1
|
Michael S, Jeyaraman P, Marimuthu B, Rajamanikam R, Thanasamy R, Arunsunai Kumar K, Mitu L, Raman N. Pharmaceutical manifestation of Knoevenagel condensed metal (II) complexes through virtual, in vitro and in vivo assessments. J Biomol Struct Dyn 2024:1-15. [PMID: 38189286 DOI: 10.1080/07391102.2023.2301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Sulphur containing compounds possess a great deal of interest due to wide range of beneficial activities towards biotic species. This work also deals with the study of biological examination of newly synthesized sulphur containing Cu(II) and Zn(II) complexes derived from (E)-4-(phenylimino)-3-((E)-1-(phenylimino)ethyl)pent-2-ene-1-thiol Schiff bases. Moreover, the DNA nuclease efficiency of the synthesized metal complexes is studied by UV absorption studies, Fluorescence studies, Viscosity and CV titrations which confirm the intercalative mode of binding. Pharmacokinetic studies and drug like activity of these compounds are screened with the help of SWISS ADME online freeware. Their morphological nature is corroborated by various spectral techniques. Optimized geometry and biologically accessible nature of the synthesized compounds are investigated by Gaussian 09 W software. Interestingly, molecular docking studies are carried out against cancer DNA and 6J10 cancer cell. Anti-inflammatory and in vitro antioxidant activities have been studied to validate the theoretical prediction. Based on these preliminary pharmacological activities, the in vitro cytotoxicity and in vivo antitumor activities are examined using MCF-7, HeLa, Hep-2, HepG-2 and Ehrlich ascites carcinoma (EAC) cell lines. All the above examinations reveal that the nitro substituted transition metal complexes possess higher biological bustle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samuel Michael
- Research Department of Chemistry, VHNSN College, Virudhungar, India
- Department of Chemistry, PSR Engineering College, Sivakasi, India
| | - Porkodi Jeyaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | | | | | - Radha Thanasamy
- Department of Chemistry, Saiva Bhanu Kshatriya College, Aruppukottai, India
| | | | - Liviu Mitu
- Department of Chemistry, University of Pitesti, Pitesti, Romania
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhungar, India
| |
Collapse
|
2
|
Michael S, Jeyaraman P, Marimuthu B, Rajasekar R, Thanasamy R, Kumar KA, Raman N. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Samuel M, Rajasekar R, Jeyaraman P, Muthusamy S, Muniyandi V, Raman N. DNA interaction perspectives of sulphur containing Knoevenagel condensed copper(II) complexes: Molecular docking, DFT, anti-biogram and insilico assessment. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Rodríguez-Muñiz GM, Miranda MA, Lhiaubet-Vallet V. Model Studies on the Photoreduction of the 5-Hydroxy-5,6-dihydrothymine and 5-Methyl-2-pyrimidone Moieties of (6-4) Photoproducts by Photolyase. Photochem Photobiol 2022; 98:671-677. [PMID: 35038786 PMCID: PMC9304215 DOI: 10.1111/php.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Photorepair mechanism of (6‐4) photoproducts (6‐4PP) by photolyase has been the subject of active debate over the years. The initial rationalization based on electron transfer to an oxetane or azetidine intermediate formed upon binding to the enzyme has been questioned, and there is now a more general consensus that the lesion is directly reduced from the excited flavin cofactor. However, the accepting moiety, i.e. the 5‐methyl‐2‐pyrimidone or 5‐hydroxy‐5,6‐dihydrothymine, has not been fully identified yet. In this work, spectroscopic experiments have been run to determine which of the 5′‐ or 3′‐base of 6‐4PP is more prone to be reduced. For this aim, the two building blocks of 6‐4PP were synthesized and used as electron acceptors. Instead of the short‐lived photolyase cofactor, which does not provide a time window compatible with diffusion‐controlled intermolecular processes, carbazole, 2‐methoxynaphthalene and phenanthrene have been selected as electron donors due to their appropriate singlet lifetimes and reduction potentials. Steady‐state and time‐resolved fluorescence revealed that, in solution, the pyrimidone chromophore is the most easily reduced moiety. This was confirmed by transient absorption experiments consisting of quenching of the solvated electron by the two moieties of 6‐4PP.
