1
|
Wilson LRB, Nichol GS, Dalgarno SJ, Brechin EK. A [CuII24] truncated octahedron and its [CuII8] building block. Chem Commun (Camb) 2025; 61:4722-4725. [PMID: 40026000 DOI: 10.1039/d5cc00532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Reaction of CuCl2·2H2O with p-tert-butylthiacalix[4]arene (H4TC[4]A) affords a [CuII24] cage whose metallic skeleton conforms to a truncated octahedron in which the metal ions are strongly antiferromagnetically coupled. A structurally related [CuII8] cluster can be made using CuBr2 in an otherwise identical reaction.
Collapse
Affiliation(s)
- Lucinda R B Wilson
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| |
Collapse
|
2
|
Gao H, Wang H, Liu C, Yan Q, Wang Y, Wen H, You H, Hao Z, Liao W. Thiacalix[4]arene-capped Ln(III) aggregates with "hand in hand" structures and their luminescence properties. Dalton Trans 2025; 54:4332-4337. [PMID: 39927466 DOI: 10.1039/d4dt03308f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Two isostructural thiacalix[4]arene-capped Ln8 aggregates with a "hand in hand" structure, denoted as {Ln8(μ4-OH)2Cl2(TC4A)4(BCT)2(DMF)6--x(CH3OH)2+x(H2O)2}·mCH3OH·nDMF (Ln = Tb (1), Eu (2); H4TC4A = p-tert-butylthiacalix[4]arene; H2BCT = 3,5-bis(4'-carboxy-phenyl)-1,2,4-triazole; DMF = N,N'-dimethylformamide), were constructed from two sandwich-like Ln4-(TC4A)2 entities bridged via two BCT2- linkers. These aggregates present a layer-like structure on the ac plane, with poly-nuclear secondary building units (PSBUs) staggered and assembled in three-dimensional space. 1 exhibits green photoluminescence under 379 nm excitation, with an average decay time of approximately 1.15 ms. Notably, the metal-centered luminescence of 1 remains nearly stable even after replacing the DMF molecules with methanol. The structural stability of 1 in various solvents, along with its excellent photoluminescence properties after being immersed in water for several months, suggests that it could effectively resist luminescence quenching. This makes it a promising candidate for applications in anti-counterfeiting and luminescence detection. In contrast, 2 does not show visible luminescence under the irradiation of a portable ultraviolet lamp (λ = 326 nm), which could be attributed to the slight difference in ligand-based energy levels. Collectively, these findings enhance the understanding of the structural diversity and application scenarios of thiacalix[4]arene-capped Ln(III) aggregates.
Collapse
Affiliation(s)
- Hongbo Gao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chenxing Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Qicao Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yanyan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Herui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China.
| | - Hongpeng You
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Zhaomin Hao
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wuping Liao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Sun Z, Tang H, Wang L, Cao D. Advances in Chiral Macrocycles: Molecular Design and Applications. Chemistry 2025; 31:e202404217. [PMID: 39673369 DOI: 10.1002/chem.202404217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chiral macrocycles have recently emerged as promising materials for enantioselective recognition, asymmetric catalysis, and circularly polarized luminescence (CPL) due to their terminal-free structure, preorganized chiral cavities, and unique host-guest and self-assembly properties. This review summarizes recent advances in the design and synthesis of chiral macrocycles with central, axial, helical, and planar chirality, each imparting distinct structural and chiroptical characteristics. We highlight key strategies for constructing these macrocycles and their applications in optoelectronic and catalytic systems. Emphasis is placed on the balance between rigidity and flexibility in macrocycle design, essential for effective molecular recognition, adaptable catalysis, and CPL. We conclude with perspectives on future opportunities, anticipating ongoing developments in chiral macrocycle research.
Collapse
Affiliation(s)
- Zhihong Sun
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
4
|
Chen JH, Huang TY, Tong S, Wang MX. N-Doped Zigzag-Type Aromatic Truncated Cone Belts. J Am Chem Soc 2025; 147:1595-1603. [PMID: 39745926 DOI: 10.1021/jacs.4c11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Zigzag aromatic hydrocarbon belts, ultrashort segments of zigzag carbon nanotubes, have been fascinating in the chemistry community for more than a half century because of their aesthetically appealing molecular nanostructures and tantalizing applications. Precise introduction of heteroatoms of distinct electronegativity and electronic configuration can create various heterocyclic aromatic nanobelts with novel physical and chemical properties. Here, we report the synthesis of unprecedented N-doped zigzag-type aromatic belts, belt[n]pyrrole[n]pyridines (n = 6-8), from multiple intramolecular Caryl-Caryl homocoupling reactions of readily available azacalix[n](3,5-dibromopyridine)s. These compounds adopt globally π-conjugated belt structures and display unique photophysical and electrochemical properties. The truncated cone cavity of belt[8]pyrrole[8]pyridine was used as the outstanding host to form very stable 2:1 encapsulation complexes with fullerenes. This work opens a new avenue to the rational design and efficient synthesis of aromatic belts of distinct topological structures and tailor-made properties, which are invaluable in applications in materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Teng-Yu Huang
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Tong
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Iwamoto T, Hasegawa H, Mori D, Yamazaki T, Fujinuki K, Ishii Y. Post-Synthetic Modification of Calix[4]arene Framework by Iridium-Mediated Alkyne Insertion into an Inert C-C Bond: A Novel Strategy for Unsymmetrical Macrocycles. Chemistry 2024; 30:e202401490. [PMID: 39016691 DOI: 10.1002/chem.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 07/18/2024]
Abstract
As a novel synthetic method for unsymmetrical macrocycles, we herein developed a post-synthetic modification of calix[4]arenes by insertion of a terminal alkyne into an inert C(methylene)-C(aryl) bond of the macrocyclic framework. In this transformation, C-iridated calix[4]arenes, readily synthesized through C-H bond activation of the parent calix[4]arene, undergoes C(methylene)-C(aryl) bond cleavage followed by insertion of an alkyne to provide a ring-expanded calix[4]arene complex. Removal of the iridium metal from the resulting complex was readily accomplished by a simple treatment with an acid. The developed sequential method affords novel unsymmetrical, monofunctionalized macrocyclic compounds via 3 steps from the parent calix[4]arene in good yield. The unique unsymmetrical structures of the alkyne-inserted macrocycles were evaluated by X-ray single crystal analyses. On the basis of theoretical calculations, we propose a reaction mechanism involving an uncommon C-C bond cleavage step through δ-carbon elimination for the ring enlargement process.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
