1
|
Tengattini S, Bavaro T, Rinaldi F, Temporini C, Pollegioni L, Terreni M, Piubelli L. Novel tuberculosis vaccines based on TB10.4 and Ag85B: State-of-art and advocacy for good practices. Vaccine 2025; 53:126932. [PMID: 40031085 DOI: 10.1016/j.vaccine.2025.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Tuberculosis (TB) has plagued humanity in numerous devastating forms for centuries and remains a significant health challenge. Mycobacterium tuberculosis (Mtb), the bacterium responsible for TB, was the leading cause of death among infectious agents until the COVID-19 pandemic emerged. Immunization with the bacillus Calmette-Guérin (BCG) vaccine is one of the primary strategies to mitigate the risk of TB. Despite its widespread use, the current BCG vaccine has limited efficacy, particularly in adults. This review focuses on the rational design of vaccine candidates targeting the antigens TB10.4 and Ag85B. The review discusses the roles of TB10.4 and Ag85B in the virulence of Mtb and notes challenges in their production. Additionally, various protein conjugation strategies to enhance immunogenicity, including linking these antigens to glycans and adjuvants, are considered, as well as the most appropriate analytical methods for characterizing recombinant antigenic proteins and their conjugates. Finally, the associated challenges in developing a vaccine encompassing specific glycans and protein components were highlighted. We claim that using standardized procedures and detailed reporting in protein production and chemical modification can improve the reproducibility and rationalization of biological results. By adhering to these guidelines, the goal of developing an effective vaccine against TB will be best achieved.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
2
|
Das R, Mukhopadhyay B. The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation. Beilstein J Org Chem 2025; 21:369-406. [PMID: 39996165 PMCID: PMC11849559 DOI: 10.3762/bjoc.21.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Stereoselective glycosylations are one of the most challenging tasks of synthetic glycochemists. The protecting building blocks on the glycosides contribute significantly in attaining the required stereochemistry of the resulting glycosides. Strategic installation of suitable protecting groups in the C-2 position, vicinal to the anomeric carbon, renders neighbouring group participation, whereas protecting groups in the distal C-3, C-4, and C-6 positions are often claimed to exhibit remote group participation with the anomeric carbon. Neighbouring group participation and remote group participation are being widely studied to help the glycochemists design the synthetic protocols for multistep synthesis of complex oligosaccharides and in turn, standardise the process of the glycosylation towards a particular stereochemical output. While neighbouring group participation has been quite effective in achieving the required stereochemistry of the produced glycosides, remote participation exhibits comparatively less efficacy in achieving complete stereoselectivity in the glycosylation reactions. Remote participation is a still highly debated topic in the scientific community. However, implementing the participating role of the remote groups in glycosylation reactions is widely practised to achieve better stereocontrol and to facilitate the formation of synthetically challenging glycosidic linkages.
Collapse
Affiliation(s)
- Rituparna Das
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Balaram Mukhopadhyay
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
3
|
Bretón C, Oroz P, Torres M, Zurbano MM, Garcia-Orduna P, Avenoza A, Busto JH, Corzana F, Peregrina JM. Exploring Photoredox Catalytic Reactions as an Entry to Glycosyl-α-amino Acids. ACS OMEGA 2024; 9:45437-45446. [PMID: 39554407 PMCID: PMC11561640 DOI: 10.1021/acsomega.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The synthesis of glycosyl-α-amino acids presents a significant challenge due to the need for precise glycosidic linkages connecting carbohydrate moieties to amino acids while maintaining stereo- and regiochemical fidelity. Classical methods relying on ionic intermediates (2e-) often involve intricate synthetic procedures, particularly when dealing with 2-N-acetamido-2-deoxyglycosides linked to α-amino acids-a crucial class of glycoconjugates that play important biological roles. Considering the growing prominence of photocatalysis, this study explores various photoredox catalytic approaches to achieving glycosylation reactions. Our focus lies on the notoriously difficult case of 2-N-acetamido-2-deoxyglycosyl-α-amino acids, which could be obtained efficiently by two methodologies that involved, on the one hand, photoredox Giese reactions using a chiral dehydroalanine (Dha) as an electron density-deficient alkene in these radical 1,4-additions and, on the other hand, photoredox glycosylations using selenoglycosides as glycosyl donors and hydroxyl groups of protected amino acids as acceptors.