Collapse
Affiliation(s)
- Gemma M Rodríguez-Muñiz
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
5
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Schmidl
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Niko S. W. Jonasson
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Eva Korytiaková
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Lena J. Daumann
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| |
Collapse
|
6
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity*. Angew Chem Int Ed Engl 2021; 60:21457-21463. [PMID: 34181314 PMCID: PMC8518650 DOI: 10.1002/anie.202107277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Indexed: 12/12/2022]
Abstract
The epigenetic marker 5-methyl-2'-deoxycytidine (5mdC) is the most prevalent modification to DNA. It is removed inter alia via an active demethylation pathway: oxidation by Ten-Eleven Translocation 5-methyl cytosine dioxygenase (TET) and subsequent removal via base excision repair or direct demodification. Recently, we have shown that the synthetic iron(IV)-oxo complex [FeIV (O)(Py5 Me2 H)]2+ (1) can serve as a biomimetic model for TET by oxidizing the nucleobase 5-methyl cytosine (5mC) to its natural metabolites. In this work, we demonstrate that nucleosides and even short oligonucleotide strands can also serve as substrates, using a range of HPLC and MS techniques. We found that the 5-position of 5mC is oxidized preferably by 1, with side reactions occurring only at the strand ends of the used oligonucleotides. A detailed study of the reactivity of 1 towards nucleosides confirms our results; that oxidation of the anomeric center (1') is the most common side reaction.
Collapse
Affiliation(s)
- David Schmidl
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Niko S. W. Jonasson
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Eva Korytiaková
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Thomas Carell
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Lena J. Daumann
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| |
Collapse
|
7
|
Okamoto S, Naito Y, Nomura R. Synthesis of folded H-stacking skipped π polymers consisting of different 2-substituted trimethylene tethering units and their optical and conductive property. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Tsang C, Lee LYS, Cheung K, Chan P, Wong W, Wong K. Unexpected Promotional Effects of Alkyl‐Tailed Ligands and Anions on the Electrochemical Generation of Ruthenium(IV)‐Oxo Complexes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chui‐Shan Tsang
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Kwong‐Chak Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Pak‐Ho Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Wing‐Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Kwok‐Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| |
Collapse
|
10
|
Atha DH, Coskun E, Erdem O, Tona A, Reipa V, Nelson BC. Genotoxic Effects of Etoposide, Bleomycin, and Ethyl Methanesulfonate on Cultured CHO Cells: Analysis by GC-MS/MS and Comet Assay. J Nucleic Acids 2020; 2020:8810105. [PMID: 32802493 PMCID: PMC7414336 DOI: 10.1155/2020/8810105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023] Open
Abstract
To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.
