1
|
Chung CS, Kou Y, Shemtov SJ, Verheijen BM, Flores I, Love K, Del Dosso A, Thorwald MA, Liu Y, Hicks D, Sun Y, Toney RG, Carrillo L, Nguyen MM, Biao H, Jin Y, Jauregui AM, Quiroz JD, Head E, Moore DL, Simpson S, Thomas KW, Coba MP, Li Z, Benayoun BA, Rosenthal JJC, Kennedy SR, Quadrato G, Gout JF, Chen L, Vermulst M. Transcript errors generate amyloid-like proteins in huwman cells. Nat Commun 2024; 15:8676. [PMID: 39375347 PMCID: PMC11458900 DOI: 10.1038/s41467-024-52886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Collapse
Affiliation(s)
- Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yi Kou
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Sarah J Shemtov
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Bert M Verheijen
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Ilse Flores
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Kayla Love
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Ashley Del Dosso
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Max A Thorwald
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yuchen Liu
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Daniel Hicks
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yingwo Sun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Renaldo G Toney
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Lucy Carrillo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Megan M Nguyen
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Huang Biao
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Yuxin Jin
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | - Elizabeth Head
- University of California Irvine, Department of Pathology and Laboratory Medicine, Irvine, USA
| | - Darcie L Moore
- University of Wisconsin, Department of Neuroscience, Madison, USA
| | - Stephen Simpson
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Kelley W Thomas
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Marcelo P Coba
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Zhongwei Li
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Bérénice A Benayoun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | | | - Scott R Kennedy
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Giorgia Quadrato
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biology, Mississippi State, USA
| | - Lin Chen
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA.
| |
Collapse
|
2
|
Mendes IC, Dos Reis Bertoldo W, Miranda-Junior AS, Assis AVD, Repolês BM, Ferreira WRR, Chame DF, Souza DDL, Pavani RS, Macedo AM, Franco GR, Serra E, Perdomo V, Menck CFM, da Silva Leandro G, Fragoso SP, Barbosa Elias MCQ, Machado CR. DNA lesions that block transcription induce the death of Trypanosoma cruzi via ATR activation, which is dependent on the presence of R-loops. DNA Repair (Amst) 2024; 141:103726. [PMID: 39096697 DOI: 10.1016/j.dnarep.2024.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 08/05/2024]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease and a peculiar eukaryote with unique biological characteristics. DNA damage can block RNA polymerase, activating transcription-coupled nucleotide excision repair (TC-NER), a DNA repair pathway specialized in lesions that compromise transcription. If transcriptional stress is unresolved, arrested RNA polymerase can activate programmed cell death. Nonetheless, how this parasite modulates these processes is unknown. Here, we demonstrate that T. cruzi cell death after UV irradiation, a genotoxic agent that generates lesions resolved by TC-NER, depends on active transcription and is signaled mainly by an apoptotic-like pathway. Pre-treated parasites with α-amanitin, a selective RNA polymerase II inhibitor, become resistant to such cell death. Similarly, the gamma pre-irradiated cells are more resistant to UV when the transcription processes are absent. The Cockayne Syndrome B protein (CSB) recognizes blocked RNA polymerase and can initiate TC-NER. Curiously, CSB overexpression increases parasites' cell death shortly after UV exposure. On the other hand, at the same time after irradiation, the single-knockout CSB cells show resistance to the same treatment. UV-induced fast death is signalized by the exposition of phosphatidylserine to the outer layer of the membrane, indicating a cell death mainly by an apoptotic-like pathway. Furthermore, such death is suppressed in WT parasites pre-treated with inhibitors of ataxia telangiectasia and Rad3-related (ATR), a key DDR kinase. Signaling for UV radiation death may be related to R-loops since the overexpression of genes associated with the resolution of these structures suppress it. Together, results suggest that transcription blockage triggered by UV radiation activates an ATR-dependent apoptosis-like mechanism in T. cruzi, with the participation of CSB protein in this process.
Collapse
Affiliation(s)
- Isabela Cecilia Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Adalberto Sales Miranda-Junior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Antônio Vinícius de Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Wesley Roger Rodrigues Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Daniela De Laet Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, MG, São Paulo, SP 05503-900, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, 2000 Rosario, Santa Fe, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Virginia Perdomo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Giovana da Silva Leandro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | | | | | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil.
| |
Collapse
|
3
|
Curti L, Rohban S, Bianchi N, Croci O, Andronache A, Barozzi S, Mattioli M, Ricci F, Pastori E, Sberna S, Bellotti S, Accialini A, Ballarino R, Crosetto N, Wade M, Parazzoli D, Campaner S. CDK12 controls transcription at damaged genes and prevents MYC-induced transcription-replication conflicts. Nat Commun 2024; 15:7100. [PMID: 39155303 PMCID: PMC11330984 DOI: 10.1038/s41467-024-51229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Mattioli
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Fernanda Ricci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Elena Pastori
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Simone Bellotti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Anna Accialini
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
- Astex Pharmaceuticals, 436 Cambridge Science Park, CB4 0QA, Cambridge, UK
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
| |
Collapse
|
4
|
Gao S, Tahara Y, Kool E, Greenberg M. Promoter dependent RNA polymerase II bypass of the epimerizable DNA lesion, Fapy•dG and 8-Oxo-2'-deoxyguanosine. Nucleic Acids Res 2024; 52:7437-7446. [PMID: 38908029 PMCID: PMC11260475 DOI: 10.1093/nar/gkae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
Formamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG. 8-OxodGuo bypass was examined side-by-side. Experiments were carried out using double-stranded shuttle vectors in HeLa cell nuclear lysates and in HEK 293T cells. The lesions do not significantly block transcriptional bypass efficiency. Less than 2% adenosine incorporation occurred in cells when the lesions were base paired with dC. Inhibiting base excision repair in HEK 293T cells significantly increased adenosine incorporation, particularly from Fapy•dG:dC bypass which yielded ∼25% adenosine incorporation. No effect was detected upon transcriptional bypass of either lesion in nucleotide excision repair deficient cells. Transcriptional mutagenesis was significantly higher when shuttle vectors containing dA opposite one of the lesions were employed. For Fapy•dG:dA bypass, adenosine incorporation was greater than 85%; whereas 8-OxodGuo:dA yielded >20% point mutations. The combination of more frequent replication mistakes and greater error-prone Pol II bypass suggest that Fapy•dG is more mutagenic than 8-OxodGuo.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
6
|
Nicholson MD, Anderson CJ, Odom DT, Aitken SJ, Taylor MS. DNA lesion bypass and the stochastic dynamics of transcription-coupled repair. Proc Natl Acad Sci U S A 2024; 121:e2403871121. [PMID: 38717857 PMCID: PMC11098089 DOI: 10.1073/pnas.2403871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.
