1
|
Zhu G, Zhang H, Han L, Wang H, Zhu A, Li L. Solvent-Driven Room-Temperature Curtius Rearrangements to Access Nucleotides Bearing Substituted Fused Pyridones. Org Lett 2024; 26:4356-4360. [PMID: 38739349 DOI: 10.1021/acs.orglett.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The intramolecular Curtius rearrangement suffers from a high reaction temperature, low yields, tedious product isolation, and difficult scale up. This study presents a room-temperature Curtius rearrangement that can be novelly driven by the HFIP solvent, followed by light-illuminated intramolecular cyclization. Such a mild reaction allows for the preparation of various fused pyridone derivatives with diverse substituent groups that have rarely been incorporated by previous methods. The roles of HFIP and light are investigated by a set of control experiments through a combination of IR and NMR titration. Furthermore, using the substituted fused pyridones as unnatural bases, we can obtain a panel of new nucleotides.
Collapse
Affiliation(s)
- Gongming Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haiyang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liyang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Honglei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Talpada N, Sharma AS, Sharma VS, Varma RS, Shrivastav PS, Ahmed R, Ammathnadu Sudhakar A. Visible light mediated synthesis of 1,3-diarylated imidazo[1,5- a]pyridines via oxidative amination of C-H catalyzed by graphitic carbon nitride. Org Biomol Chem 2023. [PMID: 37969017 DOI: 10.1039/d3ob01636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Graphitic carbon nitride (g-C3N4) as a novel heterogeneous catalyst is employed for the visible light-mediated synthesis of the imidazo[1,5-a]pyridines via the oxidative amination of C-H bond at room temperature without the need for any additional solvent. Extensive characterization of the catalyst was performed using techniques such as FT-IR, PXRD, TGA, SEM and EDX analysis. The optimized conditions enabled the successful and expeditious conversion of a wide range of substrates to imidazo[1,5-a]pyridines in good yields; a notable advantage of this catalyst being recyclability, as it can be reused for up to five cycles without significant loss of activity. This feature makes it suitable for gram-scale synthesis of imidazo[1,5-a]pyridines. Additionally, this approach offers several benefits from a green chemistry perspective as affirmed by its favorable green chemistry metrics (GCM), including low process mass intensity (PMI), low E-factor, high atom economy (AE), and good reaction mass efficiency (RME) relative to existing protocols. In addition, chemical yield (CY), mass intensity (MI), mass productivity (MP) and optimum efficiency were also calculated. This environmentally friendly method offers multiple advantages and represents a significant advancement in the synthesis of imidazo[1,5-a]pyridines.
Collapse
Affiliation(s)
- Nandish Talpada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Anuj S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Vinay S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rahul Ahmed
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Achalkumar Ammathnadu Sudhakar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Vahidi SH, Monhemi H, Hassani Sabzevar B, Eftekhari M. Electrostatic interactions of enzymes in non-aqueous conditions: insights from molecular dynamics simulations. J Biomol Struct Dyn 2023:1-14. [PMID: 37965802 DOI: 10.1080/07391102.2023.2280775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
Electrostatic interactions of enzymes and their effects on enzyme activity and stability are poorly understood in non-aqueous conditions. Here, we investigate the contribution of the electrostatic interactions on the stability and activity of enzymes in the non-aqueous environment using molecular dynamics simulations. Lipase was selected as active and lysozyme as inactive model enzymes in non-aqueous media. Hexane was used as a common non-aqueous solvent model. In agreement with the previous experiments, simulations show that lysozyme has more structural instabilities than lipase in hexane. The number of hydrogen bonds and salt bridges of both enzymes is dramatically increased in hexane. In contrast to the other opinions, we show that the increase of the electrostatic interactions in non-aqueous media is not so favorable for enzymatic function and stability. In this condition, the newly formed hydrogen bonds and salt bridges can partially denature the local structure of the enzymes. For lysozyme, the changes in electrostatic interactions occur in all domains including the active site cleft, which leads to enzyme inactivation and destabilization. Interestingly, most of the changes in electrostatic interactions of lipase occur far from the active site regions. Therefore, the active site entrance regions remain functional in hexane. The results of this study reveal how the changes in electrostatic interactions can affect enzyme stability and activity in non-aqueous conditions. Moreover, we show for the first time how some enzymes, such as lipase, remain active in a non-aqueous environment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Hooman Vahidi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Monhemi
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| | | | - Mohammad Eftekhari