Collapse
Affiliation(s)
- Donald H. Atha
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Onur Erdem
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Health Sciences Turkey, Department of Pharmaceutical Toxicology, Gulhane Faculty of Pharmacy, 06010 Ankara, Turkey
| | - Alessandro Tona
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Bryant C. Nelson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|
11
|
Amin BH, Abou‐Dobara MI, Diab MA, Gomaa EA, El‐Mogazy MA, El‐Sonbati AZ, EL‐Ghareib MS, Hussien MA, Salama HM. Synthesis, characterization, and biological investigation of new mixed‐ligand complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Basma H. Amin
- The Regional Center for Mycology and Biotechnology (RCMB) Al‐Azhar University Cairo Egypt
| | - Mohamed I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - Mostafa A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - Essam A. Gomaa
- Chemistry Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | | | - Adel Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | | | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science King Abdul‐Aziz University PO Box 80203 Jeddah 21589 Saudi Arabia
| | - Hanaa M. Salama
- Chemistry Department, Faculty of Science Port Said University Port Said Egypt
| |
Collapse
|
12
|
Raman N, Utthra PP, Chellapandi T. Insight into the in vitro anticancer screening, molecular docking and biological efficiency of pyridine-based transition metal(II) complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1716218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | | | | |
Collapse
|
13
|
Ferapontova EE. Electron Transfer in DNA at Electrified Interfaces. Chem Asian J 2019; 14:3773-3781. [PMID: 31545875 DOI: 10.1002/asia.201901024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/22/2019] [Indexed: 12/24/2022]
Abstract
The ability of the DNA double helix to transport electrons underlies many life-centered biological processes and bio-electronic applications. However, there is little consensus on how efficiently the base pair π-stacks of DNA mediate electron transport. This minireview scrutinizes the current state-of-the-art knowledge on electron transfer (ET) properties of DNA and its long-range ability to transfer (mediate) electrical signals at electrified interfaces, without being oxidized or reduced. Complex changes an electric field induces in the DNA structure and its electronic properties govern the efficiency of DNA-mediated ET at electrodes and allow addressing the existing phenomenological riddles, while recently discovered rectifying properties of DNA contribute both to our understanding of DNA's ET in living systems and to advances in molecular bioelectronics.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, 8000, Aarhus C, Denmark
| |
Collapse
|
14
|
Electrocatalysis of ferricyanide reduction mediated by electron transfer through the DNA duplex: Kinetic analysis by thin layer voltammetry. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA. Allyl rhodanine azo dye derivatives: Potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 2019; 120:1667-1678. [PMID: 30187946 DOI: 10.1002/jcb.27473] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn ) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn ) were synthesized and characterized by infrared (IR) and 1 H nuclear magnetic resonance (1 H NMR) spectra. The ligands (HLn ) were in silico screened to their potential inhibition to models of d-alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3 -treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3 -treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.
Collapse
Affiliation(s)
- Mohamed I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Shaimaa M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | | |
Collapse
|
16
|
Fraga-Timiraos AB, Francés-Monerris A, Rodríguez-Muñiz GM, Navarrete-Miguel M, Miranda MA, Roca-Sanjuán D, Lhiaubet-Vallet V. Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry 2018; 24:15346-15354. [PMID: 30053323 DOI: 10.1002/chem.201803298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZTm ), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (<13 kcal mol-1 ) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon.
Collapse
Affiliation(s)
- Ana B Fraga-Timiraos
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Antonio Francés-Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT), Université de Lorraine, CNRS, 54000, Nancy, France
| | - Gemma M Rodríguez-Muñiz
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
17
|
Bartold K, Pietrzyk-Le A, Golebiewska K, Lisowski W, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Oligonucleotide Determination via Peptide Nucleic Acid Macromolecular Imprinting in an Electropolymerized CG-Rich Artificial Oligomer Analogue. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27562-27569. [PMID: 30071156 DOI: 10.1021/acsami.8b09296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We devised and fabricated a chemosensor for determination of the genetically relevant 5'-GCGGCGGC-3' (G = guanine; C = cytosine) oligonucleotide. For that, we simultaneously electrosynthesized and electrode-immobilized a sequence-defined octakis(2,2'-bithien-5-yl) DNA hybridizing probe using both a "macromolecular imprinting in polymer strategy" and a sequence-programmable peptide nucleic acid (PNA) template. With electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) transductions under stagnant-solution and flow injection analysis (FIA) conditions, respectively, we determined the above oligonucleotide with 200-pM EIS limit of detection. With its EIS-determined apparent imprinting factor of ∼4.0, the chemosensor was discriminative to both mismatched oligonucleotides and Dulbecco's modified Eagle's medium sample interferences.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Karolina Golebiewska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Silvia Cauteruccio