Collapse
Affiliation(s)
- Michael D. Nicholson
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Craig J. Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Duncan T. Odom
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center, Heidelberg69120, Germany
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Sarah J. Aitken
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB2 1QR, United Kingdom
- Department of Histopathology, Cambridge University Hospitals National Health Service Foundation Trust, CambridgeCB2 0QQ, United Kingdom
| | - Martin S. Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| |
Collapse
|
7
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: implications for the fidelity of transcription and CRISPR/Cas9 gene editing. Nucleic Acids Res 2024; 52:2672-2685. [PMID: 38281263 PMCID: PMC10954477 DOI: 10.1093/nar/gkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G·T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R1ρ experiments, we show that dG·rU and dT·rG mismatches in two RNA:DNA hybrids transiently form tautomeric (Genol·T/U $ \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}}$ G·Tenol/Uenol) and anionic (G·T-/U-) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG·rU- formed with a ten-fold higher propensity relative to dT-·rG and dG·dT- and this could be attributed to the lower pKa (ΔpKa ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G·T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G·U versus G·T, and indicate that anionic Watson-Crick-like G·U- could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
Affiliation(s)
- Or Szekely
- Department of Biology, Duke University, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA
| | | | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| |
Collapse
|
8
|
Gao S, Hou P, Oh J, Wang D, Greenberg MM. Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy·dG. J Am Chem Soc 2024; 146:6274-6282. [PMID: 38393762 PMCID: PMC10932878 DOI: 10.1021/jacs.3c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Oxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions. Replicative bypass of Fapy·dG in human cells is more mutagenic than that of 8-OxodGuo. Despite the biological importance of transcriptional mutagenesis, there are no reports of the effects of Fapy·dG on RNA polymerase II (Pol II) activity. Here we perform comprehensive kinetic studies to investigate the impact of Fapy·dG on three key transcriptional fidelity checkpoint steps by Pol II: insertion, extension, and proofreading steps. The ratios of error-free versus error-prone incorporation opposite Fapy·dG are significantly reduced in comparison with undamaged dG. Similarly, Fapy·dG:A mispair is extended with comparable efficiency as that of the error-free, Fapy·dG:C base pair. The α- and β-configurational isomers of Fapy·dG have distinct effects on Pol II insertion and extension. Pol II can preferentially cleave error-prone products by proofreading. To further understand the structural basis of transcription processing of Fapy·dG, five different structures were solved, including Fapy·dG template-loading state (apo), error-free cytidine triphosphate (CTP) binding state (prechemistry), error-prone ATP binding state (prechemistry), error-free Fapy·dG:C product state (postchemistry), and error-prone Fapy·dG:A product state (postchemistry), revealing distinctive nucleotide binding and product states. Taken together, our study provides a comprehensive mechanistic framework for better understanding how Fapy·dG lesions impact transcription and subsequent pathological consequences.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Peini Hou
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
10
|
Shu J, Jiang J, Wang X, Yang X, Zhao G, Cai T. MDM2 provides TOP2 poison resistance by promoting proteolysis of TOP2βcc in a p53-independent manner. Cell Death Dis 2024; 15:83. [PMID: 38263255 PMCID: PMC10806188 DOI: 10.1038/s41419-024-06474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
DNA topoisomerase II (TOP2) is an enzyme that performs a critical function in manipulating DNA topology during replication, transcription, and chromosomal compaction by forming a vital intermediate known as the TOP2-DNA cleavage complex (TOP2cc). Although the TOP2cc is often transient, stabilization can be achieved by TOP2 poisons, a family of anti-cancer chemotherapeutic agents targeting TOP2, such as etoposide (VP-16), and then induce double-strand breaks (DSBs) in cellular DNA. TOP2cc first needs to be proteolyzed before it can be processed by TDP2 for the removal of these protein adducts and to produce clean DNA ends necessary for proper repair. However, the mechanism by which TOP2βcc is proteolyzed has not been thoroughly studied. In this study, we report that after exposure to VP-16, MDM2, a RING-type E3 ubiquitin ligase, attaches to TOP2β and initiates polyubiquitination and proteasomal degradation. Mechanistically, during exposure to VP-16, TOP2β binds to DNA to form TOP2βcc, which promotes MDM2 binding and subsequent TOP2β ubiquitination and degradation, and results in a decrease in TOP2βcc levels. Biologically, MDM2 inactivation abrogates TOP2β degradation, stabilizes TOP2βcc, and subsequently increases the number of TOP2β-concealed DSBs, resulting in the rapid death of cancer cells via the apoptotic process. Furthermore, we demonstrate the combination activity of VP-16 and RG7112, an MDM2 inhibitor, in the xenograft tumor model and in situ lung cancer mouse model. Taken together, the results of our research reveal an underlying mechanism by which MDM2 promotes cancer cell survival in the presence of TOP2 poisons by activating proteolysis of TOP2βcc in a p53-independent manner, and provides a rationale for the combination of MDM2 inhibitors with TOP2 poisons for cancer therapy.
Collapse
Affiliation(s)
- Jianfeng Shu
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Jinni Jiang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiaofang Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Xuejie Yang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China.