- Present address of Dr. Iwamoto: Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hibiki Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Daiki Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takuya Yamazaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kanako Fujinuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
6
|
Vinodh M, Alshammari AA, Al-Azemi TF. Influence of halogen-halogen interactions in the self-assembly of pillar[5]arene-based supramolecular polymers. RSC Adv 2024; 14:20553-20560. [PMID: 38946765 PMCID: PMC11211735 DOI: 10.1039/d4ra03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Halogen-halogen interactions play a pivotal role in the formation and stability of supramolecular assemblies. Herein, we investigate the assembly dynamics and dissociation pathways of linear supramolecular polymers based on pillar[5]arene-mediated by guest halogen-halogen interactions (C-X × X-C) in both the solution and solid states. The structure of the solid-state supramolecular assembly was determined by single-crystal X-ray diffraction analysis. The binding affinities of four different 1,4-dihalobutane guests with pillar[5]arene were investigated by 1H NMR spectroscopic titration and isothermal titration calorimetry (ITC). The formation of the halogen-bonded linear supramolecular polymer in solution was demonstrated using diffusion-ordered spectroscopy (DOSY) and ITC. Our findings highlight the dependence of the dissociation process on halogen nature within the encapsulated guest, revealing that the process is entropically driven (TΔS = 27.12 kJ mol-1) and enthalpically disfavored (ΔH = 9.99 kJ mol-1). Moreover, the disassembly of supramolecular polymers promoted by N-containing compounds was investigated using 1H NMR spectroscopy and ITC, revealing that the process is driven both enthalpically (ΔH = -2.64 kJ mol-1) and entropically (TΔS = 15.70 kJ mol-1). Notably, the data suggest the formation of N⋯I bonding interactions at both ends of the inclusion guest, elucidating the intricate interplay of halogen interactions and host-guest chemistry in supramolecular polymer systems.
Collapse
Affiliation(s)
- Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| | - Anwar A Alshammari
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| | - Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| |
Collapse
|
7
|
Mamleev K, Čejka J, Eigner V, Krupička M, Dvořáková H, Lhoták P. Reactivity of phenoxathiin-based thiacalixarenes towards C-nucleophiles. RSC Adv 2024; 14:13463-13473. [PMID: 38665507 PMCID: PMC11043795 DOI: 10.1039/d4ra02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
A starting thiacalix[4]arene can be easily transformed into oxidized phenoxathiin-based macrocycles 9 and 9', representing an unusual structural motif in calixarene chemistry. The presence of electron-withdrawing groups (SO2, SO) and the considerable internal strain caused by the condensed heterocyclic moiety render these molecules susceptible to nucleophilic attack. The reaction with various organolithium reagents provides a number of different products resulting from the cleavage of either the calixarene skeleton or the phenoxathiin group or both ways simultaneously. This enables the preparation of thiacalixarene analogues with unusual structural features, including systems containing a biphenyl fragment as a part of the macrocyclic skeleton. The above-described transformations, unparalleled in classical calixarene chemistry, clearly demonstrate the synthetic potential of this thiacalixarene subgroup.
Collapse
Affiliation(s)
- Kamil Mamleev
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP) Technicka 5 166 28 Prague 6 Czech Republic +420-220444288 +420-220445055
| | - Jan Čejka
- Department of Solid State Chemistry, UCTP 166 28 Prague 6 Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, UCTP 166 28 Prague 6 Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP) Technicka 5 166 28 Prague 6 Czech Republic +420-220444288 +420-220445055
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, UCTP 166 28 Prague 6 Czech Republic
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP) Technicka 5 166 28 Prague 6 Czech Republic +420-220444288 +420-220445055
| |
Collapse
|
8
|
Ogoshi T, Azuma S, Wada K, Tamura Y, Kato K, Ohtani S, Kakuta T, Yamagishi TA. Exciplex Formation by Complexation of an Electron-Accepting Guest in an Electron-Donating Pillar[5]arene Host Liquid. J Am Chem Soc 2024; 146:9828-9835. [PMID: 38563366 DOI: 10.1021/jacs.3c14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a novel system, a liquid-state pillar[5]arene decorated with tri(ethylene oxide) chains, that brings electron-donor and electron-acceptor molecules into proximity for efficient exciplex formation. The electron-accepting guests exhibit a blue-purple emission from a localized excited state upon excitation in common solvents. However, directly dissolving the guests in the electron-donating pillar[5]arene liquid (a bulk system) results in visible green emission from the formed exciplexes. In the bulk system, the guest molecules are always surrounded by excess pillar[5]arene molecules, resulting in the formation of mainly inclusion-type exciplexes. In the bulk system, energy migration occurs between the pillar[5]arene molecules. Excitation of the pillar[5]arenes results in a more intense green exciplex emission than that observed upon direct excitation of the guests. In summary, the pillar[5]arene liquid is a novel system for achieving efficient exciplex formation and energy migration that is different from typical solvent and solid systems.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuko Tamura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Chen Z, Canard G, Grauby O, Mourot B, Siri O. Breaking Azacalix[4]arenes into Induline Derivatives. Molecules 2023; 28:8113. [PMID: 38138597 PMCID: PMC10746034 DOI: 10.3390/molecules28248113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Tetraamino-tetranitro-azacalixarene 5 is at the crossroad of two different families of compounds depending on the conditions and the agent used to reduce the NO2 groups: (1) azacalixphyrin 7 in neutral medium, or (2) phenazinium of type 8 in acidic medium. The key role of the N-substituted amino functions at the periphery is highlighted by investigating octaaminoazacalixarene as a model compound, and by using the corresponding tetrahydroxy-tetranitro-azacalixarene 15 as a precursor, which behaves differently.