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Emanuela Licandro
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , No. 305070, Denton , Texas 76203-5017 , United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences , Cardinal Stefan Wyszynski University in Warsaw , Wóycickiego 1/3 , 01-938 Warsaw , Poland
| |
Collapse
|
18
|
Campos R, Kékedy-Nagy L, She Z, Sodhi R, Kraatz HB, Ferapontova EE. Electron Transfer in Spacer-Free DNA Duplexes Tethered to Gold via dA 10 Tags. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8472-8479. [PMID: 29936843 DOI: 10.1021/acs.langmuir.8b01412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrical properties of DNA critically depend on the way DNA molecules are integrated within the electronics, particularly on DNA-electrode immobilization strategies. Here, we show that the rate of electron transport in DNA duplexes spacer-free tethered to gold via the adenosine terminal region (a dA10 tag) is enhanced compared to the hitherto reported DNA-metal electrode tethering chemistries. The rate of DNA-mediated electron transfer (ET) between the electrode and methylene blue intercalated into the dA10-tagged DNA duplex approached 361 s-1 at a ca. half-monolayer DNA surface coverage ΓDNA (with a linear regression limit of 670 s-1 at ΓDNA → 0), being 2.7-fold enhanced compared to phosphorothioated dA5* tethering (6-fold for the C6-alkanethiol linker representing an additional ET barrier). X-ray photoelectron spectroscopy evidenced dA10 binding to the Au surface via the purine N, whereas dA5* predominantly coordinated to the surface via sulfur atoms of phosphothioates. The latter apparently induces the DNA strand twist in the point of surface attachment affecting the local DNA conformation and, as a result, decreasing the ET rates through the duplex. Thus, a spacer-free DNA coupling to electrodes via dA10 tags thus allows a perspective design of DNA electronic circuits and sensors with advanced electronic properties and no implication from more expensive, synthetic linkers.
Collapse
Affiliation(s)
- Rui Campos
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - László Kékedy-Nagy
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Zhe She
- Department of Physical and Environmental Sciences, 1095 Military Trail , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Rana Sodhi
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , Toronto , Ontario M5S 3E5 , Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, 1095 Military Trail , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , Toronto , Ontario M5S 3E5 , Canada
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| |
Collapse
|
19
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
20
|
Cyclic Voltammetric DNA Binding Investigations on Some Anticancer Potential Metal Complexes: a Review. Appl Biochem Biotechnol 2018; 186:1090-1110. [DOI: 10.1007/s12010-018-2818-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/27/2022]
|
21
|
Ferapontova EE. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:197-218. [PMID: 29894229 DOI: 10.1146/annurev-anchem-061417-125811] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
22
|
Reipa V, Atha DH, Coskun SH, Sims CM, Nelson BC. Controlled potential electro-oxidation of genomic DNA. PLoS One 2018; 13:e0190907. [PMID: 29324786 PMCID: PMC5764341 DOI: 10.1371/journal.pone.0190907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of mammalian cells to oxidative stress can result in DNA damage that adversely affects many cell processes. Lack of dependable DNA damage reference materials and standardized measurement methods, despite many case-control studies hampers the wider recognition of the link between oxidatively degraded DNA and disease risk. We used bulk electrolysis in an electrochemical system and gas chromatographic mass spectrometric analysis (GC/MS/MS) to control and measure, respectively, the effect of electrochemically produced reactive oxygen species on calf thymus DNA (ct-DNA). DNA was electro-oxidized for 1 h at four fixed oxidizing potentials (E = 0.5 V, 1.0 V, 1.5 V and 2 V (vs Ag/AgCl)) using a high surface area boron-doped diamond (BDD) working electrode (WE) and the resulting DNA damage in the form of oxidatively-modified DNA lesions was measured using GC/MS/MS. We have shown that there are two distinct base lesion formation modes in the explored electrode potential range, corresponding to 0.5 V < E < 1.5 V and E > 1.5 V. Amounts of all four purine lesions were close to a negative control levels up to E = 1.5 V with evidence suggesting higher levels at the lowest potential of this range (E = 0.5 V). A rapid increase in all base lesion yields was measured when ct-DNA was exposed at E = 2 V, the potential at which hydroxyl radicals were efficiently produced by the BDD electrode. The present results demonstrate that controlled potential preparative electrooxidation of double-stranded DNA can be used to purposely increase the levels of oxidatively modified DNA lesions in discrete samples. It is envisioned that these DNA samples may potentially serve as analytical control or quality assurance reference materials for the determination of oxidatively induced DNA damage.