| | - Ting Cai
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
11
|
Chen J, Potlapalli R, Quan H, Chen L, Xie Y, Pouriyeh S, Sakib N, Liu L, Xie Y. Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights. BIOTECH 2024; 13:3. [PMID: 38247733 PMCID: PMC10801582 DOI: 10.3390/biotech13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
DNA damage is a critical factor contributing to genetic alterations, directly affecting human health, including developing diseases such as cancer and age-related disorders. DNA repair mechanisms play a pivotal role in safeguarding genetic integrity and preventing the onset of these ailments. Over the past decade, substantial progress and pivotal discoveries have been achieved in DNA damage and repair. This comprehensive review paper consolidates research efforts, focusing on DNA repair mechanisms, computational research methods, and associated databases. Our work is a valuable resource for scientists and researchers engaged in computational DNA research, offering the latest insights into DNA-related proteins, diseases, and cutting-edge methodologies. The review addresses key questions, including the major types of DNA damage, common DNA repair mechanisms, the availability of reliable databases for DNA damage and associated diseases, and the predominant computational research methods for enzymes involved in DNA damage and repair.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Letter and Science, University of California, Berkeley, CA 94720, USA;
| | - Ravi Potlapalli
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Heng Quan
- Department of Civil and Urban Engineering, New York University, New York, NY 11201, USA;
| | - Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Seyedamin Pouriyeh
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Nazmus Sakib
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA;
| | - Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| |
Collapse
|
12
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: Implications for the fidelity of transcription and CRISPR/Cas9 gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554670. [PMID: 37662220 PMCID: PMC10473728 DOI: 10.1101/2023.08.24.554670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G•T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R 1ρ experiments, we show that dG•rU and dT•rG mismatches in two RNA:DNA hybrids transiently form tautomeric (G enol •T/U ⇄G•T enol /U enol ) and anionic (G•T - /U - ) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG•rU - formed with a ten-fold higher propensity relative to dT - •rG and dG•dT - and this could be attributed to the lower pK a (Δ pK a ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G•T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G•U versus G•T, and indicate that anionic Watson-Crick-like G•U - could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
|
14
|
Yu J, Yan C, Dodd T, Tsai CL, Tainer JA, Tsutakawa SE, Ivanov I. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Nat Commun 2023; 14:2758. [PMID: 37179334 PMCID: PMC10183003 DOI: 10.1038/s41467-023-38416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Chung C, Verheijen BM, Navapanich Z, McGann EG, Shemtov S, Lai GJ, Arora P, Towheed A, Haroon S, Holczbauer A, Chang S, Manojlovic Z, Simpson S, Thomas KW, Kaplan C, van Hasselt P, Timmers M, Erie D, Chen L, Gout JF, Vermulst M. Evolutionary conservation of the fidelity of transcription. Nat Commun 2023; 14:1547. [PMID: 36941254 PMCID: PMC10027832 DOI: 10.1038/s41467-023-36525-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.
Collapse
Affiliation(s)
- Claire Chung
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bert M Verheijen
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zoe Navapanich
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eric G McGann
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sarah Shemtov
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Guan-Ju Lai
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payal Arora
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Atif Towheed
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Suraiya Haroon
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Agnes Holczbauer
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Sharon Chang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Simpson
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Kelley W Thomas
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter van Hasselt
- Department of Metabolic Disease, University of Utrecht, Utrecht, the Netherlands
| | - Marc Timmers
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothy Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Chen
- Department of Molecular and Cellular Biology, University of Southern California, Los Angeles, CA, USA
| | - Jean-Franćois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Size- and Stereochemistry-Dependent Transcriptional Bypass of DNA Alkyl Phosphotriester Adducts in Mammalian Cells. DNA 2022; 2:221-230. [PMID: 36911626 PMCID: PMC9997456 DOI: 10.3390/dna2040016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Environmental, endogenous and therapeutic alkylating agents can react with internucleotide phosphate groups in DNA to yield alkyl phosphotriester (PTE) adducts. Alkyl-PTEs are induced at relatively high frequencies and are persistent in mammalian tissues; however, their biological consequences in mammalian cells have not been examined. Herein, we assessed how alkyl-PTEs with different alkyl group sizes and stereochemical configurations (S P and R P diastereomers of Me and nPr) affect the efficiency and fidelity of transcription in mammalian cells. We found that, while the R P diastereomer of Me- and nPr-PTEs constituted moderate and strong blockages to transcription, respectively, the S P diastereomer of the two lesions did not appreciably perturb transcription efficiency. In addition, none of the four alkyl-PTEs induced mutant transcripts. Furthermore, polymerase η assumed an important role in promoting transcription across the S P-Me-PTE, but not any of other three lesions. Loss of other translesion synthesis (TLS) polymerases tested, including Pol κ, Pol ι, Pol ξ and REV1, did not alter the transcription bypass efficiency or mutation frequency for any of the alkyl-PTE lesions. Together, our study provided important new knowledge about the impact of alkyl-PTE lesions on transcription and expanded the substrate pool of Pol η in transcriptional bypass.
Collapse
|
17
|
Tan Y, You C, Park J, Kim HS, Guo S, Schärer OD, Wang Y. Transcriptional Perturbations of 2,6-Diaminopurine and 2-Aminopurine. ACS Chem Biol 2022; 17:1672-1676. [PMID: 35700389 DOI: 10.1021/acschembio.2c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
2,6-Diaminopurine (Z) is a naturally occurring adenine (A) analog that bacteriophages employ in place of A in their genetic alphabet. Recent discoveries of biogenesis pathways of Z in bacteriophages have stimulated substantial research interest in this DNA modification. Here, we systematically examined the effects of Z on the efficiency and fidelity of DNA transcription. Our results showed that Z exhibited no mutagenic yet substantial inhibitory effects on transcription mediated by purified T7 RNA polymerase and by human RNA polymerase II in HeLa nuclear extracts and in human cells. A structurally related adenine analog, 2-aminopurine (2AP), strongly blocked T7 RNA polymerase but did not impede human RNA polymerase II in vitro or in human cells, where no mutant transcript could be detected. The lack of mutagenic consequence and the presence of a strong blockage effect of Z on transcription suggest a role of Z in transcriptional regulation. Z is also subjected to removal by transcription-coupled nucleotide-excision repair (TC-NER), but not global-genome NER in human cells. Our findings provide new insight into the effects of Z on transcription and its potential biological functions.
Collapse
Affiliation(s)
| | | | - Jiyeong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | | | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | | |
Collapse
|
18
|
Poly(ADP-ribosylation) of P-TEFb by PARP1 disrupts phase separation to inhibit global transcription after DNA damage. Nat Cell Biol 2022; 24:513-525. [PMID: 35393539 DOI: 10.1038/s41556-022-00872-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/20/2022] [Indexed: 12/14/2022]
Abstract
DNA damage shuts down genome-wide transcription to prevent transcriptional mutagenesis and to initiate repair signalling, but the mechanism to stall elongating RNA polymerase II (Pol II) is not fully understood. Central to the DNA damage response, poly(ADP-ribose) polymerase 1 (PARP1) initiates DNA repair by translocating to the lesions where it catalyses protein poly(ADP-ribosylation). Here we report that PARP1 inhibits Pol II elongation by inactivating the transcription elongation factor P-TEFb, a CDK9-cyclin T1 (CycT1) heterodimer. After sensing damage, the activated PARP1 binds to transcriptionally engaged P-TEFb and modifies CycT1 at multiple positions, including histidine residues that are rarely used as an acceptor site. This prevents CycT1 from undergoing liquid-liquid phase separation that is required for CDK9 to hyperphosphorylate Pol II and to stimulate elongation. Functionally, poly(ADP-ribosylation) of CycT1 promotes DNA repair and cell survival. Thus, the P-TEFb-PARP1 signalling plays a protective role in transcription quality control and genomic stability maintenance after DNA damage.