Collapse
Affiliation(s)
| | | | | | | | - Olivier Siri
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325 CNRS Aix-Marseille Université, Campus de Luminy, Case 913, F-13288 Marseille, France; (Z.C.); (G.C.); (O.G.); (B.M.)
| |
Collapse
|
10
|
Iizuka K, Takezawa H, Fujita M. Chemical Site-Differentiation of Calix[4]arenes through Enforced Conformations by Confinement in a Cage. J Am Chem Soc 2023; 145:25971-25975. [PMID: 37976461 DOI: 10.1021/jacs.3c10720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Desymmetrization of a symmetric skeleton enables late-stage functionalization of molecules. However, reagent-controlled desymmetrization by site-selective reactions of symmetric molecules remains a difficult synthetic strategy. Here, we found that complete confinement of a symmetric molecule within a coordination cage can desymmetrize the guest conformation, making it possible to site-selectively activate or protect the otherwise equivalent reaction sites of calix[4]arene derivatives. Multistep, one-cage reactions also demonstrated the transformation of an AAAA-type calix[4]arene into a lower symmetry ABAC-type one.
Collapse
Affiliation(s)
- Kenta Iizuka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
11
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Nikishkin N, Cějka J, Eigner V, Šimková L, Ludvík J, Cuřínová P, Dvořáková H, Lhoták P. Synthesis of Thiapillar[6]arenes Bearing Redox-Active (Hydro)quinone Groups. Electrochemical and XRD Study. J Org Chem 2023; 88:12357-12366. [PMID: 37593959 DOI: 10.1021/acs.joc.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Pillar[n]arenes are among the newest members of the macrocyclic family. Nevertheless, their conformational behavior and binding properties as well as redox properties of dealkylated pillar[n]arenes are well-studied. At the same time, introducing a heteroatom into a cyclophane macrocycle is already known to alter all the above properties drastically. This study presents a simple synthetic approach based on thia-Michael addition cyclization that readily resulted into hexathiapillar[6]arene with four phenylene units alternated by two redox-active hydroquinone moieties. The straightforward synthesis of the macrocycle enabled a systematic study of its conformation and redox behavior. The modification of hexathiapillar[6]arene afforded five functionalized derivatives, which were studied structurally in detail. The findings revealed interesting redox and structural properties of the macrocycle and its derivatives including the formation of crystal lattices with continuous channels and empty voids.
Collapse
Affiliation(s)
- Nicolai Nikishkin
- Department of Organic Chemistry, University of Chemistry and Technology Prague (UCTP), 16628 Prague, Czech Republic
| | - Jan Cějka
- Department of Solid State Chemistry, University of Chemistry and Technology Prague (UCTP), 16628 Prague, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, University of Chemistry and Technology Prague (UCTP), 16628 Prague, Czech Republic
| | - Ludmila Šimková
- J. Heyrovský Institute of Physical Chemistry, AS CR, 18223 Prague, Czech Republic
| | - Jiří Ludvík
- J. Heyrovský Institute of Physical Chemistry, AS CR, 18223 Prague, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals, AS CR, 16500 Prague, Czech Republic
| | - Hana Dvořáková
- Laboratory of Nuclear Magnetic Resonance Spectroscopy, University of Chemistry and Technology Prague (UCTP), 16628 Prague, Czech Republic
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology Prague (UCTP), 16628 Prague, Czech Republic
| |
Collapse
|
13
|
Ueda M, Isozaki M, Mazaki Y. Synthesis, Structure, and Characterization of Thiacalix[4]-2,8-thianthrene. Molecules 2023; 28:5462. [PMID: 37513336 PMCID: PMC10383442 DOI: 10.3390/molecules28145462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Sulfur-containing macrocycles have attracted substantial interest because they exhibit unique characteristics due to their polygonal ring-shaped skeleton. In this study, a thianthrene-based cyclic tetramer with the sulfur linker, thiacalix[4]-2,8-thianthrene (TC[4]TT), was successfully prepared from a cyclo-p-phenylenesulfide derivative using acid-induced intramolecular condensation. Single crystal X-ray diffraction revealed that TC[4]TT adopts an alternative octagonal form recessed to the inner side. Its internal cavity included small solvents, such as chloroform and carbon disulfide. Due to its polygonal geometry, TC[4]TT laminated in a honeycomb-like pattern with a porous channel. Furthermore, TC[4]TT showed fluorescence and phosphorescence emission in a CH2Cl2 solution at ambient and liquid nitrogen temperatures. Both emission bands were slightly redshifted compared with those of the reference compounds (di(thanthren-2-yl)sulfane (TT2S) and thianthrene (TT)). This work describes a sulfur-containing thiacalixheterocycle-based macrocyclic system with intriguing supramolecular chemistry based on molecular tiling and photophysical properties in solution.