Collapse
Affiliation(s)
- Carmen Bretón
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Paula Oroz
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Miguel Torres
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - María M. Zurbano
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Pilar Garcia-Orduna
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, C/Pedro Cerbuna, 12, Zaragoza 50009, Spain
| | - Alberto Avenoza
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús H. Busto
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Francisco Corzana
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús M. Peregrina
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| |
Collapse
|
4
|
Li D, Li C, Chen Q, Zhou H, Zhong Z, Huang Z, Liu H, Li X. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. J Am Chem Soc 2024; 146:29017-29027. [PMID: 39390739 DOI: 10.1021/jacs.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical synthesis can generate homogeneous glycoproteins with well-defined and modifiable glycan structures at designated sites. The precision and flexibility of the chemical synthetic approach provide a solution to the heterogeneity problem of glycopeptides/glycoproteins obtained through biological approaches. In this study, we reported that the conserved N-glycosylation sequon (Asn-Xaa-Ser/Thr) of glycoproteins can serve as a general site for performing Ser/Thr ligation to achieve N-linked glycoprotein synthesis. We developed an N + 2 strategy to prepare the corresponding glycopeptide salicylaldehyde esters for Ser/Thr ligation and demonstrated that Ser/Thr ligation at the sequon was not affected by the steric hindrance brought about by the large-sized glycan structures. The effectiveness of this strategy was showcased by the total synthesis of the glycosylated receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qiushi Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR 999077, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zhixiang Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zirong Huang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
5
|
Lee CH, Li H, Hyun JY, Shin I. Strategy for Construction of Homogeneous Glycoproteins in Mammalian Cells. Bioconjug Chem 2024. [PMID: 39319574 DOI: 10.1021/acs.bioconjchem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A general strategy that combines genetic code expansion with bio-orthogonal ligation techniques was developed and utilized to prepare homogeneously glycosylated receptors on the surface of mammalian cells. Using this approach, conjugates of the cell-surface oxytocin receptor (OTR) with oligosaccharides were efficiently generated in the cells. Cell studies revealed that glycans linked to the OTR are not essential for agonist-induced calcium flux and its internalization into cells via an OTR-mediated endocytosis.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
6
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
7
|
Guo J, Liu X, Zhao J, Xu H, Gao Z, Wu ZQ, Song YY. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chem Sci 2023; 14:1742-1751. [PMID: 36819857 PMCID: PMC9930935 DOI: 10.1039/d2sc05784k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Monosaccharides play significant roles in daily metabolism in living organisms. Although various devices have been constructed for monosaccharide identification, most rely on the specificity of the natural enzyme. Herein, inspired by natural ionic channels, an asymmetrical MOF-in-nanochannel architecture is developed to discriminate monosaccharide enantiomers based on cascade reactions by combining oxidase-mimicking and Fenton-like catalysis in homochiral mesoporous CuMOF pockets. The identification performance is remarkably enhanced by the increased oxidase-mimicking activity of Au nanoparticles under a local surface plasmon resonance (LSPR) excitation. The apparent steady-state kinetic parameters and nano-fluidic simulation indicate that the different affinities induced by Au-LSPR excitation and the confinement effect from MOF pockets precipitate the high chiral sensitivity. This study offers a promising strategy for designing an enantiomer discrimination device and helps to gain insight into the origin of stereoselectivity in a natural enzyme.
Collapse
Affiliation(s)
- Junli Guo
- College of Sciences, Northeastern University Shenyang 110819 China
| | - Xuao Liu
- College of Sciences, Northeastern University Shenyang 110819 China
| | - Junjian Zhao
- College of Sciences, Northeastern University Shenyang 110819 China
| | - Huijie Xu
- College of Sciences, Northeastern University Shenyang 110819 China
| | - Zhida Gao
- College of Sciences, Northeastern University Shenyang 110819 China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University Nantong 226019 China
| | - Yan-Yan Song
- College of Sciences, Northeastern University Shenyang 110819 China
| |
Collapse
|
8
|
Herrera-Luna JC, Pérez-Aguilar MC, Gerken L, García Mancheño O, Consuelo Jiménez M, Pérez-Ruiz R. Effective Formation of New C(sp 2 )-S Bonds via Photoactivation of Alkylamine-based Electron Donor-Acceptor Complexes. Chemistry 2023; 29:e202203353. [PMID: 36314234 PMCID: PMC10107790 DOI: 10.1002/chem.202203353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/12/2022]
Abstract
A novel visible light promoted formation of CAryl- S bonds through electron donor-acceptor (EDA) complexes of alkylamines with 5- and 6-membered (hetero)arene halides is presented. This represents the first EDA-based thiolation method not relying on π-π or a thiolate-anion-π interactions and provides a facile access to heteroarene radicals, which can be suitably trapped by disulfide derivatives to form the corresponding versatile arylsulfides. Mechanistic investigations on the aspects of the whole process were conducted by spectroscopic measurements, demonstrating the hypothesized EDA complex formation. Moreover, the strength of this method has been proven by a gram-scale synthesis of thiolated products and the late-stage derivatization of an anticoagulant drug.
Collapse
Affiliation(s)
- Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| | | | - Leon Gerken
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| |
Collapse
|
9
|
Tian J, Li Y, Ma B, Tan Z, Shang S. Automated Peptide Synthesizers and Glycoprotein Synthesis. Front Chem 2022; 10:896098. [PMID: 35601548 PMCID: PMC9117762 DOI: 10.3389/fchem.2022.896098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development and application of commercially available automated peptide synthesizers has played an essential role in almost all areas of peptide and protein research. Recent advances in peptide synthesis method and solid-phase chemistry provide new opportunities for optimizing synthetic efficiency of peptide synthesizers. The efforts in this direction have led to the successful preparation of peptides up to more than 150 amino acid residues in length. Such success is particularly useful for addressing the challenges associated with the chemical synthesis of glycoproteins. The purpose of this review is to provide a brief overview of the evolution of peptide synthesizer and glycoprotein synthesis. The discussions in this article include the principles underlying the representative synthesizers, the strengths and weaknesses of different synthesizers in light of their principles, and how to further improve the applicability of peptide synthesizers in glycoprotein synthesis.