Collapse
|
19
|
Yan C, Dodd T, Yu J, Leung B, Xu J, Oh J, Wang D, Ivanov I. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat Commun 2021; 12:7001. [PMID: 34853308 PMCID: PMC8636621 DOI: 10.1038/s41467-021-27295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Transcription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.
Collapse
Affiliation(s)
- Chunli Yan
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Thomas Dodd
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Jina Yu
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Bernice Leung
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jun Xu
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Juntaek Oh
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Tan Y, Guo S, Wu J, Du H, Li L, You C, Wang Y. DNA Polymerase η Promotes the Transcriptional Bypass of N2-Alkyl-2'-deoxyguanosine Adducts in Human Cells. J Am Chem Soc 2021; 143:16197-16205. [PMID: 34555898 DOI: 10.1021/jacs.1c07374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To cope with unrepaired DNA lesions, cells are equipped with DNA damage tolerance mechanisms, including translesion synthesis (TLS). While TLS polymerases are well documented in facilitating replication across damaged DNA templates, it remains unknown whether TLS polymerases participate in transcriptional bypass of DNA lesions in cells. Herein, we employed the competitive transcription and adduct bypass assay to examine the efficiencies and fidelities of transcription across N2-alkyl-2'-deoxyguanosine (N2-alkyl-dG, alkyl = methyl, ethyl, n-propyl, or n-butyl) lesions in HEK293T cells. We found that N2-alkyl-dG lesions strongly blocked transcription and elicited CC → AA tandem mutations in nascent transcripts, where adenosines were misincorporated opposite the lesions and their adjacent 5' nucleoside. Additionally, genetic ablation of Pol η, but not Pol κ, Pol ι, or Pol ζ, conferred marked diminutions in the transcriptional bypass efficiencies of the N2-alkyl-dG lesions, which is exacerbated by codepletion of Rev1 in Pol η-deficient background. We also observed that the repair of N2-nBu-dG was not pronouncedly affected by genetic depletion of Pol η or Rev1. Hence, our results provided insights into transcriptional perturbations induced by N2-alkyl-dG lesions and expanded the biological functions of TLS DNA polymerases.
Collapse
Affiliation(s)
- Ying Tan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Jun Wu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States.,Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
21
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
22
|
Batenburg NL, Cui S, Walker JR, Schellhorn HE, Zhu XD. The Winged Helix Domain of CSB Regulates RNAPII Occupancy at Promoter Proximal Pause Sites. Int J Mol Sci 2021; 22:ijms22073379. [PMID: 33806087 PMCID: PMC8037043 DOI: 10.3390/ijms22073379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Cockayne syndrome group B protein (CSB), a member of the SWI/SNF superfamily, resides in an elongating RNA polymerase II (RNAPII) complex and regulates transcription elongation. CSB contains a C-terminal winged helix domain (WHD) that binds to ubiquitin and plays an important role in DNA repair. However, little is known about the role of the CSB-WHD in transcription regulation. Here, we report that CSB is dependent upon its WHD to regulate RNAPII abundance at promoter proximal pause (PPP) sites of several actively transcribed genes, a key step in the regulation of transcription elongation. We show that two ubiquitin binding-defective mutations in the CSB-WHD, which impair CSB's ability to promote cell survival in response to treatment with cisplatin, have little impact on its ability to stimulate RNAPII occupancy at PPP sites. In addition, we demonstrate that two cancer-associated CSB mutations, which are located on the opposite side of the CSB-WHD away from its ubiquitin-binding pocket, impair CSB's ability to promote RNAPII occupancy at PPP sites. Taken together, these results suggest that CSB promotes RNAPII association with PPP sites in a manner requiring the CSB-WHD but independent of its ubiquitin-binding activity. These results further imply that CSB-mediated RNAPII occupancy at PPP sites is mechanistically separable from CSB-mediated repair of cisplatin-induced DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Xu-Dong Zhu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27737)
| |
Collapse
|
23
|
Han S, Gong Z, Liang T, Chen Y, Xie J. The role of Mfd in Mycobacterium tuberculosis physiology and underlying regulatory network. Microbiol Res 2021; 246:126718. [PMID: 33588338 DOI: 10.1016/j.micres.2021.126718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis with millions of deaths annually, remains one of the most formidable pathogen to global public health. As the most successful intracellular pathogens, Mtb can spatiotemporally coordinate the transcription and translation timely to reconcile the inevitable transcription-replication conflicts. Mutation frequency decline (Mfd) is a bacterial ATP-dependent DNA translocase that couples DNA repair to transcription via hydrolyzing ATP as energy, which preferentially acts on the damaged DNA transcribed strand to rescue stalled RNAP or dissociate RNAP to terminate the transcription depending on impediment severity, mitigating the damage to bacteria. In addition to the traditional damage repair effect, Mfd may also promote bacteria mutagenesis under stresses and boost the drug resistance. Mfd is widespread among bacteria and intensively studied, but there are very few studies in Mycobacteria, especially Mtb. In this review, the structure, function and mechanism characteristics of Mfd in Mtb (MtbMfd, Rv1020) are explored, with emphasis on the regulatory network of MtbMfd and its potential as a prime target for antibiotic drugs against tuberculosis.