Collapse
Affiliation(s)
- Masafumi Ueda
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| | - Moe Isozaki
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| | - Yasuhiro Mazaki
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| |
Collapse
|
14
|
Mamleev K, Eigner V, Dvořáková H, Lhoták P. The Unexpected Chemistry of Thiacalix[4]arene Monosulfoxide. Molecules 2023; 28:molecules28093914. [PMID: 37175324 PMCID: PMC10179807 DOI: 10.3390/molecules28093914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Thiacalix[4]arene monosulfoxide 4 possesses a very unusual chemistry, as demonstrated by several unprecedented derivatives in calixarene chemistry. Interestingly, compound 4 cannot be prepared by the dealkylation of its corresponding tetramethoxy derivative using BBr3. Instead, the borate complex is formed with a boron bound by the two neighboring phenolic oxygens and a sulfoxide group. A similar type of borate complex with a spirodienone fragment was then isolated as a by-product. The oxidation of monosulfoxide with Chloramine-T did not provide the expected spirodienone moiety, but rather a complex oxathiane-based spiroheterocyclic part containing a chlorine atom. X-ray analyses confirmed the structures of the unusual products and feasible formation mechanisms were proposed. These results provide further evidence of the distinction between thiacalixarene chemistry and the chemistry of classical CH2 analogues.
Collapse
Affiliation(s)
- Kamil Mamleev
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, UCTP, Technická 5, 166 28 Prague, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, UCTP, Technická 5, 166 28 Prague, Czech Republic
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
15
|
Huang YT, Xue M, Yang Y. Imidazobenzimidazole fused azacalix [4]arenes: Synthesis, structure, and Zn2+-selective colorimetric-fluorometric sensor. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
16
|
Desai V, Sharma VS, Rathod SL, Sharma AS, Mali HA, Shah RR, Shrivastav PS. Thiacalixarene Appended Azo-based Supramolecular Systems: Self-assembly and Photo Tuning Reversible Liquid Crystalline Properties. Chemphyschem 2023; 24:e202200803. [PMID: 36642695 DOI: 10.1002/cphc.202200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Four new azo-based supramolecular materials containing thiacalixarene core substituted by variable alkoxy groups (TFA1 -TFA4 ) have been designed and synthesized for the mesomorphic and photoswitching properties. The liquid crystalline behavior were accomplished by using DSC, POM, and XRD studies. All azo-based thiacalixarene based materials with short and higher chain length display columnar hexagonal mesophase with broad temperature range. The thermal behavior of all the materials was investigated by DSC and TGA study. The structural and conformational study of the lower rim functionalized materials was confirmed by using different techniques. These thiacalixarene moulded liquid crystalline compounds shows columnar self-assembly type behavior and higher thermal stability. The introduction of bi-substituted azo-ester network towards the lower rim of thiacalixarene core has impact on the electron delocalization and liquid crystalline properties. The photoswitching properties suggested cis and trans azo-isomerization under radiation of UV light and higher thermal back relaxation time. The mesogenic behaviour of compound TFA2 and TFA4 were demolished by the influence of cis and trans isomerization. The structure-property correlation is studied to understand the variation in mesogenic properties with the substitution of variable alkoxy side chain.
Collapse
Affiliation(s)
- Vipul Desai
- Department of Chemistry, K.K.Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, Gujarat, 380008, India
| | - Vinay S Sharma
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Suryajit L Rathod
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anuj S Sharma
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Hitendra A Mali
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rutesh R Shah
- Department of Chemistry, K.K.Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, Gujarat, 380008, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
17
|
Nugmanova АR, Yakimova LS, Shibaeva KS, Stoikov II. Metal (Na+, K+, Cs+) Template Effect–Controlled Synthesis of Stereoisomers of Tetrasubstituted (Thia)calix[4]arene Derivatives Containing Sulfonatoalkyl Moieties on the Lower Rim. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Noble Metal Nanoparticles Meet Molecular Cages: A tale of Integration and Synergy. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Mostovaya OA, Vavilova AA, Stoikov II. Supramolecular Systems Based on Thiacalixarene Derivatives and Biopolymers. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zhao S, Sun Q, Liu T, Zhang H, Wang Y, Zhang T, Liu X, Li W, Zhao Z. Highly Selective Adsorption of Cationic Dye by An Anionic Zinc‐Organic Framework. ChemistrySelect 2022. [DOI: 10.1002/slct.202202084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Si Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Qi Sun
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Tong Liu
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Hang Zhang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Yi‐Peng Wang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Tong‐Xin Zhang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xin‐Xin Liu
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Wen‐Cui Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum, Chang Ping Beijing 102249 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum, Chang Ping Beijing 102249 China
| |
Collapse
|
21
|
Albumin/Thiacalix[4]arene Nanoparticles as Potential Therapeutic Systems: Role of the Macrocycle for Stabilization of Monomeric Protein and Self-Assembly with Ciprofloxacin. Int J Mol Sci 2022; 23:ijms231710040. [PMID: 36077448 PMCID: PMC9455997 DOI: 10.3390/ijms231710040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The therapeutic application of serum albumin is determined by the relative content of the monomeric form compared to dimers, tetramers, hexamers, etc. In this paper, we propose and develop an approach to synthesize the cone stereoisomer of p-tert-butylthiacalix[4]arene with sulfobetaine fragments stabilization of monomeric bovine serum albumin and preventing aggregation. Spectral methods (UV-vis, CD, fluorescent spectroscopy, and dynamic light scattering) established the influence of the synthesized compounds on the content of monomeric and aggregated forms of BSA even without the formation of stable thiacalixarene/protein associates. The effect of thiacalixarenes on the efficiency of protein binding with the antibiotic ciprofloxacin was shown by fluorescence spectroscopy. The binding constant increases in the presence of the macrocycles, likely due to the stabilization of monomeric forms of BSA. Our study clearly shows the potential of this macrocycle design as a platform for the development of the fundamentally new approaches for preventing aggregation.
