1
|
Kawai S, Ning J, Katsuyama Y, Ohnishi Y. Production of Phenyldiazene Derivatives Using the Biosynthetic Pathway of an Aromatic Diazo Group-Containing Natural Product from an Actinomycete. Chembiochem 2025; 26:e202400687. [PMID: 39420540 PMCID: PMC11727004 DOI: 10.1002/cbic.202400687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The diazo group is an important functional group in organic synthesis because it confers high reactivity to the compounds and has been applied in various chemical reactions, such as the Sandmeyer reaction, Wolff rearrangement, cyclopropanation, and C-N bond formation with active methylene compounds. Previously, we revealed that 3-diazoavenalumic acid (3-DAA), which is potentially produced by several actinomycete species and contains an aromatic diazo group, is a biosynthetic intermediate of avenalumic acid. In this study, we aimed to construct a production system for phenyldiazene derivatives by adding several active methylene compounds to the culture of a 3-DAA-producing recombinant actinomycete. First, acetoacetanilide and its derivatives, which have an active methylene and are raw materials for arylide yellow dyes, were individually added to the culture of a 3-DAA-producing actinomycete. When their metabolites were analyzed, each expected compound with a phenyldiazenyl moiety was detected in the culture extract. Moreover, we established a one-pot in vitro enzymatic production system for the same phenyldiazene derivatives using a highly reactive diazotase, CmaA6. These results showed that the diazo group of natural products is an attractive tool for expanding the structural diversity of natural products both in vivo and in vitro.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Jiayu Ning
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
2
|
Tang X, Tang Y, Xie Y, Wang W, Song Z, Gao L. PtCl 2-Catalyzed Intramolecular Cyclization of α-Benzyl Allenoates to Afford Indenes and Furanones. J Org Chem 2024; 89:16622-16631. [PMID: 39475158 DOI: 10.1021/acs.joc.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Indene and furanone are important ring structures widely present in active pharmaceutical molecules. Here, we have developed a straightforward method for the synthesis of indene and furanone via PtCl2-catalyzed intramolecular cyclization of α-benzyl allenoates. By altering the ester substitution pattern in the α-benzyl allenoates, we can regulate the reaction site, enabling two distinct intramolecular cyclization reactions that yield both indene and furanone products, respectively. For α-benzyl-substituted ethyl allenoate, the reaction proceeds via a 5-exo cyclization to form indene derivatives. In contrast, for α-benzyl-substituted tert-butyl allenoate, the reaction involves ester hydrolysis and intramolecular cyclization, yielding furanone products. This method operates efficiently under a 5 mol % PtCl2 catalyst and exhibits good tolerance toward various functional groups. Furthermore, furanone products can be obtained on a gram scale and further smoothly converted into 1,2-disubstituted furan.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanqian Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Medishetti N, Banda BP, Atmakur K. p-TSA catalyzed 6- endo-trig/ dig cyclization of 5-aminopyrazoles and 3°/2°-propargylic alcohols: access to pyrazolo[1,5- a]dihydropyrimidines and pyrazolo[3,4- b]pyridines. Org Biomol Chem 2024; 22:7854-7859. [PMID: 39233625 DOI: 10.1039/d4ob01255k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A facile, straightforward synthesis of fused pyrazolo[1,5-a]dihydropyrimidines and pyrazolo[3,4-b]pyridines is accomplished by using 5-aminopyrazoles, 3°/2°-propargylic alcohols and ynones in the presence of p-TSA. The reaction proceeds through allenylation (N-alkylation)/propargylation (C-alkylation) of 5-aminopyrazoles, followed by intramolecular 6-endo-trig/dig cyclization leading to the title products with the formation of new C-N and C-C bonds. Operationally simple reaction conditions, inexpensive reagents, better yields, and gram-scale synthesis are the advantages of this protocol.
