Li
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
34
|
Buda S, Crich D. Oxidative Deamination of N-Acetyl Neuraminic Acid: Substituent Effects and Mechanism. J Am Chem Soc 2016; 138:1084-92. [PMID: 26731511 PMCID: PMC4732528 DOI: 10.1021/jacs.5b13015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A study of the mechanism of the oxidative deamination of the N-nitroso-N-acetyl sialyl glycosides leading with overall retention of configuration to the corresponding 2-keto-3-deoxy-D-glycero-D-galacto-nonulopyranosidonic acid (KDN) glycosides is described, making use of a series of differentially O-protected N-nitroso-N-acetyl sialyl glycosides and of isotopic labeling studies. No evidence is found for stereodirecting participation by ester groups at the 4- and 7-positions. Comparisons are drawn with oxidative deamination reactions of 4-amino-4-deoxy and 2-amino-2-deoxy hexopyranosides and a common mechanism is formulated involving the intermediacy of 1-oxabicyclo[3.1.0]hexyl oxonium ions following participation by the pyranoside ring oxygen. A minor reaction pathway has been uncovered by labeling studies in the β-thiosialosides that results in the exchange of the 4-O-acetyl group by the glacial acetic acid that serves as external nucleophile in the general oxidative deamination process. A mechanism is proposed for this exchange involving participation by the thioglycoside at the level of an intermediate diazoalkane.
Collapse
Affiliation(s)
- Szymon Buda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
35
|
Sharmila DJS, Jino Blessy J. Molecular dynamics of sialic acid analogues complex with cholera toxin and DFT optimization of ethylene glycol-mediated zinc nanocluster conjugation. J Biomol Struct Dyn 2016; 35:182-206. [PMID: 26733187 DOI: 10.1080/07391102.2015.1136689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cholera is an infectious disease caused by cholera toxin (CT) protein of bacterium Vibrio cholerae. A sequence of sialic acid (N-acetylneuraminic acid, NeuNAc or Neu5Ac) analogues modified in its C-5 position is modelled using molecular modelling techniques and docked against the CT followed by molecular dynamics simulations. Docking results suggest better binding affinity of NeuNAc analogue towards the binding site of CT. The NeuNAc analogues interact with the active site residues GLU:11, TYR:12, HIS:13, GLY:33, LYS:34, GLU:51, GLN:56, HIE:57, ILE:58, GLN:61, TRP:88, ASN:90 and LYS:91 through intermolecular hydrogen bonding. Analogues N-glycolyl-NeuNAc, N-Pentanoyl-NeuNAc and N-Propanoyl-NeuNAc show the least XPGscore (docking score) of -9.90, -9.16, and -8.91, respectively, and glide energy of -45.99, -42.14 and -41.66 kcal/mol, respectively. Stable nature of CT-N-glycolyl-NeuNAc, CT-N-Pentanoyl-NeuNAc and CT-N-Propanoyl-NeuNAc complexes was verified through molecular dynamics simulations, each for 40 ns using the software Desmond. All the nine NeuNAc analogues show better score for drug-like properties, so could be considered as suitable candidates for drug development for cholera infection. To improve the enhanced binding mode of NeuNAc analogues towards CT, the nine NeuNAc analogues are conjugated with Zn nanoclusters through ethylene glycol (EG) as carriers. The NeuNAc analogues conjugated with EG-Zn nanoclusters show better binding energy towards CT than the unconjugated nine NeuNAc analogues. The electronic structural optimization of EG-Zn nanoclusters was carried out for optimizing their performance as better delivery vehicles for NeuNAc analogues through density functional theory calculations. These sialic acid analogues may be considered as novel leads for the design of drug against cholera and the EG-Zn nanocluster may be a suitable carrier for sialic acid analogues.
Collapse
Affiliation(s)
- D Jeya Sundara Sharmila
- a Department of Nano Science and Technology , Tamil Nadu Agricultural University , Coimbatore 641003 , Tamil Nadu , India
| | - J Jino Blessy
- b Department of Bioinformatics , Karunya University , Karunya Nagar, Coimbatore 641 114 , Tamil Nadu , India
| |
Collapse
|
36
|
Rota P, Anastasia L, Allevi P. Elucidation of several neglected reactions in the GC-MS identification of sialic acids as heptafluorobutyrates calls for an urgent reassessment of previous claims. Org Biomol Chem 2015; 13:4931-9. [PMID: 25813858 DOI: 10.1039/c5ob00081e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current analytical protocol used for the GC-MS determination of free or 1,7-lactonized natural sialic acids (Sias), as heptafluorobutyrates, overlooks several transformations. Using authentic reference standards and by combining GC-MS and NMR analyses, flaws in the analytical protocol were pinpointed and elucidated, thus establishing the scope and limitations of the method. It was demonstrated that (a) Sias 1,7-lactones, even if present in biological samples, decompose under the acidic hydrolysis conditions used for their release; (b) Sias 1,7-lactones are unpredicted artifacts, accidentally generated from their parent acids; (c) the N-acetyl group is quantitatively exchanged with that of the derivatizing perfluorinated anhydride; (d) the partial or complete failure of the Sias esterification-step with diazomethane leads to the incorrect quantification and structure attribution of all free Sias. While these findings prompt an urgent correction and improvement of the current analytical protocol, they could be instrumental for a critical revision of many incorrect claims reported in the literature.