Collapse
|
22
|
Exploring Inclusion Complexes of Amino Acids with -Sulfonatothiacalix[4]arene by Experimental and Computational Approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Swager TM, Etkind SI, Ichii S, Romero NA. Thiapillar[6]arene: Synthesis, Functionalization, and Properties. Synlett 2022. [DOI: 10.1055/s-0040-1719932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe design and synthesis of new macrocycles with well-defined cavities represent a promising avenue for the development of new supramolecular hosts. Moreover, the ability to diversify a macrocycle through chemical manipulations enables the fine-tuning and tailoring of properties. In this report, the synthesis and functionalization of thiapillar[6]arene, a pillar[6]arene analogue in which the bridging methylene groups are replaced by sulfurs, are described. First, we demonstrate the scalable synthesis of the parent thiapillar[6]arene. Next, the diversification of thiapillar[6]arene is demonstrated via functionalization of the phenols and oxidation of the sulfur atoms. The solid-state structures of two thiapillar[6]arene derivatives are reported, and the effect of sulfur oxidation state on the macrocyclic conformation is discussed. All sulfone derivatives described were found to demonstrate high luminescence quantum yields (ΦF = 0.43–0.66) in CH2Cl2 with emission maxima between λ = 404 and 462 nm. Lastly, assessment of the electrochemical properties of the sulfone derivatives by square-wave voltammetry revealed electron-accepting ability owing to the oxidation of the sulfur atoms, with four reduction events observed for the analogues surveyed. Overall, this work implicates thiapillar[6]arene as a modular scaffold amenable for further applications in host–guest chemistry and sensing.
Collapse
|
24
|
Vincent SP, Chen W. Copillar[5]arene Chemistry: Synthesis and Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1738369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractResearch on pillar[n]arenes has witnessed a very quick expansion. This emerging class of functionalized macrocyclic oligoarenes not only offers host–guest properties due to the presence of the central cavity, but also presents a wide variety of covalent functionalization possibilities. This short review focuses on copillararenes, a subfamily of pillar[n]arenes. In copillararenes, at least one of the hydroquinone units bears different functional groups compared to the others. After having defined the particular features of copillararenes, this short review compares the different synthetic strategies allowing their construction. Some key applications and future perspectives are also described. 1 Introduction2 General Features of Pillar[5]arenes3 Synthesis of Functionalized Copillar[4+1]arenes4 Concluding Remarks
Collapse
Affiliation(s)
| | - Wenzhang Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University
- Department of Chemistry, UNamur, NARILIS
| |
Collapse
|
25
|
Flood R, Ramberg KO, Mengel DB, Guagnini F, Crowley PB. Protein Frameworks with Thiacalixarene and Zinc. CRYSTAL GROWTH & DESIGN 2022; 22:3271-3276. [PMID: 35529063 PMCID: PMC9073927 DOI: 10.1021/acs.cgd.2c00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Indexed: 05/15/2023]
Abstract
Controlled protein assembly provides a means to generate biomaterials. Synthetic macrocycles such as the water-soluble sulfonato-calix[n]arenes are useful mediators of protein assembly. Sulfonato-thiacalix[4]arene (tsclx 4 ), with its metal-binding capacity, affords the potential for simultaneous macrocycle- and metal-mediated protein assembly. Here, we describe the tsclx 4 -/Zn-directed assembly of two proteins: cationic α-helical cytochrome c (cyt c) and neutral β-propeller Ralstonia solanacearum lectin (RSL). Two co-crystal forms were obtained with cyt c, each involving multinuclear zinc sites supported by the cone conformation of tsclx 4 . The tsclx 4 /Zn cluster acted as an assembly node via both lysine encapsulation and metal-mediated protein-protein contacts. In the case of RSL, tsclx 4 adopted the 1,2-alternate conformation and supported a dinuclear zinc site with concomitant encapsulation and metal-binding of two histidine side chains. These results, together with the knowledge of thiacalixarene/metal nanoclusters, suggest promising applications for thiacalixarenes in biomaterials and MOF fabrication.