Collapse
Affiliation(s)
- Jiekang Tian
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| |
Collapse
|
10
|
Cobo I, Matheu MI, Castillón S, Davis BG, Boutureira O. Probing Site-Selective Conjugation Chemistries for the Construction of Homogeneous Synthetic Glycodendriproteins. Chembiochem 2022; 23:e202200020. [PMID: 35322922 PMCID: PMC9322419 DOI: 10.1002/cbic.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Methods that site‐selectively attach multivalent carbohydrate moieties to proteins can be used to generate homogeneous glycodendriproteins as synthetic functional mimics of glycoproteins. Here, we study aspects of the scope and limitations of some common bioconjugation techniques that can give access to well‐defined glycodendriproteins. A diverse reactive platform was designed via use of thiol‐Michael‐type additions, thiol‐ene reactions, and Cu(I)‐mediated azide‐alkyne cycloadditions from recombinant proteins containing the non‐canonical amino acids dehydroalanine, homoallylglycine, homopropargylglycine, and azidohomoalanine.
Collapse
Affiliation(s)
- Isidro Cobo
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | - M Isabel Matheu
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | - Sergio Castillón
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | | | - Omar Boutureira
- Universitat Rovira i Virgili, Departament de Quimica Analitica i Qu�mica Org�nica, Departament de Qu�mica Anal, C/ Marcel.li Domingo 1, 43007, Tarragona, SPAIN
| |
Collapse
|
11
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
12
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
13
|
Zeng Y, Tang F, Shi W, Dong Q, Huang W. Recent advances in synthetic glycoengineering for biological applications. Curr Opin Biotechnol 2022; 74:247-255. [PMID: 34998108 DOI: 10.1016/j.copbio.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Carbohydrates are involved in many important biological events such as protein maturation and trafficking, pathogen invasion, immune response, cell-cell communications, and so on. Synthetic and chemoenzymatic approaches for glycoengineering have emerged and been applied in perturbing and modulating the biological processes at the protein or cellular level. In this review, we summarize the recent advances in glycoengineering, including new strategies in chemoenzymatic synthesis of glycans, glycopeptides, glycoproteins, and other glycoconjugates. And, the progresses of cell surface glyco-editing methods for gain of functions are also discussed.
Collapse
Affiliation(s)
- Yue Zeng
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China.
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qian Dong
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
14
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
15
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
16
|
4,6-Di-O-Benzylidenyl group-directed preparation of 2-deoxy-2-azido-α-d-galactopyranosides promoted by 3-O-TBDPS. Carbohydr Res 2021; 500:108237. [PMID: 33548832 DOI: 10.1016/j.carres.2021.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In this study, we designed a method to prepare 2-deoxy-2-azido-α-d-galactopyranosidic bonds using 4,6-di-O-benzylidenyl-3-O-t-butyldiphenylsilyl protected 2-deoxy-2-azido-1-thio-d-galactopyranoside 5 as donors. The donor 5 gives a good to excellent α-selectivity in the glycosylation with secondary alcohols, which was found to be associated with the benzylidenyl on 4,6-di-O and TBDPS on 3-O of the donor 5. Compared with results of the donor 6 and 7, the 3-O-TBDPS could increase the activity of the thioglycoside, and the lone pairs on 4,6-di-O-benzylidenyl group enhanced the gg-cofnormation, which plays a role in improving the stereoselectivity. Finally, this method was demonstrated through the synthesis of a α-galactosamine -containing pentasaccharide 26.
Collapse
|
17
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
18
|
Pertel SS, Zinin AI, Seryi SA, Kakayan ES. The study of the acid-catalyzed reaction between 2-methyl and 2-(2,2,2-trichloroethoxy) gluco-[2,1-d]-2-oxazolines. Synthesis of macrocyclic pseudo-tetrasaccharide derivative of d-glucosamine. Carbohydr Res 2020; 499:108230. [PMID: 33429169 DOI: 10.1016/j.carres.2020.108230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022]
Abstract
The formation of macrocyclic pseudo-tetrasaccharide derivative of d-glucosamine as a result of the acid-catalyzed reaction between 2-methyl- and 2-(2,2,2-trichloroethoxy)-substituted oxazoline derivatives of sugars was discovered. The structure of the obtained product was determined using NMR spectroscopy and mass spectrometry. An explanation of the obtained results based on the mechanism of the reaction of electrophilic polymerization of 2-substituted glyco-[2,1-d]-2-oxazolines and the principle of hard and soft acids and bases (HSAB) was proposed.
Collapse
Affiliation(s)
- Sergey S Pertel
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation.
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Sergey A Seryi
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| | - Elena S Kakayan
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| |
Collapse
|
19
|
Malik A, Seeberger PH, Varón Silva D. Advances in the Chemical Synthesis of Carbohydrates and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:201-230. [PMID: 33188456 DOI: 10.1007/10_2020_150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrates are functional and structural biomolecules with structures ranging from monosaccharides to polysaccharides. They are naturally found as pure glycans or attached to lipids and proteins forming glycoconjugates. The biosynthesis of carbohydrates is not genetically controlled. The regulation takes place by the expression of enzymes that transfer and hydrolyze the glycan units, leading to glycocojugates having complex mixtures of glycan structures. Chemical synthesis emerged as the best strategy to obtain defined glycan and glycoconjugates and overcome the challenging purification processes. Here, we review the recent advances in the synthesis of oligosaccharides using manual and automated methods. The chapter covers the methods for the preparation of building blocks and control of stereoselectivity and regioselectivity during glycosylations. Finally, it also presents the strategies to obtain natural and non-natural glycoconjugates with lipids and proteins.