Collapse
Affiliation(s)
- Shuang Han
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Tian Liang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yu Chen
- Department of Tuberculosis, Shenyang Tenth People's Hospital and Shenyang Chest Hospital, Shenyang, Liaoning Province, 110044, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
24
|
Martin HA, Sundararajan A, Ermi TS, Heron R, Gonzales J, Lee K, Anguiano-Mendez D, Schilkey F, Pedraza-Reyes M, Robleto EA. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front Microbiol 2021; 12:625705. [PMID: 33603726 PMCID: PMC7885715 DOI: 10.3389/fmicb.2021.625705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Tatiana S Ermi
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Robert Heron
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jason Gonzales
- West Career and Technical Academy, Las Vegas, NV, United States
| | - Kaiden Lee
- The College of Idaho, Caldwell, ID, United States
| | - Diana Anguiano-Mendez
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
25
|
Fritsch C, Gout JF, Haroon S, Towheed A, Chung C, LaGosh J, McGann E, Zhang X, Song Y, Simpson S, Danthi PS, Benayoun BA, Wallace D, Thomas K, Lynch M, Vermulst M. Genome-wide surveillance of transcription errors in response to genotoxic stress. Proc Natl Acad Sci U S A 2021; 118:e2004077118. [PMID: 33443141 PMCID: PMC7817157 DOI: 10.1073/pnas.2004077118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutagenic compounds are a potent source of human disease. By inducing genetic instability, they can accelerate the evolution of human cancers or lead to the development of genetically inherited diseases. Here, we show that in addition to genetic mutations, mutagens are also a powerful source of transcription errors. These errors arise in dividing and nondividing cells alike, affect every class of transcripts inside cells, and, in certain cases, greatly exceed the number of mutations that arise in the genome. In addition, we reveal the kinetics of transcription errors in response to mutagen exposure and find that DNA repair is required to mitigate transcriptional mutagenesis after exposure. Together, these observations have far-reaching consequences for our understanding of mutagenesis in human aging and disease, and suggest that the impact of DNA damage on human physiology has been greatly underestimated.
Collapse
Affiliation(s)
- C Fritsch
- Department of Cellular and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - J-F Gout
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - S Haroon
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - A Towheed
- Touro College of Osteopathic Medicine, Middletown, NY 10940
| | - C Chung
- School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - J LaGosh
- School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - E McGann
- School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - X Zhang
- Bioinforx, Inc., Madison, WI 53719
| | - Y Song
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - S Simpson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824
| | - P S Danthi
- School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - B A Benayoun
- School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - D Wallace
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - K Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824
| | - M Lynch
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287;
| | - M Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA 90089;
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
26
|
Anagnostou M, Chung C, McGann E, Verheijen B, Kou Y, Chen L, Vermulst M. Transcription errors in aging and disease. TRANSLATIONAL MEDICINE OF AGING 2021. [DOI: 10.1016/j.tma.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Oh J, Xu J, Chong J, Wang D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194659. [PMID: 33271312 DOI: 10.1016/j.bbagrm.2020.194659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Transcription elongation by RNA polymerase II (Pol II) is constantly challenged by numerous types of obstacles that lead to transcriptional pausing or stalling. These obstacles include DNA lesions, DNA epigenetic modifications, DNA binding proteins, and non-B form DNA structures. In particular, lesion-induced prolonged transcriptional blockage or stalling leads to genome instability, cellular dysfunction, and cell death. Transcription-coupled nucleotide excision repair (TC-NER) pathway is the first line of defense that detects and repairs these transcription-blocking DNA lesions. In this review, we will first summarize the recent research progress toward understanding the molecular basis of transcriptional pausing and stalling by different kinds of obstacles. We will then discuss new insights into Pol II-mediated lesion recognition and the roles of CSB in TC-NER.
Collapse
Affiliation(s)
- Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, United States; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
28
|
A (6-4)-photolyase from the Antarctic bacterium Sphingomonas sp. UV9: recombinant production and in silico features. Extremophiles 2020; 24:887-896. [PMID: 32960344 DOI: 10.1007/s00792-020-01202-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Photolyases are proteins that enzymatically repair the UV-induced DNA damage by a protein-DNA electron transfer mechanism. They repair either cyclobutane pyrimidine dimers or pyrimidine (6-4) pyrimidone photoproducts or just (6-4)-photoproducts. In this work, we report the production and partial characterization of a recombinant (6-4)-photolyase (SphPhrB97) from a bacterial psychrotolerant Antarctic isolate identified as Sphingomonas sp. strain UV9. The spectrum analysis and the in silico study of SphPhrB97 suggest that this enzyme has similar features as compared to the (6-4)-photolyase from Agrobacterium tumefaciens (4DJA; PhrB), including the presence of three cofactors: FAD, DMRL (6,7-dimethyl-8-(1'-D-ribityl) lumazine), and an Fe-S cluster. The homology model of SphPhrB97 predicts that the DNA-binding pocket (area and volume) is larger as compared to (6-4)-photolyases from mesophilic microbes. Based on sequence comparison and on the homology model, we propose an electron transfer pathway towards the FAD cofactor involving the residues Trp342, Trp390, Tyr40, Tyr391, and Tyr399. The phylogenetic tree performed using curated and well-characterized prokaryotic (6-4)-photolyases suggests that SphPhrB97 may have an ancient evolutionary origin. The results suggest that SphPhrB97 is a cold-adapted enzyme, ready to cope with the UV irradiation stress found in a hostile environment, such as Antarctica.
Collapse
|
29
|
Liang S, Ezerskyte M, Wang J, Pelechano V, Dreij K. Transcriptional mutagenesis dramatically alters genome-wide p53 transactivation landscape. Sci Rep 2020; 10:13513. [PMID: 32782319 PMCID: PMC7419513 DOI: 10.1038/s41598-020-70412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
The transcriptional error rate can be significantly increased by the presence of DNA lesions that instruct mis-insertion during transcription; a process referred to as transcriptional mutagenesis (TM) that can result in altered protein function. Herein, we determined the effect of O6-methylguanine (O6-meG) on transcription and subsequent transactivation activity of p53 in human lung H1299 cells. Levels of TM and effects on transactivation were determined genome wide by RNA-seq. Results showed that 47% of all p53 transcripts contained an uridine misincorporation opposite the lesion at 6 h post transfection, which was decreased to 18% at 24 h. TM at these levels reduced DNA binding activity of p53 to 21% and 80% compared to wild type p53, respectively. Gene expression data were analysed to identify differentially expressed genes due to TM of p53. We show a temporal repression of transactivation of > 100 high confidence p53 target genes including regulators of the cell cycle, DNA damage response and apoptosis. In addition, TM repressed the transcriptional downregulation by p53 of several negative regulators of proliferation and differentiation. Our work demonstrates that TM, even when restricting its effect to an individual transcription factor, has the potential to alter gene expression programs and diversify cellular phenotypes.
Collapse
Affiliation(s)
- Shuo Liang
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Monika Ezerskyte
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jingwen Wang
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
30
|
Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J Bacteriol 2020; 202:JB.00807-19. [PMID: 32041798 DOI: 10.1128/jb.00807-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilis IMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.