Collapse
Affiliation(s)
- Vytas Reipa
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Donald H. Atha
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Sanem H. Coskun
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Christopher M. Sims
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Bryant C. Nelson
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| |
Collapse
|
23
|
Mao H, Luo G, Zhan Y, Zhang J, Yao S, Yu Y. The mechanism and regularity of quenching the effect of bases on fluorophores: the base-quenched probe method. Analyst 2018; 143:3292-3301. [PMID: 29708557 DOI: 10.1039/c8an00116b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe.
Collapse
Affiliation(s)
- Huihui Mao
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| | - Guanghua Luo
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| | - Yuxia Zhan
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| | - Jun Zhang
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| | - Shuang Yao
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| | - Yang Yu
- Comprehensive Laboratory
- Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research
- the Third Affiliated Hospital of Soochow University
- Changzhou 213003
- China
| |
Collapse
|
24
|
Photorelaxation and Photorepair Processes in Nucleic and Amino Acid Derivatives. Molecules 2017; 22:molecules22122203. [PMID: 29231852 PMCID: PMC6149726 DOI: 10.3390/molecules22122203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding the fundamental interaction between electromagnetic radiation and matter is essential for a large number of phenomena, with significance to civilization.[...].
Collapse
|
25
|
Arunadevi A, Paulpandiyan R, Raman N. DNA interaction, molecular docking and biological profile of tetradentate histidine based metallointercalators. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Ajmal M. Review: electrochemical studies on some metal complexes having anti-cancer activities. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1362559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad Ajmal
- Faculty of Sciences, Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| |
Collapse
|
27
|
Wang X, Wang S, Gu C, Zhang W, Zheng H, Zhang J, Lu G, Zhang YM, Li M, Zhang SXA. Reversible Bond/Cation-Coupled Electron Transfer on Phenylenediamine-Based Rhodamine B and Its Application on Electrochromism. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20196-20204. [PMID: 28535036 DOI: 10.1021/acsami.7b03199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A biomimetic system on reversible bond-coupled electron transfer (BCET) has been proposed and investigated in a switchable Rh-N molecule with redox active subunits. We discover that energy barrier of C-N bond breaking is reduced dramatically to less than 1/7 (from 40.4 to 5.5 kcal/mol), and 1/3 of the oxidation potential is simultaneously lowered (from 0.67 to 0.43 V) with the oxidation of Rh-N. The concept, cation-coupled electron transfer (CCET), is highly recommended by analyzing existing proton coupled electron transfer (PCET) and metal coupled electron transfer (MCET) along with aforementioned BCET, which have same characteristic of transferring positive charges, such as proton, metal ion, and organic cation. Molecular switch can be controlled directly by electricity through BCET process. Solid electrochromic device was fabricated with extremely high coloration efficiency (720 cm2/C), great reversibility (no degradation for 600 cycles), and quick respond time (30 ms).