Collapse
Affiliation(s)
- Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Saldini 50, I-20133 Milan, Italy.
| | | | | |
Collapse
|
37
|
Fair RJ, Hahm HS, Seeberger PH. Combination of automated solid-phase and enzymatic oligosaccharide synthesis provides access to α(2,3)-sialylated glycans. Chem Commun (Camb) 2015; 51:6183-5. [PMID: 25754251 DOI: 10.1039/c5cc01368b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A synthetic strategy combining automated solid-phase chemical synthesis and enzymatic sialylation was developed to access α(2,3)-sialylated glycans.
Collapse
Affiliation(s)
- Richard J Fair
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
38
|
Banerjee A, Senthilkumar S, Baskaran S. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids. Chemistry 2015; 22:902-6. [PMID: 26572799 DOI: 10.1002/chem.201503998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 02/05/2023]
Abstract
Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.
Collapse
Affiliation(s)
- Amit Banerjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India
| | | | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India.
| |
Collapse
|
39
|
Sellmeier M, Weinhold B, Münster-Kühnel A. CMP-Sialic Acid Synthetase: The Point of Constriction in the Sialylation Pathway. Top Curr Chem (Cham) 2015; 366:139-67. [PMID: 24141690 DOI: 10.1007/128_2013_477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.
Collapse
Affiliation(s)
- Melanie Sellmeier
- Institute for Cellular Chemistry, Hannover Medical School (MHH), Hannover, 30625, Germany
| | | | | |
Collapse
|
40
|
Rota P, Allevi P, Anastasia L. The Sialic Acids Waltz: Novel Stereoselective Isomerization of the 1,7-Lactones ofN-Acetylneuraminic Acids into the Corresponding γ-Lactones and Back to the Free Sialic Acids. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Rota
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato; San Donato 20097 Milan Italy
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Via Saldini 50 20133 Milan Italy
| | - Pietro Allevi
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Via Saldini 50 20133 Milan Italy
| | - Luigi Anastasia
- Department of Biomedical Sciences for Health; University of Milan; Segrate 20090 Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato; San Donato 20097 Milan Italy
| |
Collapse
|
41
|
Yu CC, Withers SG. Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Blessy JJ, Sharmila DJS. Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin - a molecular dynamics study. Glycoconj J 2015; 32:49-67. [DOI: 10.1007/s10719-014-9570-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
43
|
Massolo E, Benaglia M, Genoni A, Annunziata R, Celentano G, Gaggero N. Stereoselective reaction of 2-carboxythioesters-1,3-dithiane with nitroalkenes: an organocatalytic strategy for the asymmetric addition of a glyoxylate anion equivalent. Org Biomol Chem 2015; 13:5591-6. [DOI: 10.1039/c5ob00492f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Under mild reaction conditions γ-nitro-β-aryl-α-keto esters with up to 92% ee were obtained, realizing a formal catalytic stereoselective conjugate addition of the glyoxylate anion synthon.
Collapse
Affiliation(s)
- Elisabetta Massolo
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- I-20133 Milano
- Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- I-20133 Milano
- Italy
| | - Andrea Genoni
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- I-20133 Milano
- Italy
| | - Rita Annunziata
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- I-20133 Milano
- Italy
| | - Giuseppe Celentano
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- Milano
- Italy
| | - Nicoletta Gaggero
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- Milano
- Italy
| |
Collapse
|
44
|
Akçay G, Ramphal JY, d’Alarcao M, Kumar K. Total synthesis of trifluorobutyryl-modified, globally protected sialyl Lewis x by a convergent [2+2] approach. Tetrahedron Lett 2015; 56:109-114. [PMID: 25530638 PMCID: PMC4269248 DOI: 10.1016/j.tetlet.2014.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structural and quantitative changes in the expression of sialic acid residues on the surface of eukaryotic cells profoundly influence a broad range of biological processes including inflammation, antigen recognition, microbial attachment, and tumor metastasis. Uptake and incorporation of sialic acid analogues in mammalian cells enable structure-function studies and perturbation of specific recognition events. Our group has recently shown that a trifluorobutyryl-modified sialic acid metabolite diminishes the adhesion of mammalian cells to E and P-selectin, presumably by leading to the expression of fluorinated sLex epitopes on cell surfaces, and interfering with the sLex-selectin interactions that are well known in mediating tumor cell migration.1 For studies directed towards understanding the molecular basis of this reduced adhesion, chemical synthesis of trifluorobutyrylated sialyl Lewis x (C4F3--sLex) was crucial. We have developed a highly efficient [2+2] approach for the assembly of C4F3-sLex on a preparative scale that contains versatile protective groups allowing the glycan to be surface immobilized or solubilized as needed for biophysical studies to investigate selectin interactions. This strategy can, in principle, be used for preparation of other N-modified sLex analogues.