Collapse
|
31
|
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A. Nucleotide excision repair of abasic DNA lesions. Nucleic Acids Res 2019; 47:8537-8547. [PMID: 31226203 PMCID: PMC6895268 DOI: 10.1093/nar/gkz558] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are a class of highly mutagenic and toxic DNA lesions arising in the genome from a number of exogenous and endogenous sources. Repair of AP lesions takes place predominantly by the base excision pathway (BER). However, among chemically heterogeneous AP lesions formed in DNA, some are resistant to the endonuclease APE1 and thus refractory to BER. Here, we employed two types of reporter constructs accommodating synthetic APE1-resistant AP lesions to investigate the auxiliary repair mechanisms in human cells. By combined analyses of recovery of the transcription rate and suppression of transcriptional mutagenesis at specifically positioned AP lesions, we demonstrate that nucleotide excision repair pathway (NER) efficiently removes BER-resistant AP lesions and significantly enhances the repair of APE1-sensitive ones. Our results further indicate that core NER components XPA and XPF are equally required and that both global genome (GG-NER) and transcription coupled (TC-NER) subpathways contribute to the repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Marta Rodriguez-Alvarez
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
32
|
Caron P, van der Linden J, van Attikum H. Bon voyage: A transcriptional journey around DNA breaks. DNA Repair (Amst) 2019; 82:102686. [PMID: 31476573 DOI: 10.1016/j.dnarep.2019.102686] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/20/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) affect chromatin integrity and impact DNA-dependent processes such as transcription. Several studies revealed that the transcription of genes located in close proximity to DSBs is transiently repressed. This is achieved through the establishment of either a transient repressive chromatin context or eviction of the RNA polymerase II complex from the damaged chromatin. While these mechanisms of transcription repression have been shown to affect the efficiency and accuracy of DSB repair, it became evident that the transcriptional state of chromatin before DSB formation also influences this process. Moreover, transcription can be initiated from DSB ends, generating long non-coding (lnc)RNAs that will be processed into sequence-specific double-stranded RNAs. These so-called DNA damage-induced (dd)RNAs dictate DSB repair by regulating the accumulation of DNA repair proteins at DSBs. Thus, a complex interplay between mechanisms of transcription activation and repression occurs at DSBs and affects their repair. Here we review our current understanding of the mechanisms that coordinate transcription and DSB repair to prevent genome instability arising from DNA breaks in transcribed regions.
Collapse
Affiliation(s)
- Pierre Caron
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Janette van der Linden
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands.
| |
Collapse
|
33
|
Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am J Hum Genet 2019; 105:237-257. [PMID: 31374202 PMCID: PMC6693886 DOI: 10.1016/j.ajhg.2019.06.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information is constantly being attacked by intrinsic and extrinsic damaging agents, such as reactive oxygen species, atmospheric radiation, environmental chemicals, and chemotherapeutics. If DNA modifications persist, they can adversely affect the polymerization of DNA or RNA, leading to replication fork collapse or transcription arrest, or can serve as mutagenic templates during nucleic acid synthesis reactions. To combat the deleterious consequences of DNA damage, organisms have developed complex repair networks that remove chemical modifications or aberrant base arrangements and restore the genome to its original state. Not surprisingly, inherited or sporadic defects in DNA repair mechanisms can give rise to cellular outcomes that underlie disease and aging, such as transformation, apoptosis, and senescence. In the review here, we discuss several genetic disorders linked to DNA repair defects, attempting to draw correlations between the nature of the accumulating DNA damage and the pathological endpoints, namely cancer, neurological disease, and premature aging.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Valenzuela‐García LI, Ayala‐García VM, Regalado‐García AG, Setlow P, Pedraza‐Reyes M. Transcriptional coupling (Mfd) and DNA damage scanning (DisA) coordinate excision repair events for efficient Bacillus subtilis spore outgrowth. Microbiologyopen 2018; 7:e00593. [PMID: 29536659 PMCID: PMC6182552 DOI: 10.1002/mbo3.593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/06/2018] [Indexed: 01/16/2023] Open
Abstract
The absence of base excision repair (BER) proteins involved in processing ROS-promoted genetic insults activates a DNA damage scanning (DisA)-dependent checkpoint event in outgrowing Bacillus subtilis spores. Here, we report that genetic disabling of transcription-coupled repair (TCR) or nucleotide excision repair (NER) pathways severely affected outgrowth of ΔdisA spores, and much more so than the effects of these mutations on log phase growth. This defect delayed the first division of spore's nucleoid suggesting that unrepaired lesions affected transcription and/or replication during outgrowth. Accordingly, return to life of spores deficient in DisA/Mfd or DisA/UvrA was severely affected by a ROS-inducer or a replication blocking agent, hydrogen peroxide and 4-nitroquinoline-oxide, respectively. Mutation frequencies to rifampin resistance (Rifr ) revealed that DisA allowed faithful NER-dependent DNA repair but activated error-prone repair in TCR-deficient outgrowing spores. Sequencing analysis of rpoB from spontaneous Rifr colonies revealed that mutations resulting from base deamination predominated in outgrowing wild-type spores. Interestingly, a wide range of base substitutions promoted by oxidized DNA bases were detected in ΔdisA and Δmfd outgrown spores. Overall, our results suggest that Mfd and DisA coordinate excision repair events in spore outgrowth to eliminate DNA lesions that interfere with replication and transcription during this developmental period.
Collapse
Affiliation(s)
| | | | | | - Peter Setlow
- Department of Molecular Biology and BiophysicsUConn HealthFarmingtonCTUSA
| | | |
Collapse
|
35
|
Fritsch C, Gout JFP, Vermulst M. Genome-wide Surveillance of Transcription Errors in Eukaryotic Organisms. J Vis Exp 2018. [PMID: 30272673 DOI: 10.3791/57731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accurate transcription is required for the faithful expression of genetic information. Surprisingly though, little is known about the mechanisms that control the fidelity of transcription. To fill this gap in scientific knowledge, we recently optimized the circle-sequencing assay to detect transcription errors throughout the transcriptome of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. This protocol will provide researchers with a powerful new tool to map the landscape of transcription errors in eukaryotic cells so that the mechanisms that control the fidelity of transcription can be elucidated in unprecedented detail.