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Lab of Supramolecular Structure and Materials, Jilin University , Changchun, 130012, P. R. China
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Shuo Wang
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Chang Gu
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Weiran Zhang
- State Key Lab of Supramolecular Structure and Materials, Jilin University , Changchun, 130012, P. R. China
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Hongzhi Zheng
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Jingjing Zhang
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Geyu Lu
- College of Electron Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Yu-Mo Zhang
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and Materials, Jilin University , Changchun, 130012, P. R. China
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, Jilin University , Changchun, 130012, P. R. China
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
- Department of Chemistry and Pharmacy, Zhuhai College of Jilin University , Zhuhai, 519041, P. R. China
| |
Collapse
|
28
|
Kékedy-Nagy L, Ferapontova EE, Brand I. Submolecular Structure and Orientation of Oligonucleotide Duplexes Tethered to Gold Electrodes Probed by Infrared Reflection Absorption Spectroscopy: Effect of the Electrode Potentials. J Phys Chem B 2017; 121:1552-1565. [PMID: 28177253 DOI: 10.1021/acs.jpcb.6b12363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unique electronic and ligand recognition properties of the DNA double helix provide basis for DNA applications in biomolecular electronic and biosensor devices. However, the relation between the structure of DNA at electrified interfaces and its electronic properties is still not well understood. Here, potential-driven changes in the submolecular structure of DNA double helices composed of either adenine-thymine (dAdT)25 or cytosine-guanine (dGdC)20 base pairs tethered to the gold electrodes are for the first time analyzed by in situ polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) performed under the electrochemical control. It is shown that the conformation of the DNA duplexes tethered to gold electrodes via the C6 alkanethiol linker strongly depends on the nucleic acid sequence composition. The tilt of purine and pyrimidine rings of the complementary base pairs (dAdT and dGdC) depends on the potential applied to the electrode. By contrast, neither the conformation nor orientation of the ionic in character phosphate-sugar backbone is affected by the electrode potentials. At potentials more positive than the potential of zero charge (pzc), a gradual tilting of the double helix is observed. In this tilted orientation, the planes of the complementary purine and pyrimidine rings lie ideally parallel to each other. These potentials do not affect the integral stability of the DNA double helix at the charged interface. At potentials more negative than the pzc, DNA helices adopt a vertical to the gold surface orientation. Tilt of the purine and pyrimidine rings depends on the composition of the double helix. In monolayers composed of (dAdT)25 molecules the rings of the complementary base pairs lie parallel to each other. By contrast, the tilt of purine and pyrimidine rings in (dGdC)20 helices depends on the potential applied to the electrode. Such potential-induced mobility of the complementary base pairs can destabilize the helix structure at a submolecular level. These pioneer results on the potential-driven changes in the submolecular structure of double stranded DNA adsorbed on conductive supports contribute to further understanding of the potential-driven sequence-specific electronic properties of surface-tethered oligonucleotides.
Collapse
Affiliation(s)
- László Kékedy-Nagy
- Interdisciplinary Nanoscience Center (iNANO) and Center for DNA Nanotechnology (CDNA), Science and Technology, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus-C, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) and Center for DNA Nanotechnology (CDNA), Science and Technology, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus-C, Denmark
| | - Izabella Brand
- Department of Chemistry, University of Oldenburg , 26111 Oldenburg, Germany
| |
Collapse
|
29
|
Fraga-Timiraos AB, Rodríguez-Muñiz GM, Peiro-Penalba V, Miranda MA, Lhiaubet-Vallet V. Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules 2016; 21:molecules21121683. [PMID: 27941606 PMCID: PMC6273614 DOI: 10.3390/molecules21121683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
Electron transfer involving nucleic acids and their derivatives is an important field in bioorganic chemistry, specifically in connection with its role in the photo-driven DNA damage and repair. Four-membered ring heterocyclic oxetanes and azetidines have been claimed to be the intermediates involved in the repair of DNA (6-4) photoproduct by photolyase. In this context, we examine here the redox properties of the two azetidine isomers obtained from photocycloaddition between 6-aza-1,3-dimethyluracil and cyclohexene. Steady-state and time-resolved fluorescence experiments using a series of photoreductants and photooxidants have been run to evaluate the efficiency of the electron transfer process. Analysis of the obtained quenching kinetics shows that the azetidine compounds can act as electron donors. Additionally, it appears that the cis isomer is more easily oxidized than its trans counterpart. This result is in agreement with electrochemical studies performed on both azetidine derivatives.