Collapse
Affiliation(s)
- Ankita Malik
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Daniel Varón Silva
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany. .,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Hamagami H, Yamaguchi Y, Tanaka H. Chemical Synthesis of Residue-Selectively 13C and 2H Double-Isotope-Labeled Oligosaccharides as Chemical Probes for the NMR-Based Conformational Analysis of Oligosaccharides. J Org Chem 2020; 85:16115-16127. [PMID: 33107296 DOI: 10.1021/acs.joc.0c01939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The conformational analysis of oligosaccharide is a fundamental issue in glycobiology. NMR measurements of atom-selectively 13C-labeled oligosaccharides have provided valuable information concerning their conformation, which would not be possible using nonlabeled oligosaccharides. The amount of accessible information from an atom-selectively labeled molecule, however, is limited. In this work, we report on the chemical synthesis of residue-selectively 13C- and 2H-labeled oligosaccharides and their use in conformational analysis. 1H NMR measurements of such double isotope-labeled compounds can provide a great deal of information on the dihedral angles across glycosidic linkages. We demonstrated this method in the conformational analyses of some linear and branched β(1,3)-glucan oligosaccharides.
Collapse
Affiliation(s)
- Hiroki Hamagami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Yoshiki Yamaguchi
- RIKEN-Max-Planck Joint Research Center for Systems Chemical Biology RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
21
|
Ji P, Zhang Y, Gao F, Bi F, Wang W. Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy. Chem Sci 2020; 11:13079-13084. [PMID: 34094490 PMCID: PMC8163235 DOI: 10.1039/d0sc04136j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
While strategies involving a 2e- transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.
Collapse
Affiliation(s)
- Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Yueteng Zhang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Feng Gao
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Fangchao Bi
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
22
|
Hazarika S, Barman P. Visible‐Light Cercosporin Catalyzed Sulfenylation of Electron‐Rich Compounds with Thiols under Transition‐Metal‐Free Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sukanya Hazarika
- Department of Chemistry National Institute of Technology Silchar Assam 788010 India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam 788010 India
| |
Collapse
|
23
|
Youn G, Cervin J, Yu X, Bhatia SR, Yrlid U, Sampson NS. Targeting Multiple Binding Sites on Cholera Toxin B with Glycomimetic Polymers Promotes the Formation of Protein-Polymer Aggregates. Biomacromolecules 2020; 21:4878-4887. [PMID: 32960582 DOI: 10.1021/acs.biomac.0c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The canonical binding site on the B subunit of cholera toxin (CTB) binds to GM1 gangliosides on host cells. However, the recently discovered noncanonical binding site on CTB with affinity for fucosylated molecules has raised the possibility that both sites can be involved in initiating intoxication. Previously, we showed that blocking CTB binding to human and murine small intestine epithelial cells can be increased by simultaneously targeting both binding sites with multivalent norbornene-based glycopolymers [ACS Infect. Dis. 2020, 6, 5, 1192-1203]. However, the mechanistic origin of the increased blocking efficacy was unclear. Herein, we observed that mixing CTB pentamers and glycopolymers that display fucose and galactose sugars results in the formation of large aggregates, which further inhibits binding of CTB to human granulocytes. Dynamic light scattering analysis, small-angle X-ray scattering analysis, transmission electron microscopy, and turbidimetric assays revealed that the facial directionality of CTB promotes interchain cross-linking, which in turn leads to self-assembly of protein-polymer networks. This cross-linking-induced self-assembly occurs only when the glycopolymer system contains both galactose and fucose. In an assay of the glycopolymer's ability to block CTB binding to human granulocytes, we observed a direct correlation between IC50 and self-assembly size. The aggregation mechanism of inhibition proposed herein has potential utility for the development of low-cost macromolecular clinical therapeutics for cholera that do not have exotic architectures and do not require complex synthetic sequences.
Collapse
Affiliation(s)
- Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| |
Collapse
|
24
|
|
25
|
Yan S, Li J, Zhang L, Bai J, Lei L, Huang H, Li Y. A colorimetric sensor array based on natural pigments for the discrimination of saccharides. LUMINESCENCE 2020; 35:960-968. [PMID: 32350992 DOI: 10.1002/bio.3814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
Abstract
A colorimetric sensor array based on natural pigments was developed to discriminate between various saccharides. Anthocyanins, pH-sensitive natural pigments, were extracted from fruits and flowers and used as components of the sensor array. Variation in pH, due to the reaction between saccharides and boronic acids, caused obvious colour changes in the natural pigments. Only by observing the difference map with the naked eye could 11 common saccharides be divided into independent individuals. In conjunction with pattern recognition, the sensor array clearly differentiated between sugar and sugar alcohol with highly accuracy and allowed rapid quantification of different concentrations of maltitol and fructose. This sensor array for saccharides is expected to become a promising alternative tool for food monitoring. The link between anthocyanin and saccharide detection opened a new guiding direction for the application of anthocyanins in foods.