Collapse
Affiliation(s)
- Clark Fritsch
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia; Department of Cellular and Molecular Biology, University of Pennsylvania
| | - Jean-Francois Pierre Gout
- Department of Biological Sciences, Mississippi State University; Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University
| | - Marc Vermulst
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia;
| |
Collapse
|
36
|
Yau WY, O'Connor E, Sullivan R, Akijian L, Wood NW. DNA repair in trinucleotide repeat ataxias. FEBS J 2018; 285:3669-3682. [PMID: 30152109 DOI: 10.1111/febs.14644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The inherited cerebellar ataxias comprise of a genetic heterogeneous group of disorders. Pathogenic expansions of cytosine-adenine-guanine (CAG) encoding polyglutamine tracts account for the largest proportion of autosomal dominant cerebellar ataxias, while GAA expansion in the first introns of frataxin gene is the commonest cause of autosomal recessive cerebellar ataxias. Currently, there is no available treatment to alter the disease trajectory, with devastating consequences for affected individuals. Inter- and Intrafamily phenotypic variability suggest the existence of genetic modifiers, which may become targets amendable to treatment. Recent studies have demonstrated the importance of DNA repair pathways in modifying spinocerebellar ataxia with CAG repeat expansions. In this review, we discuss the mechanisms in which DNA repair pathways, epigenetics and other genetic factors may act as modifiers in cerebellar ataxias due to trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Wai Yan Yau
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Emer O'Connor
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Roisin Sullivan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Layan Akijian
- Department of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nicholas W Wood
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK.,Neurogenetics laboratory, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
37
|
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair (Amst) 2018; 71:43-55. [PMID: 30174298 DOI: 10.1016/j.dnarep.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic transcription-coupled nucleotide excision repair (TC-NER) is a pathway that removes DNA lesions capable of blocking RNA polymerase II (Pol II) transcription from the template strand. This process is initiated by lesion-arrested Pol II and the recruitment of Cockayne Syndrome B protein (CSB). In this review, we will focus on the lesion recognition steps of eukaryotic TC-NER and summarize the recent research progress toward understanding the structural basis of Pol II-mediated lesion recognition and Pol II-CSB interactions. We will discuss the roles of CSB in both TC-NER initiation and transcription elongation. Finally, we propose an updated model of tripartite lesion recognition and verification for TC-NER in which CSB ensures Pol II-mediated recognition of DNA lesions for TC-NER.
Collapse
|
38
|
Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol 2018; 135:811-826. [PMID: 29705908 PMCID: PMC5954077 DOI: 10.1007/s00401-018-1850-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
Abstract
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
39
|
Wang W, Walmacq C, Chong J, Kashlev M, Wang D. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Proc Natl Acad Sci U S A 2018; 115:E2538-E2545. [PMID: 29487211 PMCID: PMC5856558 DOI: 10.1073/pnas.1722050115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abasic sites are among the most abundant DNA lesions and interfere with DNA replication and transcription, but the mechanism of their action on transcription remains unknown. Here we applied a combined structural and biochemical approach for a comprehensive investigation of how RNA polymerase II (Pol II) processes an abasic site, leading to slow bypass of lesion. Encounter of Pol II with an abasic site involves two consecutive slow steps: insertion of adenine opposite a noninstructive abasic site (the A-rule), followed by extension of the 3'-rAMP with the next cognate nucleotide. Further studies provided structural insights into the A-rule: ATP is slowly incorporated into RNA in the absence of template guidance. Our structure revealed that ATP is bound to the Pol II active site, whereas the abasic site is located at an intermediate state above the Bridge Helix, a conserved structural motif that is cirtical for Pol II activity. The next extension step occurs in a template-dependent manner where a cognate substrate is incorporated, despite at a much slower rate compared with nondamaged template. During the extension step, neither the cognate substrate nor the template base is located at the canonical position, providing a structural explanation as to why this step is as slow as the insertion step. Taken together, our studies provide a comprehensive understanding of Pol II stalling and bypass of the abasic site in the DNA template.
Collapse
Affiliation(s)
- Wei Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Celine Walmacq
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
40
|
Blanc A, Dietrich DJ, Perrin DM. Solid-phase synthesis of amanitin derivatives and preliminary evaluation of cellular uptake and toxicity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Blanc
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David J. Dietrich
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David M. Perrin
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| |
Collapse
|
41
|
Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L. Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 2018; 64:971-983. [PMID: 29497809 DOI: 10.1007/s00294-018-0819-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/14/2023]
Abstract
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The protection of genome integrity is ensured by the so-called "DNA damage response" (DDR), a set of evolutionary-conserved events that, triggered upon DNA damage detection, arrests the cell cycle, and attempts DNA repair. Here, we review the role of the DDR proteins as post-transcriptional regulators of gene expression, in addition to their roles in DNA damage recognition, signaling, and repair. At the same time, we discuss recent insights into how pre-mRNA splicing factors go beyond their splicing activities and play direct functions in detecting, signaling, and repairing DNA damage. The importance of extensive two-way crosstalk and interaction between the RNA processing and the DDR stems from growing evidence that the defects of their communication lead to genomic instability.
Collapse
Affiliation(s)
- B Mikolaskova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Jurcik
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - I Cipakova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Kretova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Chovanec
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - L Cipak
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
42
|
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Paredes JA, Ezerskyte M, Bottai M, Dreij K. Transcriptional mutagenesis reduces splicing fidelity in mammalian cells. Nucleic Acids Res 2017; 45:6520-6529. [PMID: 28460122 PMCID: PMC5499639 DOI: 10.1093/nar/gkx339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Splicing fidelity is essential to the maintenance of cellular functions and viability, and mutations or natural variations in pre-mRNA sequences and consequent alteration of splicing have been implicated in the etiology and progression of numerous diseases. The extent to which transcriptional errors or lesion-induced transcriptional mutagenesis (TM) influences splicing fidelity is not currently known. To investigate this, we employed site-specific DNA lesions on the transcribed strand of a minigene splicing reporter in normal mammalian cells. These were the common mutagenic lesions O6-methylguanine (O6-meG) and 8-oxoguanine (8-oxoG). The minigene splicing reporters were derived from lamin A (LMNA) and proteolipid protein 1 (PLP1), both with known links to human diseases that result from deregulated splicing. In cells with active DNA repair, 1–4% misincorporation occurred opposite the lesions, which increased to 20–40% when repair was compromised. Furthermore, our results reveal that TM at a splice site significantly reduces in vivo splicing fidelity, thereby changing the relative expression of alternative splicing forms in mammalian cells. These findings suggest that splicing defects caused by transcriptional errors can potentially lead to phenotypic cellular changes and increased susceptibility to the development of disease.