Collapse
Affiliation(s)
- Nagaraju Medishetti
- Fluoro & Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhanu Prasad Banda
- Fluoro & Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishnaiah Atmakur
- Fluoro & Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Kumar S, Shah BA. Synthesis of Diverse Allylic Sulfone Derivatives via Sequential Hydroalkoxylation of 1,3-Enynes. Chemistry 2024; 30:e202401049. [PMID: 38712686 DOI: 10.1002/chem.202401049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
A first metal-free protocol for the synthesis of allylic sulfones featuring aldehyde functionality at the δ-position has been reported. The formation of structurally complex δ,δ-dimethoxy allylic sulfones is enabled by the direct nucleophilic attack of methoxide onto the sulfone-containing 1,3-enynes. The present approach allows facile installation of acetal groups within the allylic sulfone scaffold, providing versatile platforms for further functionalization and drug development.
Collapse
Affiliation(s)
- Sourav Kumar
- Natural Products & Medicinal Chemistry, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001
| | - Bhahwal Ali Shah
- Natural Products & Medicinal Chemistry, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001
| |
Collapse
|
5
|
Petcu AS, Lázaro-Milla C, Alonso JM, Almendros P. Unveiling the Use of 1,1-Bis(triflyl)ethylene as CF 3SO 2CH═CH 2 Source with the Assistance of ( n-Bu) 4NF: Synthesis of 3-[(Trifluoromethyl)sulfonyl]cyclobut-1-enes. Org Lett 2024; 26:4560-4565. [PMID: 38767989 PMCID: PMC11148847 DOI: 10.1021/acs.orglett.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Allylic sulfone-embedded cyclobutenes have been prepared in one pot from alkynes. The carbocycle and the alkenyl sulfone moieties were installed through consecutive bis(triflyl)cyclobutenylation of a triple bond and tetra-n-butylammonium fluoride (TBAF)-assisted hydrodesulfonylation of an allylic bis(sulfone). It is noteworthy that 1,1-bis(triflyl)ethylene acts as a CF3SO2CH═CH2 source for the first time.
Collapse
Affiliation(s)
- A. Sonia Petcu
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
6
|
Lu YN, Che C, Zhen G, Chang X, Dong XQ, Wang CJ. Visible-light-enabled stereoselective synthesis of functionalized cyclohexylamine derivatives via [4 + 2] cycloadditions. Chem Sci 2024; 15:6507-6514. [PMID: 38699278 PMCID: PMC11062095 DOI: 10.1039/d4sc00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
An unprecedented intermolecular [4 + 2] cycloaddition of benzocyclobutylamines with α-substituted vinylketones, enabled by photoredox catalysis, has been developed. The current method enables facile access to highly functionalized cyclohexylamine derivatives that were otherwise inaccessible, in moderate to good yields with excellent diastereoselectivities. This protocol has some excellent features, such as full atom economy, good functional-group compatibility, mild reaction conditions, and an overall redox-neutral process. Additionally, an asymmetric version of this cycloaddition was preliminarily investigated via the incorporation of a chiral phosphoric acid (CPA), and moderate to good enantioselectivity could be effectively realized with excellent diastereoselectivity. Synthetic applications were demonstrated via a scale-up experiment and elaborations to access amino alcohol and cyclobutene derivatives. Based on the results of control experiments, a reasonable reaction mechanism was proposed to elucidate the reaction pathway.
Collapse
Affiliation(s)
- Yi-Nan Lu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chao Che
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Guangjin Zhen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
7
|
Wang Y, Wu G, Yan K, Qin J, Liu R, Rong N, Tang Y, Loh TP, Xie P. Sulfination of Unactivated Allylic Alcohols via Sulfinate-Sulfone Rearrangement. Org Lett 2023. [PMID: 38059565 DOI: 10.1021/acs.orglett.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A dehydrative cross-coupling of unactivated allylic alcohols with sulfinic acids was achieved under catalyst-free conditions. This reaction proceeded via allyl sulfination and concomitant allyl sulfinate-sulfone rearrangement. Various allylic sulfones could be obtained in good to excellent yields with water as the only byproduct. This study expands the synthetic toolbox for constructing allylic sulfone molecules.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangming Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaheng Qin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Liu
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Nannan Rong
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Hwang JY, Lee SH, Kim Y, Jin M, Kang K, Kang EJ. Fe-Catalyzed C-H Alkenylation of Dialkyl Anilines with Disulfonylethenes. Org Lett 2023; 25:7359-7363. [PMID: 37788146 DOI: 10.1021/acs.orglett.3c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The oxidative alkenylation reaction of α-aminoalkyl C(sp3)-H bonds has been investigated with (E)-1,2-bis(sulfonyl)ethenes. The catalytic process of iron-polypyridyl complexes drives the single-electron oxidation of dialkyl anilines, resulting in the formation of α-aminoalkyl radical species. Subsequent cascades of radical addition and elimination reactions ensue, ultimately leading to the generation of sulfonylated allylic amine products. The utility of these products extends further, enabling the synthesis of multisubstituted heterocycles like pyrroles, pyrazines, and triazoles.