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| |
Collapse
|
4
|
Kumar P, Kermanshahi-Pour A, Brar SK, He QS, Rainey JK. Influence of elevated pressure and pressurized fluids on microenvironment and activity of enzymes. Biotechnol Adv 2023; 68:108219. [PMID: 37488056 DOI: 10.1016/j.biotechadv.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Enzymes have great potential in bioprocess engineering due to their green and mild reaction conditions. However, there are challenges to their application, such as enzyme extraction and purification costs, enzyme recovery, and long reaction time. Enzymatic reaction rate enhancement and enzyme immobilization have the potential to overcome some of these challenges. Application of high pressure (e.g., hydrostatic pressure, supercritical carbon dioxide) has been shown to increase the activity of some enzymes, such as lipases and cellulases. Under high pressure, enzymes undergo multiple alterations simultaneously. High pressure reduces the bond lengths of molecules of reaction components and causes a reduction in the activation volume of enzyme-substrate complex. Supercritical CO2 interacts with enzyme molecules, catalyzes structural changes, and removes some water molecules from the enzyme's hydration layer. Interaction of scCO2 with the enzyme also leads to an overall change in secondary structure content. In the extreme, such changes may lead to enzyme denaturation, but enzyme activation and stabilization have also been observed. Immobilization of enzymes onto silica and zeolite-based supports has been shown to further stabilize the enzyme and provide resistance towards perturbation under subjection to high pressure and scCO2.
Collapse
Affiliation(s)
- Pawan Kumar
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Department of Chemistry, and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
5
|
|
6
|
Enzyme activation by water-mimicking dual-functionalized ionic liquids. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Li X, Wan R, Zha Y, Chen Y, Zheng X, Su Y. Identification of CO 2 induces oxidative stress to change bacterial surface properties. CHEMOSPHERE 2021; 277:130336. [PMID: 34384185 DOI: 10.1016/j.chemosphere.2021.130336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
The surface properties of bacteria play an essential role in their abilities to perform transmembrane communication, adherence, immobilization, flocculation, etc. However, the responsiveness of bacterial surfaces to elevated atmospheric CO2 remains unknown. In this study, using the model bacteria, Paracoccus denitrificans, the effect of CO2 on the primary bacterial surface properties, specifically hydrophobicity and surface charge, has been explored. We found that hydrophilicity and negative surface charge both rose in conjunction with increased atmospheric CO2 concentrations. Studies of the potential mechanisms involved have illustrated that elevated CO2 significantly increases the production of polysaccharides in extracellular polymeric substances (EPS). Various hydrophilic groups and negative charges in these polysaccharides prompt hydrophilicity and surface charge variations in bacteria. Further research has identified that elevations in CO2 result in the accumulation of reactive species, specifically reactive nitrogen species (RNS). In this study, it was found that RNS damaged the permeability of bacterial membranes by inducing lipid peroxidation and then caused the leakage of intracellular substrate, which ultimately led to an increase in EPS polysaccharides. Our findings suggest that changes in bacterial surface properties due to atmospheric CO2 elevation, as well as the reactions these trigger, merit widespread attention.
Collapse
Affiliation(s)
- Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China.
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
8
|
Vagnoni M, Samorì C, Pirini D, Vasquez De Paz MK, Gidey DG, Galletti P. Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1913126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Martina Vagnoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Daniele Pirini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | | | | | - Paola Galletti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| |
Collapse
|
9
|
Patel DB, Parmar JA, Patel SS, Naik UJ, Patel HD. Recent Advances in Ester Synthesis by Multi-Component Reactions (MCRs): A Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210111111805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of ester-containing heterocyclic compounds via multicomponent
reaction is one of the preferable processes in synthetic organic chemistry and medicinal
chemistry. Compounds containing ester linkage have a wide range of biological applications
in the pharmaceutical field. Therefore, many methods have been developed for the synthesis
of these types of derivatives. However, some of them are carried out in the presence of toxic
solvents and catalysts, with lower yields, longer reaction times, low selectivities, and byproducts.
Thus, the development of new synthetic methods for ester synthesis is required in
medicinal chemistry. As we know, multicomponent reactions (MCRs) are a powerful tool for
the one-pot ester synthesis, so in this article, we have reviewed the recent developments in
ester synthesis. This work covers a selected explanation of methods via multicomponent reactions
to explore the methodological development in ester synthesis.