Collapse
Affiliation(s)
- Shujun Yan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiao Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Juan Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lulu Lei
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yongxin Li
- College of New Energy and Environment, Jilin University, Changchun, China
| |
Collapse
|
26
|
Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Palladium-Catalysed C(sp 3 )-H Glycosylation for the Synthesis of C-Alkyl Glycoamino Acids. Angew Chem Int Ed Engl 2020; 59:3491-3494. [PMID: 31901005 DOI: 10.1002/anie.201914184] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/14/2019] [Indexed: 12/17/2022]
Abstract
We have developed a highly efficient and practical approach for palladium-catalyzed trifluoroacetate-promoted N-quinolylcarboxamide-directed glycosylation of inert β-C(sp3 )-H bonds of N-phthaloyl α-amino acids with glycals under mild conditions. For the first time, C(sp3 )-H activation for glycosylation was achieved to build C-alkyl glycosides. This method facilitates the synthesis of various β-substituted C-alkyl glycoamino acids and offers a tool for glycopeptide synthesis.
Collapse
Affiliation(s)
- Yichu Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yibing Wang
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wenhao Dai
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Huang
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
27
|
Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Palladium‐Catalysed C(sp
3
)−H Glycosylation for the Synthesis of C‐Alkyl Glycoamino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichu Liu
- Department of Medicinal ChemistrySchool of PharmacyFudan University Shanghai 201203 China
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Yibing Wang
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wenhao Dai
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wei Huang
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Yingxia Li
- Department of Medicinal ChemistrySchool of PharmacyFudan University Shanghai 201203 China
| | - Hong Liu
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
28
|
Kimoto Y, Terada Y, Hoshino Y, Miura Y. Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging. ACS OMEGA 2019; 4:20690-20696. [PMID: 31858054 PMCID: PMC6906939 DOI: 10.1021/acsomega.9b02877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/09/2019] [Indexed: 05/08/2023]
Abstract
Effective screening methods for the development of glycopolymers as molecular recognition materials are desirable for the discovery of novel biofunctional materials. A glycopolymer library was prepared to obtain guidelines for the design of glycopolymers for the recognition of cholera toxin B subunits (CTB). Glycopolymers with varying ratios of hydrophobic and sugar units were synthesized by reversible addition fragmentation chain transfer polymerization. N-tert-Butylacrylamide, N-phenylacrylamide, and N-cyclohexylacrylamide as hydrophobic units were copolymerized in the polymer backbone, and galactose, which contributes to CTB recognition, was introduced into the side chains by "post-click" chemistry. The thiol-terminated glycopolymers were immobilized on a gold surface. The polymer immobilization substrate was analyzed in terms of interaction with galactose recognition proteins (CTB, peanut agglutinin, and Ricinus communis agglutinin I) using surface plasmon resonance imaging. The polymers with high ratios of sugar and hydrophobic units had the strongest interactions with the CTB, which was different from the trend with peanut agglutinin and Ricinus communis agglutinin I. The binding constant of the CTB with the glycopolymer with hydrophobic units was 4.1 × 106 M-1, which was approximately eight times larger than that of the polymer without hydrophobic units. A correlation was observed between the log P value and the binding constant, indicating that the hydrophobic interaction played an important role in binding. New guidelines for the design of recognition materials were obtained by our screening method.
Collapse
Affiliation(s)
| | | | | | - Yoshiko Miura
- E-mail: . Phone: +81-92-802-2749. Fax: +81-92-802-2769
| |
Collapse
|
29
|
Sugita K, Tsuchido Y, Kasahara C, Casulli MA, Fujiwara S, Hashimoto T, Hayashita T. Selective Sugar Recognition by Anthracene-Type Boronic Acid Fluorophore/Cyclodextrin Supramolecular Complex Under Physiological pH Condition. Front Chem 2019; 7:806. [PMID: 31828059 PMCID: PMC6890849 DOI: 10.3389/fchem.2019.00806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
We synthesized novel PET (photoinduced electron transfer)-type fluorescence glucose probe 1 [(4-(anthracen-2-yl-carbamoyl)-3-fluorophenyl)boronic acid], which has a phenylboronic acid (PBA) moiety as the recognition site and anthracene as the fluorescent part. Although the PBA derivatives dissociate and bind with sugar in the basic condition, our new fluorescent probe can recognize sugars in the physiological pH by introducing an electron-withdrawing fluorine group into the PBA moiety. As a result, the pK a value of this fluorescent probe was lowered and the probe was able to recognize sugars at the physiological pH of 7.4. The sensor was found to produce two types of fluorescent signals, monomer fluorescence and dimer fluorescence, by forming a supramolecular 2:1 complex of 1 with glucose inside a γ-cyclodextrin (γ-CyD) cavity. Selective ratiometric sensing of glucose by the 1/γ-CyD complex was achieved in water at physiological pH.