Collapse
Affiliation(s)
- Joon Young Hwang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Sang Hyeok Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Yuri Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Minju Jin
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
9
|
Pastor A, Prinsloo R, Burford KN, Macdonald AR, Parvez M, Gendy C, Back TG. Synthesis of the Marine Alkaloid Cylindricine C and Serendipitous Synthesis of Its 2,13-Di- epi Stereoisomer. J Org Chem 2023; 88:13813-13824. [PMID: 37722076 DOI: 10.1021/acs.joc.3c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A new approach to the marine alkaloid cylindricine C afforded its previously unreported (±)-2,13-di-epi stereoisomer as the major product along with a minor amount of the racemic parent alkaloid. Key steps included a stereoselective dianion alkylation of a monoester of 1,2-cyclohexanedicarboxylic acid and an annulation based on the tandem conjugate addition of a primary amine to an acetylenic sulfone, followed by intramolecular acylation of the resulting sulfone-stabilized carbanion. The cis-azadecalin moiety thus formed, comprising the cyclohexane A-ring and enaminone B-ring of the products, was further elaborated by the selenenyl chloride-induced cyclofunctionalization of a pendant butenyl substituent with the enaminone moiety, followed by a seleno-Pummerer reaction. Desulfonylation and enaminone reduction afforded the final products. Molecular modeling and X-ray crystallography provided further insight into these processes.
Collapse
Affiliation(s)
- Arnaud Pastor
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Rohen Prinsloo
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Kristen N Burford
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Andrew R Macdonald
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Masood Parvez
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Chris Gendy
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
10
|
Blé-González EA, Isbel SR, Ojo OS, Hillesheim PC, Zeller M, Bugarin A. Regiodivergent sulfonylation of terminal olefins via dearomative rearrangement. NEW J CHEM 2023; 47:17020-17025. [PMID: 38094749 PMCID: PMC10714357 DOI: 10.1039/d3nj03595f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Sulfones are fascinating and highly used functional groups, but current syntheses still have limitations. Here, a regiodivergent transition metal-free approach towards sulfones [(E)-allylic sulfones and α-sulfonyl-methyl styrenes] is reported. The method employs commercially available olefins, bases, additives, solvents, and sodium sulfinates (RSO2Na) and produces adducts in good yields. Considering that up to 4 reactions (bromination, dearomative rearrangement, E2, and SN2) are happening, this approach is very efficient. The structures of key adducts were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Ever A Blé-González
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Stephen R Isbel
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Olatunji S Ojo
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| |
Collapse
|
11
|
Singh S, Parammal A, Kumar M, X JS, Subramanian P. Iso-Pentadienyl Carbonate as a Five Carbon Synthon in Manganese(I)-Catalyzed Selective Linear 1,3-Dienylation. Chemistry 2023; 29:e202301632. [PMID: 37518839 DOI: 10.1002/chem.202301632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Athira Parammal
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Manoj Kumar
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Joe Sam X
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Parthasarathi Subramanian
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
12
|