Collapse
Affiliation(s)
- Dhaval B. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Jagruti A. Parmar
- K.K Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, 380008, Gujarat, India
| | - Siddharth S. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Unnati J. Naik
- K.K Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, 380008, Gujarat, India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
10
|
Borowiecki P, Zdun B, Dranka M. Chemoenzymatic enantioselective and stereo-convergent syntheses of lisofylline enantiomers via lipase-catalyzed kinetic resolution and optical inversion approach. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Changing the residues interaction pattern as a universal mechanism for enzyme inactivation and denaturation in supercritical CO2. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Melgosa R, Sanz MT, Beltrán S. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids – Towards a biorefinery for fish waste valorization. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Solid/gas biocatalysis for aroma production: An alternative process of white biotechnology. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Gustavo M, Székely E, Tóth J. Kinetic Modeling of a Consecutive Enzyme-Catalyzed Enantioselective Reaction in Supercritical Media. ACS OMEGA 2020; 5:26795-26806. [PMID: 33111006 PMCID: PMC7581243 DOI: 10.1021/acsomega.0c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Based on experimental data of both batch and continuous enzyme-catalyzed kinetic resolutions of (±)-trans-1,2-cyclohexanediol in supercritical carbon dioxide, kinetic models of increasing complexity were developed to explore the strengths and drawbacks of various modeling approaches. The simplest, first-order model proved to be a good fit for the batch experimental data in regions of high reagent concentrations but failed elsewhere. A more complex system that closely follows the true mechanism was able to fit the full range of experimental data, find constant reaction rate coefficients, and was successfully used to predict the results of the same reaction run continuously in a packed bed reactor. Care must be taken when working with such models, however, to avoid problems of overfitting; a more complex model is not always more accurate. This work may serve as an example for more rigorous reaction modeling and reactor design in the future.
Collapse
Affiliation(s)
- Michael
Freitas Gustavo
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Edit Székely
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - János Tóth
- Department
of Analysis, Budapest University of Technology
and Economics, Budapest 1111, Hungary
- Chemical
Kinetics Laboratory, Eötvös
Loránd University, Budapest 1117, Hungary
| |
Collapse
|
15
|
Zhao H. What do we learn from enzyme behaviors in organic solvents? - Structural functionalization of ionic liquids for enzyme activation and stabilization. Biotechnol Adv 2020; 45:107638. [PMID: 33002582 DOI: 10.1016/j.biotechadv.2020.107638] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Enzyme activity in nonaqueous media (e.g. conventional organic solvents) is typically lower than in water by several orders of magnitude. There is a rising interest of developing new nonaqueous solvent systems that are more "water-like" and more biocompatible. Therefore, we need to learn from the current state of nonaqueous biocatalysis to overcome its bottleneck and provide guidance for new solvent design. This review firstly focuses on the discussion of how organic solvent properties (such as polarity and hydrophobicity) influence the enzyme activity and stability, and how these properties impact the enzyme's conformation and dynamics. While hydrophobic organic solvents usually lead to the maintenance of enzyme activity, solvents carrying functional groups like hydroxys and ethers (including crown ethers and cyclodextrins) can lead to enzyme activation. Ionic liquids (ILs) are designable solvents that can conveniently incorporate these functional groups. Therefore, we systematically survey these ether- and/or hydroxy-functionalized ILs, and find most of them are highly compatible with enzymes leading to high activity and stability. In particular, ILs carrying both ether and tert-alcohol groups are among the most enzyme-activating solvents. Future direction is to learn from enzyme behaviors in both water and nonaqueous media to design biocompatible "water-like" solvents.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, United States.
| |
Collapse
|
16
|
Jawale PV, Bhanage BM. Synthesis of propyl benzoate by solvent-free immobilized lipase-catalyzed transesterification: Optimization and kinetic modeling. Bioprocess Biosyst Eng 2020; 44:369-378. [PMID: 32997184 DOI: 10.1007/s00449-020-02448-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
The present study aimed to analyze reaction kinetics and mechanism for the synthesis of propyl benzoate in solvent-free conditions. Lipase was immobilized on Hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol (PVA) polymer blend by entrapment method. Among different lipases immobilized on a support, Candida cylindracea (CCL) showed excellent activity. Systematic studies were done to optimize the reaction conditions. The activation energy was found to be 16.2 kcal/mol for immobilized CCL. Kinetic parameters were calculated, which depicted that propyl benzoate synthesized using immobilized CCL followed the ternary complex model in which propanol inhibits lipase activity at higher concentrations. Recyclability of the catalyst was checked up to four catalytic cycles and 40% retention of activity was observed up to the fourth cycle. Finally, the applicability of developed protocol to synthesize various alkyl benzoates was explored.