Collapse
Affiliation(s)
- Gizem Akçay
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - John Y. Ramphal
- Department of Chemistry, San José State University, San José, California 95192 , United States
| | - Marc d’Alarcao
- Department of Chemistry, San José State University, San José, California 95192 , United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Park SS, Gervay-Hague J. Synthesis of partially O-acetylated N-acetylneuraminic acid using regioselective silyl exchange technology. Org Lett 2014; 16:5044-7. [PMID: 25247390 PMCID: PMC4184446 DOI: 10.1021/ol502389g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Postglycosylation acetylation of
sialic acid imparts unique roles
to sialoglycoconjugates in mammalian immune response making structural
and functional understanding of these analogues important. Five partially O-acetylated Neu5Ac analogues have been synthesized. Reaction
of per-O-silylated Neu5Ac ester with AcOH and Ac2O in pyridine promotes regioselective silyl ether/acetate
exchange in the following order: C4 (2°) > C9 (1°) > C8 (2°) > C2 (anomeric).
Subsequent hydrogenolysis affords the corresponding sialic acid analogues
as useful chemical biology tools.
Collapse
Affiliation(s)
- Simon S Park
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
46
|
Blessy JJ, Sharmila DJS. Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex. J Biomol Struct Dyn 2014; 33:1126-39. [DOI: 10.1080/07391102.2014.931825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Tollas S, Bereczki I, Borbás A, Batta G, Vanderlinden E, Naesens L, Herczegh P. Synthesis of a cluster-forming sialylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorg Med Chem Lett 2014; 24:2420-3. [DOI: 10.1016/j.bmcl.2014.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
|
48
|
De Meo C, Wallace CE, Geringer SA. Synthesis and elimination of C-3-labeled thiosialosides. Org Lett 2014; 16:2676-9. [PMID: 24785543 DOI: 10.1021/ol500917k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of C-3-labeled phenylthio sialic acid derivatives and an investigation of stereoselectivity in elimination reactions for the synthesis of 2,3-dehydro derivatives (glycals) is described. The experimental results are consistent with the existence of a conformational change and may be indicative of the intermediacy of an all-axial oxacarbenium ion.
Collapse
Affiliation(s)
- Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville , Edwardsville, Illinois 62026, United States
| | | | | |
Collapse
|
49
|
Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res 2014; 389:115-22. [PMID: 24680512 DOI: 10.1016/j.carres.2014.02.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/16/2022]
Abstract
Glycans at the forefront of cells facilitate immune recognition processes. Cancer cells commonly present altered cell surface glycosylation, especially manifested in the expression of sialic acid at the termini of glycolipids and glycoproteins. Although tumor-associated carbohydrate antigens (TACAs) result in expression of altered-self, most such carbohydrates do not elicit strong humoral responses. Various strategies had been devised to elicit increased immunogenicity of such TACA aiming for potent immunotherapeutic antibodies or cancer vaccines. However some carbohydrates are immunogenic in humans and hold potential for novel glycotherapies. N-Glycolylneuraminic acid (Neu5Gc) is a foreign immunogenic sugar in humans originating from the diet (e.g., red meat) and subsequently expressed on the cell surface, especially accumulating on carcinoma. Consequently, the human immune system detects this non-self carbohydrate generating a broad anti-Neu5Gc antibody response. The co-existence of Neu5Gc/anti-Neu5Gc within humans spurs chronic inflammation mediated disease, including cancer. Concurrently, anti-Neu5Gc antibodies hold potential for novel targeted therapy. αGal is another foreign immunogenic carbohydrate antigen in humans and all humans have circulating anti-Gal antibodies. This review aims to describe the immunogenicity of Neu5Gc and its implications for human diseases, highlighting differences and similarities with αGal and its potential for novel targeted theranostics.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliran Moshe Reuven
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
50
|
Adak AK, Yu CC, Liang CF, Lin CC. Synthesis of sialic acid-containing saccharides. Curr Opin Chem Biol 2013; 17:1030-8. [PMID: 24182749 DOI: 10.1016/j.cbpa.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
Sialic acids are a diverse family of negatively charged monosaccharides with a shared nine-carbon carboxylated backbone, and they often serve as the terminal positions of cell surface glycoproteins and glycolipids. Sialic acids play essential roles in mediating or modulating numerous pathological, biological, and immunological recognition events. Advances in synthesis have provided chemically well-defined and structurally homogeneous sialic acid-containing carbohydrates that are crucial for studying glycobiology. This review highlights recent innovations in the chemical and chemoenzymatic synthesis of difficult α-sialosides, with a particular focus on methods developed for α-selective sialylation in the synthesis of O-linked and S-linked oligosialic acids.
Collapse
Affiliation(s)
- Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|