Collapse
Affiliation(s)
- Ko Sugita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Chisato Kasahara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Maria Antonietta Casulli
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shoji Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan.,Department of Current Legal Studies, Faculty of Law, Meiji Gakuin University, Yokohama, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
30
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
31
|
Moussa Z, Judeh ZMA, Ahmed SA. Polymer-supported triphenylphosphine: application in organic synthesis and organometallic reactions. RSC Adv 2019; 9:35217-35272. [PMID: 35530694 PMCID: PMC9074440 DOI: 10.1039/c9ra07094j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
This comprehensive review highlights the diverse chemistry and applications of polymer-supported triphenylphosphine (PS-TPP) in organic synthesis since its inception. Specifically, the review describes applications of the preceding reagent in functional group interconversions, heterocycle synthesis, metal complexes and their application in synthesis, and total synthesis of natural products. Many examples are provided from the literature to show the scope and selectivity (regio, stereo, and chemo) in these transformations.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates +971-3-7134928 +971-3-7135396
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University 62 Nanyang Drive, N1.2-B1-14 Singapore 637459 +65-67947553 +65-67906738
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
32
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Tatina MB, Mengxin X, Peilin R, Judeh ZMA. Robust perfluorophenylboronic acid-catalyzed stereoselective synthesis of 2,3-unsaturated O-, C-, N- and S-linked glycosides. Beilstein J Org Chem 2019; 15:1275-1280. [PMID: 31293675 PMCID: PMC6604698 DOI: 10.3762/bjoc.15.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023] Open
Abstract
A convenient protocol was developed for the synthesis of 2,3-unsaturated C-, O-, N- and S-linked glycosides (enosides) using 20 mol % perflurophenylboronic acid catalyst via Ferrier rearrangement. Using this protocol, D-glucals and L-rhamnals reacted with various C-, O-, N- and S-nucleophiles to give a wide range of glycosides in up to 98% yields with mainly α-anomeric selectivity. The perflurophenylboronic acid successfully catalyzed a wide range of substrates (both glucals and nucleophiles) under very mild reaction conditions.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Tel.: +65-6790-6738
| | - Xia Mengxin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Tel.: +65-6790-6738
| | - Rao Peilin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Tel.: +65-6790-6738
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Tel.: +65-6790-6738
| |
Collapse
|
34
|
Zhang B, Fan Z, Guo Z, Xi C. Reduction of CO2 with NaBH4/I2 for the Conversion of Thiophenols to Aryl Methyl Sulfides. J Org Chem 2019; 84:8661-8667. [DOI: 10.1021/acs.joc.9b01180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengning Fan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Behren S, Westerlind U. Glycopeptides and -Mimetics to Detect, Monitor and Inhibit Bacterial and Viral Infections: Recent Advances and Perspectives. Molecules 2019; 24:E1004. [PMID: 30871155 PMCID: PMC6471658 DOI: 10.3390/molecules24061004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
The initial contact of pathogens with host cells is usually mediated by their adhesion to glycan structures present on the cell surface in order to enable infection. Furthermore, glycans play important roles in the modulation of the host immune responses to infection. Understanding the carbohydrate-pathogen interactions are of importance for the development of novel and efficient strategies to either prevent, or interfere with pathogenic infection. Synthetic glycopeptides and mimetics thereof are capable of imitating the multivalent display of carbohydrates at the cell surface, which have become an important objective of research over the last decade. Glycopeptide based constructs may function as vaccines or anti-adhesive agents that interfere with the ability of pathogens to adhere to the host cell glycans and thus possess the potential to improve or replace treatments that suffer from resistance. Additionally, synthetic glycopeptides are used as tools for epitope mapping of antibodies directed against structures present on various pathogens and have become important to improve serodiagnostic methods and to develop novel epitope-based vaccines. This review will provide an overview of the most recent advances in the synthesis and application of glycopeptides and glycopeptide mimetics exhibiting a peptide-like backbone in glycobiology.
Collapse
Affiliation(s)
- Sandra Behren
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
36
|
Lee S, Son WS, Yang HB, Rajasekaran N, Kim SS, Hong S, Choi JS, Choi JY, Song K, Shin YK. A Glycoengineered Interferon-β Mutein (R27T) Generates Prolonged Signaling by an Altered Receptor-Binding Kinetics. Front Pharmacol 2019; 9:1568. [PMID: 30733680 PMCID: PMC6353837 DOI: 10.3389/fphar.2018.01568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The glycoengineering approach is used to improve biophysical properties of protein-based drugs, but its direct impact on binding affinity and kinetic properties for the glycoengineered protein and its binding partner interaction is unclear. Type I interferon (IFN) receptors, composed of IFNAR1 and IFNAR2, have different binding strengths, and sequentially bind to IFN in the dominant direction, leading to activation of signals and induces a variety of biological effects. Here, we evaluated receptor-binding kinetics for each state of binary and ternary complex formation between recombinant human IFN-β-1a and the glycoengineered IFN-β mutein (R27T) using the heterodimeric Fc-fusion technology, and compared biological responses between them. Our results have provided evidence that the additional glycan of R27T, located at the binding interface of IFNAR2, destabilizes the interaction with IFNAR2 via steric hindrance, and simultaneously enhances the interaction with IFNAR1 by restricting the conformational freedom of R27T. Consequentially, altered receptor-binding kinetics of R27T in the ternary complex formation led to a substantial increase in strength and duration of biological responses such as prolonged signal activation and gene expression, contributing to enhanced anti-proliferative activity. In conclusion, our findings reveal N-glycan at residue 25 of R27T is a crucial regulator of receptor-binding kinetics that changes biological activities such as long-lasting activation. Thus, we believe that R27T may be clinically beneficial for patients with multiple sclerosis.
Collapse
Affiliation(s)
- Saehyung Lee
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy, CHA University, Pocheon, South Korea
| | - Ho Bin Yang
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nirmal Rajasekaran
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sung-Su Kim
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul, South Korea
| | - Sungyoul Hong
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, South Korea
| | | | - Kyoung Song
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, South Korea.,Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea
| |
Collapse
|
37
|
Nikoofar K, Shahedi Y, Chenarboo FJ. Nano Alumina Catalytic Applications in Organic Transformations. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180529122805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alumina (Aluminium Oxide, Al2O3), a white odorless solid powder is an inexpensive and
widely used inorganic material which is insoluble in water and organic solvents. It may also be called
aloxide, aloxite, or alundum. Nano forms of this inorganic metal oxide could be seen in different crystalline
polymorphic phases for alumina, such as α-Al2O3, β-Al2O3, γ-Al2O3, δ-Al2O3, θ-Al2O3, η-Al2O3,
κ-Al2O3, χ-Al2O3, and ρ-Al2O3. Generally, the nano size of alumina showed better activity due to its
common form because of the vast surface area which led to larger surface-to-volume ratio. Alumina is a
versatile substance in many compounds which possess interesting utility in biology, industry, and drugs.