Gharpure SJ, Fartade DJ, Nanda SK, Somani S. Hydroalkoxylation-Initiated Cascade on Sulfone-Tethered Aryl Alkynols Gives Cyclic and Spiro-Heterocyclic β-Ketosulfones. Org Lett 2023; 25:6155-6160. [PMID: 37561988 DOI: 10.1021/acs.orglett.3c02241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Serendipitous formation of cyclic β-ketosulfones is observed when sulfone-tethered arylalkynols are reacted with base. The reaction involves a base-promoted propargyl sulfone to the allene isomerization/intramolecular hydroalkoxylation/retro-oxa-Michael/6-endo-trig Michael addition cascade. Sulfone-tethered alkynyl acrylates gave stereoselective access to a diverse array of spirocyclic β-ketosulfone benzofuran/isochroman/indolines and sulfone-tethered bridged bicyclo[3.3.1]nonane. These cyclic β-ketosulfones could be readily elaborated into benzofuran-fused cyclic sulfones and tetracyclic spiroindoline.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Santosh K Nanda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shipra Somani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Zhang KY, Long F, Peng CC, Liu JH, Hu YC, Wu LJ. Multicomponent Sulfonylation of Alkenes to Access β-Substituted Arylsulfones. J Org Chem 2023; 88:3772-3780. [PMID: 36877592 DOI: 10.1021/acs.joc.2c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A novel multicomponent sulfonylation of alkenes is described for the assembly of various β-substituted arylsulfones using cheap and easily available K2S2O5 as a sulfur dioxide source. Of note, the procedure does not need any extra oxidants and metal catalysts and exhibits a relatively wide substrate scope and good functional group compatibility. Mechanistically, an initial arylsulfonyl radical is formed involving the insertion of sulfur dioxide with aryl diazonium salt, followed by alkoxyarylsulfonylation or hydroxysulfonylation of alkenes.
Collapse
Affiliation(s)
- Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, Changsha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
14
|
Ryckaert B, Demeyere E, Degroote F, Janssens H, Winne JM. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures. Beilstein J Org Chem 2023; 19:115-132. [PMID: 36761474 PMCID: PMC9907017 DOI: 10.3762/bjoc.19.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
This review covers the synthetic applications of 1,4-dithianes, as well as derivatives thereof at various oxidation states. The selected examples show how the specific heterocyclic reactivity can be harnessed for the controlled synthesis of carbon-carbon bonds. The reactivity is compared to and put into context with more common synthetic building blocks, such as 1,3-dithianes and (hetero)aromatic building blocks. 1,4-Dithianes have as yet not been investigated to the same extent as their well-known 1,3-dithiane counterparts, but they do offer attractive transformations that can find good use in the assembly of a wide array of complex molecular architectures, ranging from lipids and carbohydrates to various carbocyclic scaffolds. This versatility arises from the possibility to chemoselectively cleave or reduce the sulfur-heterocycle to reveal a versatile C2-synthon.
Collapse
Affiliation(s)
- Bram Ryckaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Ellen Demeyere
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Frederick Degroote
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| |
Collapse
|
15
|
Sharma AK, Chand S, Kumar Pandey A, Singh KN. Easy access to α-carbonyl sulfones using cross-coupling of α-aryl-α-diazoesters with sulfonyl hydrazides. Org Biomol Chem 2023; 21:987-993. [PMID: 36617883 DOI: 10.1039/d2ob02219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A facile synthesis of α-carbonyl sulfones has been accomplished by the cross-coupling of α-aryl-α-diazoesters with sulfonyl hydrazides in the presence of CuI and DBU. The reaction employs inexpensive and bench stable sulfonyl hydrazides as a sulfonyl source, and facilitates the migratory insertion with α-aryl-α-diazoesters under mild reaction conditions.
Collapse
Affiliation(s)
- Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Anand Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
16
|
Hu D, Zhang Y, Li J, Liang K, Xia C. Water-mediated radical C-H tosylation of alkenes with tosyl cyanide. Chem Commun (Camb) 2023; 59:462-465. [PMID: 36519429 DOI: 10.1039/d2cc06101e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The water-mediated tosylation of alkenes with tosyl cyanide was discovered. Experimental investigations revealed that the reaction was initiated by the in situ formation of sulfinyl sulfone in the presence of water. The sulfinyl sulfone species decomposed to a sulfonyl radical and a sulfinyl radical through homolytic fission. The vinyl sulfone was afforded via sequential addition of the alkene to the sulfonyl radical and the sulfinyl radical, followed by β-elimination of a sulfinyl moiety.