Collapse
Affiliation(s)
- Priyanka V Jawale
- Department of Chemistry, Institute of Chemical Technology, Mumbai, 400019, India
| | | |
Collapse
|
17
|
Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020; 25:molecules25133016. [PMID: 32630322 PMCID: PMC7411633 DOI: 10.3390/molecules25133016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.
Collapse
|
18
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Kourist R, González‐Sabín J. Non‐Conventional Media as Strategy to Overcome the Solvent Dilemma in Chemoenzymatic Tandem Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.201902192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMed Petersgasse 14 Graz 8010 Austria
| | | |
Collapse
|
20
|
Vázquez L, Bañares C, Torres CF, Reglero G. Green Technologies for the Production of Modified Lipids. Annu Rev Food Sci Technol 2020; 11:319-337. [PMID: 31910657 DOI: 10.1146/annurev-food-032519-051701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the use of green solvents in enzyme catalysis of lipophilic compounds is achieving increasing interest from different perspectives. Conducting reactions under supercritical fluids, ionic liquids, deep eutectic solvents, and other green solvents affords opportunities to overcome problems associated with the lack of solubility of lipids in conventional solvents and the poor miscibility of substrates. Research on the biocatalytic production of modified lipids in the framework of green chemistry is conducted to improve the efficiency of obtaining the desired products as well as the selectivity, stability, and activity of the enzymatic systems. This overview describes the fundamentals and characteristics of several types of green solvents, the main variables involved in enzymatic processes, and examples and applications in the field of lipid modification.
Collapse
Affiliation(s)
- Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail: .,Department of Production and Development of Foods for Health, IMDEA-Food Institute, CEI (UAM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
21
|
Abd-Elmonem M, A. Mekheimer R, M. Hayallah A, A. Abo Elsoud F, U. Sadek K. Recent Advances in the Utility of Glycerol as a Benign and Biodegradable Medium in Heterocyclic Synthesis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191025150646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
:
Glycerol is a non-toxic, recyclable and biodegradable organic waste produced
as a byproduct in the production of biodiesel fuel. Currently, glycerol is considered
a green solvent and catalyst for a large variety of applications. This work discusses
the significance of glycerol for heterocyclic synthesis. All the reported studies
consider glycerol as an efficient and sustainable benign medium.
Collapse
Affiliation(s)
- Mohamed Abd-Elmonem
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ramadan A. Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa M. Hayallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Fatma A. Abo Elsoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Kamal U. Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
22
|
Monhemi H, Dolatabadi S. Molecular dynamics simulation of high-pressure CO2 pasteurization reveals the interfacial denaturation of proteins at CO2/water interface. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Bayout I, Bouzemi N, Guo N, Mao X, Serra S, Riva S, Secundo F. Natural flavor ester synthesis catalyzed by lipases. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikram Bayout
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry Badji Mokhtar University-Annaba Annaba Algeria
| | - Nassima Bouzemi
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry Badji Mokhtar University-Annaba Annaba Algeria
| | - Na Guo
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiangzhao Mao
- College of Food Science and Engineering Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| |
Collapse
|
24
|
Monhemi H, Housaindokht MR. The molecular mechanism of protein denaturation in supercritical CO2: The role of exposed lysine residues is explored. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
da Silva Serres JD, Taisline Bandeira P, Cabral Zappani P, Piovan L, Corazza ML. A greener bioreduction using baker’s yeast cells in supercritical carbon dioxide and glycerol system. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
|
27
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
28
|
Lo Celso F, Yoshida Y, Lombardo R, Jafta C, Gontrani L, Triolo A, Russina O. Mesoscopic structural organization in fluorinated room temperature ionic liquids. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Dynamic pH determination at high pressure of aqueous additive mixtures in contact with dense CO2. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Bolm C, Hernández JG. From Synthesis of Amino Acids and Peptides to Enzymatic Catalysis: A Bottom-Up Approach in Mechanochemistry. CHEMSUSCHEM 2018; 11:1410-1420. [PMID: 29436773 DOI: 10.1002/cssc.201800113] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, chemical reactions induced or facilitated by mechanical energy have gained recognition in diverse areas of chemical synthesis. In particular, mechanosyntheses of amino acids and short peptides, along with their applications in catalysis, have revealed the high degree of stability of peptide bonds in environments of harsh mechanical stress. These observations quickly led to the recent interest in developing mechanochemical enzymatic reactions. Experimentally, manual grinding, ball-milling techniques, and twin-screw extrusion technology have proven valuable to convey mechanical forces into a chemical synthesis. These practices have enabled the establishment of more sustainable alternatives for chemical synthesis by reducing the use of organic solvents and waste production, thereby having a direct impact on the E-factor of the chemical process. In this Minireview, the series of events that allowed the development of mechanochemical enzymatic reactions are described from a bottom-up perspective.