Collapse
Affiliation(s)
- João A Paredes
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Monika Ezerskyte
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
44
|
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 2017; 551:653-657. [PMID: 29168508 PMCID: PMC5907806 DOI: 10.1038/nature24658] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation.
Collapse
|
45
|
Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d'Adda di Fagagna F. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annu Rev Genomics Hum Genet 2017; 18:87-113. [PMID: 28859573 DOI: 10.1146/annurev-genom-091416-035314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Collapse
Affiliation(s)
- Valerio Vitelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | | | - Fabio Iannelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabio Pessina
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Sheetal Sharma
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy; .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia 27100, Italy
| |
Collapse
|
46
|
Gout JF, Li W, Fritsch C, Li A, Haroon S, Singh L, Hua D, Fazelinia H, Smith Z, Seeholzer S, Thomas K, Lynch M, Vermulst M. The landscape of transcription errors in eukaryotic cells. SCIENCE ADVANCES 2017; 3:e1701484. [PMID: 29062891 PMCID: PMC5650487 DOI: 10.1126/sciadv.1701484] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/21/2017] [Indexed: 05/09/2023]
Abstract
Accurate transcription is required for the faithful expression of genetic information. To understand the molecular mechanisms that control the fidelity of transcription, we used novel sequencing technology to provide the first comprehensive analysis of the fidelity of transcription in eukaryotic cells. Our results demonstrate that transcription errors can occur in any gene, at any location, and affect every aspect of protein structure and function. In addition, we show that multiple proteins safeguard the fidelity of transcription and provide evidence suggesting that errors that evade these layers of RNA quality control profoundly affect the physiology of living cells. Together, these observations demonstrate that there is an inherent limit to the faithful expression of the genome and suggest that the impact of mutagenesis on cellular health and fitness is substantially greater than currently appreciated.
Collapse
Affiliation(s)
| | - Weiyi Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clark Fritsch
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
- Department of Cellular and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annie Li
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Suraiya Haroon
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Larry Singh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Ding Hua
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Zach Smith
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Steven Seeholzer
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Corresponding author. (M.V.); (M.L.)
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
- Corresponding author. (M.V.); (M.L.)
| |
Collapse
|
47
|
Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E7082-E7091. [PMID: 28784758 DOI: 10.1073/pnas.1708748114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, interfere with the efficiency and accuracy of DNA replication and transcription. However, the molecular mechanisms of DNA alkylation-induced transcriptional stalling and mutagenesis remain unknown. In this study, we systematically investigated how RNA polymerase II (pol II) recognizes and bypasses regioisomeric O2-, N3-, and O4-ethylthymidine (O2-, N3-, and O4-EtdT) lesions. We observed distinct pol II stalling profiles for the three regioisomeric EtdT lesions. Intriguingly, pol II stalling at O2-EtdT and N3-EtdT sites is exacerbated by TFIIS-stimulated proofreading activity. Assessment for the impact of the EtdT lesions on individual fidelity checkpoints provided further mechanistic insights, where the transcriptional lesion bypass routes for the three EtdT lesions are controlled by distinct fidelity checkpoints. The error-free transcriptional lesion bypass route is strongly favored for the minor-groove O2-EtdT lesion. In contrast, a dominant error-prone route stemming from GMP misincorporation was observed for the major-groove O4-EtdT lesion. For the N3-EtdT lesion that disrupts base pairing, multiple transcriptional lesion bypass routes were found. Importantly, the results from the present in vitro transcriptional studies are well correlated with in vivo transcriptional mutagenesis analysis. Finally, we identified a minor-groove-sensing motif from pol II (termed Pro-Gate loop). The Pro-Gate loop faces toward the minor groove of RNA:DNA hybrid and is involved in modulating the translocation of minor-groove alkylated DNA template after nucleotide incorporation opposite the lesion. Taken together, this work provides important mechanistic insights into transcriptional stalling, lesion bypass, and mutagenesis of alkylated DNA lesions.
Collapse
|
48
|
Abstract
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
Collapse
Affiliation(s)
- Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
49
|
Shin JH, Xu L, Wang D. Mechanism of transcription-coupled DNA modification recognition. Cell Biosci 2017; 7:9. [PMID: 28239446 PMCID: PMC5320713 DOI: 10.1186/s13578-016-0133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
As a key enzyme for gene expression, RNA polymerase II (pol II) reads along the DNA template and catalyzes accurate mRNA synthesis during transcription. On the other hand, genomic DNA is under constant attack by endogenous and environmental stresses. These attack cause many DNA lesions. Pol II functions as a specific sensor that is able to recognize changes in DNA sequences and structures and induces different outcomes. A critical question in the field is how Pol II recognizes and senses these DNA modifications or lesions. Recent studies provided new insights into understanding this critical question. In this mini-review, we would like to focus on three classes of DNA lesions/modifications: (1) Bulky, DNA-distorting lesions that block pol II transcription, (2) small DNA lesions that promote pol II pausing and error-prone transcriptional bypass, and (3) endogenous enzyme-catalyzed DNA modifications that lead to pol II pausing and error-free transcriptional bypass.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
50
|
Li W, Li S. Facilitators and Repressors of Transcription-coupled DNA Repair in Saccharomyces cerevisiae. Photochem Photobiol 2016; 93:259-267. [PMID: 27796045 DOI: 10.1111/php.12655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
Nucleotide excision repair is a well-conserved DNA repair pathway that removes bulky and/or helix-distorting DNA lesions, such as UV-induced cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts. Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair that is dedicated to rapid removal of DNA lesions in the transcribed strand of actively transcribed genes. In eukaryotic cells, TCR is triggered by RNA polymerase II (RNAP II). Rad26, a DNA-dependent ATPase, Rpb9, a nonessential subunit of RNAP II, and Sen1, a 5' to 3' RNA/DNA and DNA helicase, have been shown to facilitate TCR in Saccharomyces cerevisiae. In contrast, a number of factors have also been found to repress TCR in the yeast. These TCR repressors include Rpb4, another nonessential subunit of RNAP II, Spt4/5, a transcription elongation factor complex, and the RNAP II-associated factor 1 complex (PAFc). It appears that the eukaryotic TCR process involves intricate interplays of RNAP II with TCR facilitators and repressors. In this minireview, we summarize recent advances in TCR in S. cerevisiae.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|