Collapse
Affiliation(s)
- Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Jianwei Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| |
Collapse
|
17
|
Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nat Commun 2023; 14:55. [PMID: 36599820 PMCID: PMC9813127 DOI: 10.1038/s41467-022-35688-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Precise stereocontrol of functionalized alkenes represents a long-standing research topic in organic synthesis. Nevertheless, the development of a catalytic, easily tunable synthetic approach for the stereodivergent synthesis of both E-selective and even more challenging Z-selective highly substituted 1,3-dienes from common substrates remains underexploited. Here, we report a photoredox and nickel dual catalytic strategy for the stereodivergent sulfonylalkenylation of terminal alkynes with vinyl triflates and sodium sulfinates under mild conditions. With a judicious choice of simple nickel catalyst and ligand, this method enables efficient and divergent access to both Z- and E-sulfonyl-1,3-dienes from the same set of simple starting materials. This method features broad substrate scope, good functional compatibility, and excellent chemo-, regio-, and stereoselectivity. Experimental and DFT mechanistic studies offer insights into the observed divergent stereoselectivity controlled by ligands.
Collapse
|
18
|
Synthesis of I (III)/S (VI) reagents and their reactivity in photochemical cycloaddition reactions with unsaturated bonds. Nat Commun 2022; 13:6588. [PMID: 36329065 PMCID: PMC9633813 DOI: 10.1038/s41467-022-34401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The development of novel methodologies for the introduction of the sulfoxonium group under mild conditions is appealing but remains underexplored. Herein we report the synthesis of a class of hypervalent iodine reagents with a transferrable sulfoxonium group. These compounds enable mixed iodonium-sulfoxonium ylide reactivity. These well-defined reagents are examined in visible-light-promoted cyclization reactions with a wide range of unsaturated bonds including alkenes, alkynes, nitriles, and allenes. Two distinct cyclization pathways are identified, which are controlled by the substituent of the unsaturated bond. The cycloaddition protocol features simple operation, mild reaction conditions, and excellent functional group tolerance, affording a broad range of sulfoxonium-containing cyclic structures in moderate to excellent yields. Furthermore, the sufoxonium group in the product can be transformed into diverse functional groups and structural motifs via single electron transfer and transition-metal catalysis.
Collapse
|
19
|
Chang MY, Chen KT. Synthesis of sulfonyl benzocyclononadienols. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Microwave assisted rapid synthesis of bicyclo aza-sulfone derivatives from aldehydes via aldoxime formation followed by Michael addition-1,3-dipolar cycloaddition with divinyl sulfone in one-pot. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Upreti GC, Singh T, Ranjan S, Gupta RK, Singh A. Visible-Light-Mediated Three-Component Cascade Sulfonylative Annulation. ACS OMEGA 2022; 7:29728-29733. [PMID: 36061680 PMCID: PMC9434776 DOI: 10.1021/acsomega.2c02302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Visible-light-promoted cascade radical cyclization for the synthesis of sulfonylated benzimidazo/indolo[2,1-a]iso-quinolin-6(5H)-ones has been reported. The reaction provides transition-metal-free and expeditious access to sulfonylated polyaromatics. The use of sodium metabisulfite as a SO2 surrogate and the rapid generation of molecular complexity using a three-component photochemical protocol are the salient features of this reaction manifold.
Collapse
Affiliation(s)
- Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
23
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Kostryukov SG, Masterova YY, Pugacheva EY. Reaction of N-Aryl-3-(arylimino)-3H-1,2,4-dithiazol-5-amines with Ethynyl Sulfones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Goulart TAC, Recchi AMS, Back DF, Zeni G. Selective 5‐Exo‐Dig versus 6‐Endo‐Dig Cyclization of Benzoimidazole Thiols with Propargyl Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tales A. C. Goulart
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Ana M. S. Recchi
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos Departamento de Química, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Gilson Zeni
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
26
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
27
|
Kostryukov SG, Masterova YY, Pugacheva EY. On Reactions of 5-Imino-N,4-diaryl-4,5-dihydro-1,2,4-thiadiazol-3-amines with Phenylethynyl Sulfones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Luque A, Groß J, Zähringer TJB, Kerzig C, Opatz T. Vinylcyclopropane [3+2] Cycloaddition with Acetylenic Sulfones Based on Visible Light Photocatalysis. Chemistry 2022; 28:e202104329. [PMID: 35133690 PMCID: PMC9314945 DOI: 10.1002/chem.202104329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/25/2023]
Abstract
The first intermolecular visible light [3+2] cycloaddition reaction performed on a meta photocycloadduct employing acetylenic sulfones is described. The developed methodology exploits the advantages of combining UV and visible-light in a two-step sequence that provides a photogenerated cyclopropane which, through a strain-release process, generates a new cyclopentane ring while significantly increasing the molecular complexity. Mechanistic studies and DFT calculations indicate an energy transfer pathway for the visible light-driven reaction step. This strategy could be extended to simpler vinylcyclopropanes.