Collapse
|
26
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
27
|
Schleife F, Bonnot C, Chambron J, Börner M, Kersting B. Expanded Mercaptocalixarenes: A New Kind of Macrocyclic Ligands for Stabilization of Polynuclear Thiolate Clusters. Chemistry 2022; 28:e202104255. [PMID: 35199387 PMCID: PMC9313869 DOI: 10.1002/chem.202104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/11/2022]
Abstract
The syntheses and properties of expanded 4-tert-butyl-mercaptocalix[4]arenes, in which the methylene linkers are replaced by -CH2 NRCH2 - or -CH2 NRCH2 - and -CH2 NRCH2 CH2 CH2 NRCH2 - units, are described. The new macrocycles were obtained in a step-wise manner, utilizing fully protected, i. e. S-alkylated, derivatives of the oxidation-sensitive thiophenols in the cyclisation steps. Reductive cleavage of the macrobicyclic or macrotricyclic intermediates (6, 7, 11) afforded the free thiophenols (H4 8, H4 9, and H4 12) in preparative yields as their hydrochloride salts. The protected proligands can exist in two conformations, resembling the "cone" and "1,3-alternate" conformations found for the parent calix[4]arenes. The free macrocycles do not show conformational isomerism, but are readily oxidized forming intramolecular disulfide linkages. Preliminary complexation experiments show that these expanded mercaptocalixarenes can serve as supporting ligands for tetranuclear thiolato clusters.
Collapse
Affiliation(s)
- Frederik Schleife
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| | - Clément Bonnot
- Institut de Chimie Moléculaire de l'Université de BourgogneUMR 6302 of the CNRS and the University Bourgogne – Franche-Comté9, rue Alain Savary21078DijonFrance
| | - Jean‐Claude Chambron
- Institut de Chimie Moléculaire de l'Université de BourgogneUMR 6302 of the CNRS and the University Bourgogne – Franche-Comté9, rue Alain Savary21078DijonFrance
- Institut de Chimie de StrasbourgUMR 7177 of the CNRS and the University of Strasbourg1, rue Blaise Pascal67008StrasbourgFrance
| | - Martin Börner
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| | - Berthold Kersting
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| |
Collapse
|
28
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Akhmadeev B, Podyachev S, Katsyuba S, Spicher S, Sudakova S, Gimazetdinova GS, Syakaev V, Sinyashin O, Mustafina A. The incorporation of upper vs lower rim substituted thia- and calix[4]arene ligands into polydiacethylene polymeric bilayers for rational design of sensors to heavy metal ions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Hasegawa M, Takahashi K, Mazaki Y. Chalcogenacalix[4]dithienoselenophene: Synthesis and Properties of Cyclic Thio- and Selenoether of Dithienoselenophene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Hasegawa
- Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373
| | - Kazuhiro Takahashi
- Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373
| | - Yasuhiro Mazaki
- Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373
| |
Collapse
|
31
|
Wang M, Guo Y, Zhao G, Chen B, Bi Y. Ni4-thiacalix[4]arene sandwiched Mo8 polyoxometalate bimetallic nanoclusters for electrocatalytic glucose oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Yakimova L, Kunafina A, Nugmanova A, Padnya P, Voloshina A, Petrov K, Stoikov I. Structure-Activity Relationship of the Thiacalix[4]arenes Family with Sulfobetaine Fragments: Self-Assembly and Cytotoxic Effect against Cancer Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041364. [PMID: 35209152 PMCID: PMC8879733 DOI: 10.3390/molecules27041364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Regulating the structure of macrocyclic host molecules and supramolecular assemblies is crucial because the structure-activity relationship often plays a role in governing the properties of these systems. Herein, we propose and develop an approach to the synthesis of the family of sulfobetaine functionalized thiacalix[4]arenes with regulation of the self-assembly and cytotoxic effect against cancer cell lines. The dynamic light scattering method showed that the synthesized macrocycles in cone, partial cone and 1,3-alternate conformations form submicron-sized particles with Ag+ in water, but the particle size and polydispersity of the systems studied depend on the macrocycle conformation. Based on the results obtained by 1H and 1H-1H NOESY NMR spectroscopy and transmission electron microscopy for the macrocycles and their aggregates with Ag+, a coordination scheme for the Ag+ and different conformations of p-tert-butylthiacalix[4]arene functionalized with sulfobetaine fragments was proposed. The type of coordination determines the different shapes of the associates. Cytotoxic properties are shown to be controlled by the shape of associates, with the highest activity demonstrated by thiacalix[4]arenes in partial cone conformation. This complex partial cone/Ag+ is two times higher than the reference drug imatinib mesylate. High selectivity against cervical carcinoma cell line indicates the prospect of their using as components of new anticancer system.
Collapse
Affiliation(s)
- Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
- Correspondence: (L.Y.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | - Aisylu Kunafina
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Aigul Nugmanova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Pavel Padnya
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (A.V.); (K.P.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
- Correspondence: (L.Y.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
33
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
34
|
Wang H, Zheng X. Theoretical Study of Macrocyclic Host Molecules: From Supramolecular Recognition to Self-Assembly. Phys Chem Chem Phys 2022; 24:19011-19028. [DOI: 10.1039/d2cp02152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular chemistry focuses on molecular recognition and self-assembly of various building blocks through weak non-covalent interactions, including anion-π, hydrogen bond (HB), hydrophobic interactions, van der Waals (vdW) interactions, etc, which...