Nano alumina have been utilized in different branches of industry, medicine, and biology. It could play
key role in abrasives, ceramics, and dental composites, electronic, absorbent, nano-carriers for delivery
of anticancer, and surgical implants. Besides, it possesses particular position, as a heterogeneous Lewis
acid catalyst or catalyst support in chemistry. Due to interesting properties of nano alumina in this report
we focused on its catalytic activity in organic transformations. The review subdivided with centralization
on reactions that progressed with sole nano alumina and the reactions which improved by nano
alumina support catalysts. In is noteworthy that although many reactions have been reported by alumina
catalytic role, the ones which underwent by nano-size aluminum oxides are few. This fact denote that
this substance is a potent-catalyst system in future organic chemistry domain. The review describes the
various organic reactions promoted by nano alumina catalysts relevant up to 2017.
Collapse
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Yeganeh Shahedi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Faezeh Jame Chenarboo
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
38
|
Kaur S, Zhao G, Busch E, Wang T. Metal-free photocatalytic thiol–ene/thiol–yne reactions. Org Biomol Chem 2019; 17:1955-1961. [DOI: 10.1039/c8ob02313a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a metal-free photocatalytic approach to the synthesis of glycoconjugates, highlighting the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Gaoyuan Zhao
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Evan Busch
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Ting Wang
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
39
|
Marra A, Dong J, Ma T, Giuntini S, Crescenzo E, Cerofolini L, Martinucci M, Luchinat C, Fragai M, Nativi C, Dondoni A. Protein Glycosylation through Sulfur Fluoride Exchange (SuFEx) Chemistry: The Key Role of a Fluorosulfate Thiolactoside. Chemistry 2018; 24:18981-18987. [PMID: 30252969 DOI: 10.1002/chem.201803912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Indexed: 11/09/2022]
Abstract
Protein glycosylation is the most complex post-translational modification process. More than 50 % of human cells proteins are glycosylated, whereas bacteria such as E. coli do not have this modification machinery. Indeed, the carbohydrate residues in natural proteins affect their folding, immunogenicity, and stability toward proteases, besides controlling biological properties and activities. It is therefore important to introduce such structural modification in bioengineered proteins lacking the presence of carbohydrate residues. This is not trivial as it requires reagents and conditions compatible with the protein's stability and reactivity. This work reports on the introduction of lactose moieties in two natural proteins, namely ubiquitin (Ub) and l-asparaginase II (ANSII). The synthetic route employed is based on the sulfur(VI) fluoride exchange (SuFEx) coupling of a lactose tethered arylfluorosulfate (Lact-Ar-OSO2 F) with the ϵ-NH2 group of lysine residues of the proteins. This metal-free click SuFEx reaction relies on the properties of the fluorosulfate employed, which is easily prepared in multigram scale from available precursors and reacts chemoselectively with the ϵ-NH2 group of lysine residues under mild conditions. Thus, iterative couplings of Lact-Ar-OSO2 F to Ub and ANSII, afforded multiple glycosylations of these proteins so that up to three and four Lact-Ar-OSO2 groups were introduced in Ub and ANSII, respectively, via the formation of a sulfamoyl (OSO2 -NH) linkage.
Collapse
Affiliation(s)
- Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296, Montpellier- cedex 5, France
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Stefano Giuntini
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy.,CERM and CIRMMP, via Luigi Sacconi, 6, 50019, Sesto F.no (FI), Italy
| | - Elisa Crescenzo
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy.,CERM and CIRMMP, via Luigi Sacconi, 6, 50019, Sesto F.no (FI), Italy
| | - Linda Cerofolini
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy.,CERM and CIRMMP, via Luigi Sacconi, 6, 50019, Sesto F.no (FI), Italy
| | - Marco Martinucci
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy
| | - Claudio Luchinat
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy.,CERM and CIRMMP, via Luigi Sacconi, 6, 50019, Sesto F.no (FI), Italy
| | - Marco Fragai
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy.,CERM and CIRMMP, via Luigi Sacconi, 6, 50019, Sesto F.no (FI), Italy
| | - Cristina Nativi
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto F.no (FI), 50019, Italy
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, University of, Ferrara, Italy
| |
Collapse
|
40
|
Dubbu S, Bardhan A, Chennaiah A, Vankar YD. A Cascade of Prins Reaction and Pinacol-Type Rearrangement: Access to 2,3-Dideoxy-3C-Formyl β-C
-Aryl/Alkyl Furanosides and 2-Deoxy-2C-Branched β-C
-Aryl Furanoside. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Anirban Bardhan
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Ande Chennaiah
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
41
|
Szekely T, Roy O, Dériaud E, Job A, Lo-Man R, Leclerc C, Taillefumier C. Design, Synthesis, and Immunological Evaluation of a Multicomponent Construct Based on a Glycotripeptoid Core Comprising B and T Cell Epitopes and a Toll-like Receptor 7 Agonist That Elicits Potent Immune Responses. J Med Chem 2018; 61:9568-9582. [PMID: 30351939 DOI: 10.1021/acs.jmedchem.8b00960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present here for the first time the synthesis and immunological evaluation of a fully synthetic three-component anticancer vaccine candidate that consists of a β-glycotripeptoid core mimicking a cluster of Tn at the surface of tumor cells (B epitope), conjugated to the OVA 323-339 peptide (T-cell epitope) and a Toll-like receptor 7 (TLR7) agonist for potent adjuvanticity. The immunological evaluation of this construct and of precursor components demonstrated the synergistic activity of the components within the conjugate to stimulate innate and adaptive immune cells (DCs, T-helper, and B-cells). Surprisingly, immunization of mice with the tricomponent GalNAc-based construct elicited a low level of anti-Tn IgG but elicited a very high level of antibodies that recognize the TLR7 agonist. This finding could represent a potential vaccine therapeutic approach for the treatment of some autoimmune diseases such as lupus.