Collapse
Affiliation(s)
- Adriana Luque
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Jonathan Groß
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Till J. B. Zähringer
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Christoph Kerzig
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
29
|
Stepakov AV, Filatov AS, Boitsov VM, Lozovskiy SV. Diastereoselective cycloaddition of tosylpropadiene to azomethine ylides, derived from proline and carbonyl compounds: an experimental and DFT study. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2017436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexander V. Stepakov
- Institute of Chemistry, Saint Petersburg State University, Petersburg, Russian Federation
- Saint Petersburg State Institute of Technology, Petersburg, Russian Federation
| | - Alexander S. Filatov
- Institute of Chemistry, Saint Petersburg State University, Petersburg, Russian Federation
| | - Vitali M. Boitsov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Petersburg, Russian Federation
| | | |
Collapse
|
30
|
Zeng JH, Li DC, Zhang S, Zhan ZP. Chemodivergent Synthesis of Allylic Sulfones via Ligand-Controlled Coupling of Allenes with Sulfinic Acids. Org Lett 2022; 24:1195-1200. [DOI: 10.1021/acs.orglett.1c04349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Hao Zeng
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Ding-Chang Li
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Sheng Zhang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| |
Collapse
|
31
|
Chen G, Xu J, Xiong B, Song H, Zhang X, Ma X, Lian Z. Copper-Catalyzed Trifluoromethylthio-arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide. Org Lett 2022; 24:1207-1212. [PMID: 35099197 DOI: 10.1021/acs.orglett.1c04371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gang Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jie Xu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongzhuo Song
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Department of biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Pati S, Rayi S, Namboothiri INN. Stereoselective Synthesis of Tri- and Tetrasubstituted Olefins via 1,6-Additions of Diazo Compounds and Their Precursors to p-Quinone Methides. ACS ORGANIC & INORGANIC AU 2021; 1:51-59. [PMID: 36855755 PMCID: PMC9954373 DOI: 10.1021/acsorginorgau.1c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reactions of para-quinone methides (p-QMs) with α-diazo-β-ketosulfones and their corresponding esters as well as simple β-dicarbonyl compounds and β-ketosulfones have been carried out under basic conditions. While the reaction of diazosulfone with p-QMs afforded trisubstituted olefins via deacylative 1,6-addition and elimination, α-diazo-β-ketoesters and various active methylene compounds such as 1,3-dicarbonyls and β-ketosulfones afforded tetrasubstituted olefins via 1,6-addition and aerial oxidation. These simple, environmentally benign, and mechanistically diverse protocols provided the products in moderate to excellent yields and selectivities.
Collapse
|
33
|
Leclercq E, Boddaert M, Beaucamp M, Penhoat M, Chausset-Boissarie L. Electrochemical sulfonylation of imidazoheterocycles under batch and continuous flow conditions. Org Biomol Chem 2021; 19:9379-9385. [PMID: 34673877 DOI: 10.1039/d1ob01822a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and versatile protocol for the C-H sulfonylation of imidazoheterocycles via electrochemical activation was established under batch and flow conditions. The selective C-H bond functionalization proceeded under catalyst- and oxidant-free conditions and tolerated a wide range of functional groups. Various sodium sulfinates as well as imidazo[1,2-a]-pyridines, -pyrimidine, -quinolines, and -isoquinolines, imidazo[1,2-b]pyridazine, imidazo[2,1-b]thiazoles and benzo[d]imidazo[1,2-b]thiazoles reacted successfully. Interestingly, significant acceleration and higher yields were obtained under microfluidic conditions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maxime Boddaert
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Mathieu Beaucamp
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maël Penhoat
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| |
Collapse
|
34
|
Pagès L, Lemouzy S, Taillefer M, Monnier F. Easy Access to Allylic Sulfones Through Transition-Metal-Free Hydrosulfonylation Of Allenes. J Org Chem 2021; 86:15695-15701. [PMID: 34661402 DOI: 10.1021/acs.joc.1c01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Brønsted acid-mediated addition of (hetero)aryl and (cyclo)alkyl sodium sulfinates to N-allenyl derivatives, which proceeds in water, is described under very smooth conditions. This reaction provided a practical and efficient protocol for the regio- and stereoselective synthesis of allylic sulfones in an atom- and step-economic fashion.