Collapse
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
31
|
|
32
|
Lo Celso F, Yoshida Y, Castiglione F, Ferro M, Mele A, Jafta CJ, Triolo A, Russina O. Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids. Phys Chem Chem Phys 2018; 19:13101-13110. [PMID: 28489101 DOI: 10.1039/c7cp01971h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation of fluorinated domains, on the basis of highly complementary X-ray and neutron scattering data sets (highlighting the importance of the latter probe) and NMR spectroscopy. Data are interpreted using atomistic molecular dynamics simulations, emphasizing the existence of a self-assembly mechanism that delivers segregated fluorous domains, where preferential solubilisation of fluorinated compounds can occur, thus paving the way for several smart applications.
Collapse
Affiliation(s)
- F Lo Celso
- Dipartimento di Fisica e Chimica, viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Room temperature multicomponent synthesis of diverse propargylamines using magnetic CuFe 2 O 4 nanoparticle as an efficient and reusable catalyst. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
35
|
Rauber D, Philippi F, Hempelmann R. Catalyst retention utilizing a novel fluorinated phosphonium ionic liquid in Heck reactions under fluorous biphasic conditions. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
37
|
Eisenstein O, Milani J, Perutz RN. Selectivity of C–H Activation and Competition between C–H and C–F Bond Activation at Fluorocarbons. Chem Rev 2017; 117:8710-8753. [DOI: 10.1021/acs.chemrev.7b00163] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Odile Eisenstein
- Institut
Charles Gerhardt, UMR 5253 CNRS Université Montpellier, cc 1501,
Place E. Bataillon, 34095 Montpellier, France
- Centre
for Theoretical and Computational Chemistry (CTCC), Department of
Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Jessica Milani
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
38
|
Gérard D, Currie F, Medina Gonzalez Y, Camy S, Marty A, Condoret JS. Resolution of 2-bromo-arylacetic acid ester by Yarrowia lipolytica lipase in water/supercritical CO2 two-phase systems. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Sarkar S, Ghosh S, Chakrabarti R. Ammonium based stabilizers effectively counteract urea-induced denaturation in a small protein: insights from molecular dynamics simulations. RSC Adv 2017. [DOI: 10.1039/c7ra10712a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Room temperature ionic liquids (IL) and deep eutectic solvents (DES) are known to aid the conformational stability and activity of proteins and enzymes in aqueous solutions.
Collapse
Affiliation(s)
- Soham Sarkar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| | - Soumadwip Ghosh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| | - Rajarshi Chakrabarti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| |
Collapse
|
40
|
Harifi-Mood AR, Ghobadi R, Divsalar A. The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase. Int J Biol Macromol 2016; 95:115-120. [PMID: 27856320 DOI: 10.1016/j.ijbiomac.2016.11.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 11/25/2022]
Abstract
Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions.
Collapse
Affiliation(s)
| | | | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
41
|
Monhemi H, Housaindokht MR. Chemical modification of biocatalyst for function in supercritical CO2: In silico redesign of stable lipase. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Expanding substrate scope of lipase-catalyzed transesterification by the utilization of liquid carbon dioxide. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Azizi N, Shirdel F. Sustainable and chemoselective N-Boc protection of amines in biodegradable deep eutectic solvent. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1856-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Aghaalikhani S, Behbahani FK. Three-Component Synthesis of 3-Aminoalkylindoles using Iron(III) Phosphate. ChemistrySelect 2016. [DOI: 10.1002/slct.201600901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Girard E, Tassaing T, Marty JD, Destarac M. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions. Chem Rev 2016; 116:4125-69. [PMID: 27014998 DOI: 10.1021/acs.chemrev.5b00420] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.