Collapse
|
35
|
Zhu Z, Zhang J, Cong Y, Ge R, Li Z, Li X, Zheng S. Two Giant
Calixarene‐Like
Polyoxoniobate Nanocups {Cu
12
Nb
120
} and {Cd
16
Nb
128
} Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yu‐Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
36
|
Zhu ZK, Zhang J, Cong YC, Ge R, Li Z, Li XX, Zheng ST. Two Giant Calixarene-Like Polyoxoniobate Nanocups {Cu 12 Nb 120 } and {Cd 16 Nb 128 } Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021; 61:e202113381. [PMID: 34919310 DOI: 10.1002/anie.202113381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/10/2022]
Abstract
Cup-shaped molecules are of great interest due to their appealing architectures and properties. Compared with widely studied calixarenes, polyoxometalate-based cup-shaped molecules currently remain a virgin land waiting for exploration. In this work, we report the first discovery of two giant cup-shaped inorganic-organic hybrid polyoxoniobates (PONbs) of {Cu12 Nb120 } and {Cd16 Nb128 }. The former integrates three tricyclic Nb24 clusters and a hexacyclic Nb48 cluster into a cup-shaped molecule via a Cu12 metallacalixarene, while the latter unifies two tricyclic Nb24 clusters and a brand-new pentacyclic Nb40 cluster into another cup-shaped molecule via a hybrid Cd16 unit. With 132 and 144 metal centers, {Cu12 Nb120 } and {Cd16 Nb128 } show the largest two inorganic-organic hybrid PONbs known to date.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu-Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
37
|
Mostovaya O, Padnya P, Shiabiev I, Mukhametzyanov T, Stoikov I. PAMAM-calix-dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int J Mol Sci 2021; 22:ijms222111901. [PMID: 34769329 PMCID: PMC8585033 DOI: 10.3390/ijms222111901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022] Open
Abstract
A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.
Collapse
Affiliation(s)
| | - Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
38
|
Hydroxycoumarin encapsulated sulfonatothiacalix[4]arene: 1H NMR, steady state fluorescence and theory. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Landovský T, Babor M, Čejka J, Eigner V, Dvořáková H, Krupička M, Lhoták P. Nucleophile-induced transformation of phenoxathiin-based thiacalixarenes. Org Biomol Chem 2021; 19:8075-8085. [PMID: 34473181 DOI: 10.1039/d1ob01487k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidized phenoxathiin-based macrocycles, easily accessible thiacalix[4]arene derivatives, consist of a unique set of structural elements representing a key prerequisite for the unexpected reactivity described in this paper. As proposed, the internal strain, imposed by the presence of a heterocyclic moiety, together with a number of electron-withdrawing groups (SO2) opens the way to the cleavage of the macrocyclic skeleton through a cascade of three SNAr reactions triggered by the nucleophilic attack of an SH- anion. The whole transformation, which is unparalleled in classical calixarene chemistry, leads to unique linear sulfinic acid derivatives with a rearranged phenoxathiin moiety that can serve as building blocks for macrocyclic systems of a new type.
Collapse
Affiliation(s)
- Tomáš Landovský
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Martin Babor
- Department of Solid State Chemistry, UCTP, 166 28 Prague 6, Czech Republic
| | - Jan Čejka
- Department of Solid State Chemistry, UCTP, 166 28 Prague 6, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, UCTP, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, UCTP, 166 28 Prague 6, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technicka 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
40
|
Тhiacalix[4]arene phosphonate C-800 as a novel fluorescent probe for zinc in living cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Litvinov IA, Islamov DA, Ovsyannikov OA, Solovieva SE. SPATIAL STRUCTURE OF MONO AND BIS AMIDE-SUBSTITUTED p-TERT-BUTYL-THIACALIX[4]ARENES IN THE CRYSTAL PHASE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Takemura H. Synthesis of Azacalixarenes and Development of Their Properties. Molecules 2021; 26:4885. [PMID: 34443473 PMCID: PMC8398485 DOI: 10.3390/molecules26164885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the synthesis, structure, and interactions of metal ions, the detection of some weak interactions using the structure, and the construction of supramolecules of azacalixarenes that have been reported to date. Azacalixarenes are characterized by the presence of shallow or deep cavities, the simultaneous presence of a basic nitrogen atom and an acidic phenolic hydroxyl group, and the ability to introduce various side chains into the cyclic skeleton. These molecules can be given many functions by substituting groups on the benzene ring, modifying phenolic hydroxyl groups, and converting side chains. The author discusses the evidence of azacalixarene utilizing these characteristics.
Collapse
Affiliation(s)
- Hiroyuki Takemura
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
43
|
Kortus D, Kundrát O, Čejka J, Dvořáková H, Lhoták P. Chemistry of 2,14-Dithiacalix[4]arene: Searching for the Missing Fifth Conformer. J Org Chem 2021; 86:9788-9801. [PMID: 34184893 DOI: 10.1021/acs.joc.1c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contrary to theoretical predictions, direct alkylation of 2,14-dithiacalix[4]arene provides only four out of five basic conformers (atropisomers). To prepare the missing 1,2 (C)-alternate conformer, the indirect alkylation strategy was applied using 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane as a protective agent. As proved by the combination of NMR and X-ray crystallography, the position of the disiloxane bridge on the macrocycle is not fixed and can be changed under basic conditions, representing thus so far unknown rearrangement of the siloxane moiety. The subsequent dialkylation/deprotection and dialkylation enabled the synthesis of the last missing conformer. As demonstrated by several examples, the mixed-bridge macrocycle (with both CH2 and S bridging units) enables preparation of unusual conformers or substitution patterns, which are difficult to obtain, if at all, in classical calixarene chemistry. This feature makes 2,14-dithiacalix[4]arene a very promising candidate for the role of molecular scaffold or platform in various supramolecular applications.