Collapse
Affiliation(s)
- Thomas Szekely
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Olivier Roy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Edith Dériaud
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Aurélie Job
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Richard Lo-Man
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Leclerc
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Taillefumier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| |
Collapse
|
42
|
Dubbu S, Chennaiah A, Verma AK, Vankar YD. Stereoselective synthesis of 2-deoxy-β-C-aryl/alkyl glycosides using Prins cyclization: Application in the synthesis of C-disaccharides and differently protected C-aryl glycosides. Carbohydr Res 2018; 468:64-68. [PMID: 30153553 DOI: 10.1016/j.carres.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/02/2023]
Abstract
2-Deoxy-β-C-aryl/alkyl glycosides were synthesized from di-O-pivaloyl protected homoallylic alcohol derived from D-mannitol with various aldehydes via the Prins cyclization. The salient features of this methodology are high yields and excellent stereoselectivity. This method has also been successfully applied to the synthesis of differently protected 2-deoxy-β-C-aryl glycosides and C-disaccharides. One of the 2-deoxy-β-C-aryl glycosides was utilized as a glycosyl acceptor in the glycosylation to synthesize an O-linked disaccharides.
Collapse
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ande Chennaiah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ashish Kumar Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Yashwant D Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
43
|
Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. Molecules 2018; 23:molecules23071742. [PMID: 30018207 PMCID: PMC6099650 DOI: 10.3390/molecules23071742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Carbohydrates mediate a wide range of biological interactions, and understanding these processes benefits the development of new therapeutics. Isolating sufficient quantities of glycoconjugates from biological samples remains a significant challenge. With advances in chemical and enzymatic carbohydrate synthesis, the availability of complex carbohydrates is increasing and developing methods for stereoselective conjugation these polar head groups to proteins and lipids is critically important for pharmaceutical applications. The aim of this review is to provide an overview of commonly employed strategies for installing a functionalized linker at the anomeric position as well as examples of further transformations that have successfully led to glycoconjugation to vaccine constructs for biological evaluation as carbohydrate-based therapeutics.
Collapse
|
44
|
Wadzinski TJ, Steinauer A, Hie L, Pelletier G, Schepartz A, Miller SJ. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat Chem 2018; 10:644-652. [PMID: 29713033 PMCID: PMC5964040 DOI: 10.1038/s41557-018-0041-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.
Collapse
Affiliation(s)
| | | | - Liana Hie
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
45
|
Colorimetric sensor array–smartphone–remote server coupling system for rapid detection of saccharides in beverages. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1306-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Kolesinska B, Wasko J, Kaminski Z, Geueke B, Kohler HPE, Seebach D. Labeling and Protecting N
-Terminal Protein Positions by β
-Peptidyl Aminopeptidase-Catalyzed Attachment of β
-Amino-Acid Residues - Insulin as a First Example. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Joanna Wasko
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Zbigniew Kaminski
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Birgit Geueke
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Hans-Peter E. Kohler
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie; Departement Chemie und Angewandte Biowissenschaften; ETH-Zürich; Hönggerberg HCI, Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
47
|
Zhu D, Shi L. Ni-Catalyzed cross-coupling of aryl thioethers with alkyl Grignard reagents via C–S bond cleavage. Chem Commun (Camb) 2018; 54:9313-9316. [DOI: 10.1039/c8cc03665a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Ni-catalyzed cross-coupling of aryl thioethers with alkyl Grignard reagents, accompanied by the cleavage of the C(aryl)–SMe bond, has been presented.
Collapse
Affiliation(s)
- Dan Zhu
- Shenzhen Graduate School
- Harbin Institute of Technology
- Shenzhen 518055
- China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| | - Lei Shi
- Shenzhen Graduate School
- Harbin Institute of Technology
- Shenzhen 518055
- China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| |
Collapse
|
48
|
El Ashry ESH, Awad LF, Al Moaty MNA, Ghabbour HA, Barakat A. Stereoselective synthesis of novel thioglycosyl heterocycles. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Ichikawa Y. The Dawn, Evolution and Personal Reminiscences in Studies of Glycosyl Isocyanates and Isocyanides. HETEROCYCLES 2018. [DOI: 10.3987/rev-18-892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
FeCl3·6H2O catalyzed diastereoselective synthesis of (L)-menthyl 4-oxo-2-arylpiperidine-3-carboxylates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|