Collapse
Affiliation(s)
- Ana B Fraga-Timiraos
- Instituto Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Gemma M Rodríguez-Muñiz
- Instituto Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Vicente Peiro-Penalba
- Instituto Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Miguel A Miranda
- Instituto Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
30
|
Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Ponya Utthra P, Kumaravel G, Senthilkumar R, Raman N. Heteroleptic Schiff base complexes containing terpyridine as chemical nucleases and their biological potential: A study of DNA binding and cleaving, antimicrobial and cytotoxic tendencies. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Ganesan Kumaravel
- Research Department of Chemistry; VHNSN College; Virudhunagar 626 001 India
| | - Raju Senthilkumar
- Department of Pharmaceutical Chemistry; Swamy Vivekanandha College of Pharmacy; Elayampalayam Tiruchengodu 637 205 India
| | - Natarajan Raman
- Research Department of Chemistry; VHNSN College; Virudhunagar 626 001 India
| |
Collapse
|
32
|
Zhang Y, Li Q, Guo L, Huang Q, Shi J, Yang Y, Liu D, Fan C. Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Zhang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Linjie Guo
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Jiye Shi
- Kellogg College; University of Oxford; Oxford OX2 6PN UK
- UCB Pharma; 208 Bath Road Slough SL1 3WE UK
| | - Yang Yang
- National Center for NanoScience and Technology (NCNST); Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
33
|
Zhang Y, Li Q, Guo L, Huang Q, Shi J, Yang Y, Liu D, Fan C. Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. Angew Chem Int Ed Engl 2016; 55:12450-4. [DOI: 10.1002/anie.201606137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Zhang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Linjie Guo
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Jiye Shi
- Kellogg College; University of Oxford; Oxford OX2 6PN UK
- UCB Pharma; 208 Bath Road Slough SL1 3WE UK
| | - Yang Yang
- National Center for NanoScience and Technology (NCNST); Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
34
|
You M, Yang S, Jiao F, Yang LZ, Zhang F, He PG. Label-free electrochemical multi-sites recognition of G-rich DNA using multi-walled carbon nanotubes–supported molecularly imprinted polymer with guanine sites of DNA. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Latus A, Alam MS, Mostafavi M, Marignier JL, Maisonhaute E. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry. Chem Commun (Camb) 2016; 51:9089-92. [PMID: 25900346 DOI: 10.1039/c5cc02211h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.
Collapse
Affiliation(s)
- A Latus
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Liu W, Liu J, Zheng G, Ke S, Miao M, Kioussis N. Electronic Structure Change in DNA Caused by Base Pair Motions and Its Effect on Charge Transfer in DNA Chains. Aust J Chem 2016. [DOI: 10.1071/ch15177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One important aspect of carrier transfer in DNA is its coupling with atomic motions. The collective motion of the base pairs can either improve the charge transfer by enhancing the π stacking between the bases, or trap the carriers due to strong coupling. By utilizing a pseudo-helical base pair stack model, we systematically studied the electronic structure and its dependence to geometry changes that represent the important DNA motions, including the translation, the twist and the torsion of the base pairs. Our calculations reveal that the above motions may significantly change the electron structure and affect their transport properties. In order to improve the transport of carriers in DNA so that it can become a prospective material in future electronics, it is necessary to make large changes to the atomic structure. Our calculations of the electronic structure under large geometry variation, including large base pair stacking deformation and the insertion of phenyl rings in the bases, can provide good guidelines for such structural modifications of DNA.
Collapse
|
37
|
Aoki H. Electrochemical Label-Free Nucleotide Sensors. Chem Asian J 2015; 10:2560-73. [PMID: 26227073 DOI: 10.1002/asia.201500449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/20/2015] [Indexed: 11/10/2022]
Abstract
Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial, Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
38
|
Liu W, Shiue YL, Lin YR, Lin HYH, Liang SS. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry. CURR ANAL CHEM 2015; 11:300-306. [PMID: 27594817 PMCID: PMC5003074 DOI: 10.2174/1573411011666150515233817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022]
Abstract
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Yow-Ling Shiue
- Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, Fooyin University, Kaohsiung,Taiwan
| | - Hugo You-Hsien Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung,Taiwan;; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 6Department of
Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Center for Resources, Research and Development, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan;; Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| |
Collapse
|
39
|
Oberacher H, Erb R, Plattner S, Chervet JP. Mechanistic aspects of nucleic-acid oxidation studied with electrochemistry-mass spectrometry. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Hirakawa K, Ito H. Rhodamine-6G can photosensitize folic acid decomposition through electron transfer. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
DNA, the biopolymer as a target material for metalloinsertors: From chemistry to preclinical implications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:239-51. [PMID: 26042712 DOI: 10.1016/j.msec.2015.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/21/2015] [Indexed: 11/23/2022]
Abstract
The coordination of therapeutically interesting designed complexes of stoichiometry [ML(Met)Cl2] [where M=Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), L=benzylidene-4-aminoantipyrine and Met=methionine] has been ascertained on the basis of physicochemical techniques. Their interaction with CT DNA reveals that they are good intercalators. The anticancer mechanism of our complexes is documented from their enhanced DNA splitting personalities under physiological conditions. To reveal the chemotherapeutic action of these complexes, we explored the inflammatory response, analgesic and antioxidant activities. Moreover, all the complexes show good antimicrobial activity against few bacterial and fungal strains. Our study has identified the mechanism of action of these complexes on inhibiting tumor cells and suggested that they have great potential as novel anticancer agents.