Collapse
Affiliation(s)
- Daniel Kortus
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
| | - Ondřej Kundrát
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Čejka
- Department of Solid State Chemistry, UCTP, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR spectroscopy, UCTP, 166 28 Prague 6, Czech Republic
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
44
|
Xing T, Wang Z, Sun Y, He Z, Wang K, Liu Z, Elsegood MRJ, Bedwell EV, Redshaw C. Co‐polymerization of propylene oxide and
CO
2
using early transition metal (groups
IV
and V) metallocalix[
n
]arenes (n = 4, 6, 8). J Appl Polym Sci 2021. [DOI: 10.1002/app.50513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tian Xing
- Plastics Collaboratory, Department of Chemistry University of Hull Hull UK
| | - Zhong‐Yu Wang
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an China
| | - Yong‐Chang Sun
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an China
| | - Zhen‐Hong He
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an China
| | - Kuan Wang
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an China
| | - Zhao‐Tie Liu
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an China
- School of Chemistry & Chemical Engineering Shaanxi Normal University Xi'an China
| | | | | | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry University of Hull Hull UK
| |
Collapse
|
45
|
Mostovaya O, Padnya P, Shurpik D, Shiabiev I, Stoikov I. Novel lactide derivatives of p-tert-butylthiacalix[4]arene: Directed synthesis and molecular recognition of catecholamines. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Kortus D, Křížová K, Dvořáková H, Eigner V, Lhoták P. Synthesis of 2,8-dithiacalix[4]arene based on fragment condensation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Xing T, Prior TJ, Chen K, Redshaw C. Titanium complexes bearing oxa- and azacalix[4, 6]arenes: structural studies and use in the ring opening homo-/co-polymerization of cyclic esters. Dalton Trans 2021; 50:4396-4407. [PMID: 33704325 DOI: 10.1039/d1dt00189b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of excess [Ti(OiPr)4] with p-tert-butyltetrahomodioxacalix[6]areneH6 (L1H6) afforded, after work-up (MeCN), the complex [Ti2(OiPr)2(MeCN)L1]·3.5MeCN (1·3.5MeCN), whilst the oxo complex [Ti4(μ3-O)2(H2O)(L1)2]·MeCN (2·MeCN) was isolated via a fortuitous synthesis involving the use of two equivalents of [Ti(OiPr)4]. Reactions of p-methyl-dimethyldiazacalix[6]areneH6 (L2H6) with [TiF4] (four equivalents), [TiCl4(THF)2] (two equivalents) or [TiBr4] (>four equivalents) resulted in the titanium-based azacalix[n]arene complexes [Ti4F14L2H2(H)2]·2.5MeCN (3·2.5MeCN), [Ti2X4(H2O)2OL2H2(H)2] (X = Cl (4·5MeCN), Br (5·4.5MeCN) and [Ti4Br12L2(H)2(MeCN)6]·7MeCN (6·7MeCN), respectively. Reaction of four equivalents of [TiF4] with L3H4 (L3H4 = p-methyl-dimethyldiazacalix[4]areneH4) afforded the product [Ti2F2(μ-F)3L3(H)2(SiF5)]·2MeCN (7·2MeCN). These complexes have been screened for their potential to act as pre-catalysts in the ring opening polymerization (ROP) of ε-caprolactone (ε-CL), δ-valerolactone (δ-VL) and rac-lactide (r-LA). Generally, the titanium complexes bearing oxacalixarene exhibited better activities than the azacalixarene-based pre-catalysts. For ε-CL, δ-VL and r-LA, moderate activity at 130 °C over 24 h was observed for 1-6. In the case of the co-polymerization of ε-CL with r-LA, 1-6 afforded reasonable conversions and high molecular weight polymers; 7 exhibited lower catalytic performance due to low solubility. None of the complexes proved to be active in the polymerization of ω-pentadecalactone (ω-PDL) under the conditions employed herein.
Collapse
Affiliation(s)
- Tian Xing
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | |
Collapse
|
48
|
Hang X, Bi Y. Thiacalix[4]arene-supported molecular clusters for catalytic applications. Dalton Trans 2021; 50:3749-3758. [PMID: 33651066 DOI: 10.1039/d0dt04233a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiacalixarenes are intriguing ligands that have attracted sustained interest because of their changeable conformations and excellent coordination ability. Thiacalix[4]arene analogues, which can bind metal ions to form modular second building units, are capable of constructing molecular-based functional materials with defined structures and various applications via directional coordination assembly. Due to rich metal-sulfur bonds, thiacalix[4]arene-based molecular clusters also exhibit diverse properties compared to other clusters. In particular, the combination of thiacalixarenes with currently popular molecular architectures, such as high-nuclearity clusters and coordination cages, has shown special catalytic performances. In this perspective, the latest advances in catalytic applications of thiacalix[4]arene-based molecular clusters, including molecular clusters themselves as catalysts and coordination cages serving as reaction vessels encapsulating metal nano-components for catalysis, are highlighted.
Collapse
Affiliation(s)
- Xinxin Hang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China.
| | | |
Collapse
|
49
|
Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED. Gas Storage in Porous Molecular Materials. Chemistry 2021; 27:4531-4547. [PMID: 33112484 DOI: 10.1002/chem.202003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Kyle J Korman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
50
|
Polyfunctionalized biaryls accessed by a one-pot nucleophilic aromatic substitution and sigmatropic rearrangement reaction cascade under mild conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|