Collapse
Affiliation(s)
- Etienne Girard
- IMRCP, UMR CNRS 5623, Université de Toulouse , 118, route de Narbonne, Toulouse F-31062 Cedex 9, France
| | - Thierry Tassaing
- ISM, UMR CNRS 5255, Université de Bordeaux , 351, Cours de la Libération, Talence F-33405 Cedex, France
| | - Jean-Daniel Marty
- IMRCP, UMR CNRS 5623, Université de Toulouse , 118, route de Narbonne, Toulouse F-31062 Cedex 9, France
| | - Mathias Destarac
- IMRCP, UMR CNRS 5623, Université de Toulouse , 118, route de Narbonne, Toulouse F-31062 Cedex 9, France
| |
Collapse
|
46
|
Nasresfahani Z, Kassaee MZ, Eidi E. Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO3H) as an efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols. NEW J CHEM 2016. [DOI: 10.1039/c5nj02974k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MSNs-HPZ-SO3H was synthesized, characterized, and employed as an efficient nanocatalyst in one-pot synthesis of 1-amidoalkyl-2-naphthols.
Collapse
Affiliation(s)
| | | | - Esmaiel Eidi
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
47
|
Monhemi H, Housaindokht MR, Nakhaei Pour A. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b03970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hassan Monhemi
- Research
and Technology Center
of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Housaindokht
- Research
and Technology Center
of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Nakhaei Pour
- Research
and Technology Center
of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
48
|
José C, Toledo MV, Briand LE. Enzymatic kinetic resolution of racemic ibuprofen: past, present and future. Crit Rev Biotechnol 2015; 36:891-903. [DOI: 10.3109/07388551.2015.1057551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Carla José
- Centro de Investigación y Desarrollo en Ciencias Aplicadas – Dr. Jorge J. Ronco (CINDECA), Universidad Nacional de La Plata, CONICET, CCT La Plata, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina
| | - María Victoria Toledo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas – Dr. Jorge J. Ronco (CINDECA), Universidad Nacional de La Plata, CONICET, CCT La Plata, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas – Dr. Jorge J. Ronco (CINDECA), Universidad Nacional de La Plata, CONICET, CCT La Plata, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina
| |
Collapse
|
49
|
Hošek J, Rybáčková M, Čejka J, Cvačka J, Kvíčala J. Synthesis of Heavy Fluorous Ruthenium Metathesis Catalysts Using the Stereoselective Addition of Polyfluoroalkyllithium to Sterically Hindered Diimines. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jan Hošek
- Department
of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Markéta Rybáčková
- Department
of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Čejka
- Department
of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Josef Cvačka
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166
10 Prague 6, Czech Republic
| | - Jaroslav Kvíčala
- Department
of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
50
|
Kolaříková V, Šimůnek O, Rybáčková M, Cvačka J, Březinová A, Kvíčala J. Transition metal complexes bearing NHC ligands substituted with secondary polyfluoroalkyl groups. Dalton Trans 2015; 44:19663-73. [DOI: 10.1039/c5dt02258d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Silver and palladium complexes bearing dihydroimidazolylidene or imidazolidinylidene NHC ligands substituted with racemic secondary polyfluoroalkyl groups were synthesized.
Collapse
Affiliation(s)
- V. Kolaříková
- Department of Organic Chemistry
- University of Chemistry and Technology
- Prague
- 166 28 Prague 6
- Czech Republic
| | - O. Šimůnek
- Department of Organic Chemistry
- University of Chemistry and Technology
- Prague
- 166 28 Prague 6
- Czech Republic
| | - M. Rybáčková
- Department of Organic Chemistry
- University of Chemistry and Technology
- Prague
- 166 28 Prague 6
- Czech Republic
| | - J. Cvačka
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6
- Czech Republic
| | - A. Březinová
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6
- Czech Republic
| | - J. Kvíčala
- Department of Organic Chemistry
- University of Chemistry and Technology
- Prague
- 166 28 Prague 6
- Czech Republic
| |
Collapse
|