Collapse
|
42
|
Sengupta C, Basu S. A spectroscopic study to decipher the mode of interaction of some common acridine derivatives with CT DNA within nanosecond and femtosecond time domains. RSC Adv 2015. [DOI: 10.1039/c5ra13035b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our spectroscopic investigation with acridine derivatives presents the electronic control of their substituents on intercalation, solvation and PET with DNA.
Collapse
Affiliation(s)
- Chaitrali Sengupta
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| | - Samita Basu
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
43
|
Xu E, Lv Y, Liu J, Gu X, Zhang S. An electrochemical study based on thymine–Hg–thymine DNA base pair mediated charge transfer processes. RSC Adv 2015. [DOI: 10.1039/c5ra06238a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The (TT)n might have more π-overlapping than the corresponding matched base pairs, and the intercalation of Hg(ii) into TT may further increase this overlapping, causing faster CT kinetics.
Collapse
Affiliation(s)
- Ensheng Xu
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Yanqin Lv
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Jifeng Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
- Key Laboratory of Food Nutrition and Safety
| | - Xiaohong Gu
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety
- Shandong Academy of Agricultural Sciences
- Jinan 250100
- China
| | - Shuqiu Zhang
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety
- Shandong Academy of Agricultural Sciences
- Jinan 250100
- China
| |
Collapse
|
44
|
Shibahara M, Watanabe M, Goto K, Miyazaki T, Zhang H, Nakayama Y, Shinmyozu T. Structural properties of five- and six-layered [3.3]metacyclophanes. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Ouyang X, Luo L, Ding Y, Liu B, Xu D. Simultaneous determination of purine and pyrimidine bases in DNA using poly(3,4-ethylenedioxythiophene)/graphene composite film. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.09.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Selvaganapathy M, Pravin N, Pothiraj K, Raman N. Photo biological activation of NSO donor mixed-ligand complexes: In vivo and preclinical perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:256-72. [DOI: 10.1016/j.jphotobiol.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
|
47
|
Pathigoolla A, Sureshan KM. Synthesis of Triazole-linked Homonucleoside Polymers through Topochemical Azide-Alkyne Cycloaddition. Angew Chem Int Ed Engl 2014; 53:9522-5. [DOI: 10.1002/anie.201404797] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 12/24/2022]
|
48
|
Pathigoolla A, Sureshan KM. Synthesis of Triazole-linked Homonucleoside Polymers through Topochemical Azide-Alkyne Cycloaddition. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Lin J, Hou Y, Zheng Y, Wang X. Integration of [(Co(bpy)3]2+Electron Mediator with Heterogeneous Photocatalysts for CO2Conversion. Chem Asian J 2014; 9:2468-74. [DOI: 10.1002/asia.201402303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Indexed: 11/08/2022]
|
50
|
Raman N, Selvaganapathy M, Thamba J. Anomalous chemosensitivity of SOD mimetic sulfurated amino acid–phen complexes: synthesis, characterization, and DNA cleavage efficacy. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|