Collapse
Affiliation(s)
- Lucas Pagès
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, Montpellier 34296, France
| | - Sébastien Lemouzy
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, Montpellier 34296, France
| | - Marc Taillefer
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, Montpellier 34296, France
| | - Florian Monnier
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, Montpellier 34296, France.,Institut Universitaire de France (IUF), 1 Rue Descartes, Paris 75231 CEDEX 5, France
| |
Collapse
|
35
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
36
|
Chen Y, Zhu K, Huang Q, Lu Y. Regiodivergent sulfonylarylation of 1,3-enynes via nickel/photoredox dual catalysis. Chem Sci 2021; 12:13564-13571. [PMID: 34777776 PMCID: PMC8528021 DOI: 10.1039/d1sc04320j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022] Open
Abstract
Catalytic difunctionalization of 1,3-enynes represents an efficient and versatile approach to rapidly assemble multifunctional propargylic compounds, allenes and 1,3-dienes. Controlling selectivity in such addition reactions has been a long-standing challenging task due to multiple reactive centers resulting from the conjugated structure of 1,3-enynes. Herein, we present a straightforward method for regiodivergent sulfonylarylation of 1,3-enynes via dual nickel and photoredox catalysis. Hinging on the nature of 1,3-enynes, diverse reaction pathways are feasible: synthesis of α-allenyl sulfones via 1,4-sulfonylarylation, or preparation of (E)-1,3-dienyl sulfones with high chemo-, regio- and stereoselectivity through 3,4-sulfonylarylation. Notably, this is the first example that nickel and photoredox catalysis are merged to achieve efficient and versatile difunctionalization of 1,3-enynes.
Collapse
Affiliation(s)
- Ya Chen
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kun Zhu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| | - Qingqin Huang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| |
Collapse
|
37
|
Gong B, Zhu H, Liu Y, Li Q, Yang L, Wu G, Fan Q, Xie Z, Le Z. Palladium-catalyzed sulfonylative coupling of benzyl(allyl) carbonates with arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
38
|
Zhong Z, Xu P, Ma J, Zhou A. Electrochemical cross-coupling reactions of sodium arenesulfinates with thiophenols and phenols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Arai Y, Oguri H. Divergent synthesis of functionalized dihydropyridines and pyrroles via metal-free one-pot domino reactions of a gem-disubstituted propargyl amine and an alkynyl sulfone. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
41
|
Bose A, Pathak T. Vinyl sulfone-modified carbohydrates: Michael acceptors and 2π partners for the synthesis of functionalized sugars and enantiomerically pure carbocycles and heterocycles. Adv Carbohydr Chem Biochem 2021; 78:1-134. [PMID: 33276909 DOI: 10.1016/bs.accb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increasing demands for molecules with skeletal complexity, including those of stereochemical diversity, require new synthetic strategies. Carbohydrates have been used extensively as chiral building blocks for the synthesis of various complex molecules. On the other hand, the vinyl sulfone group has been identified as a unique functional group, which acts either as a Michael acceptor or a 2π partner in cycloaddition reactions. A combination of the high reactivity of the vinyl sulfone group and the in-built chiralities of carbohydrates has the potential to function as a powerful tool to generate a wide variety of enantiomerically pure reactive intermediates. Since CS bond formation in carbohydrates is easily achieved with regioselectivity, further synthetic manipulations of these thiosugars has led to the generation of a wide range of vinyl sulfone-modified furanosyl, pyranosyl, acyclic, and bicyclic carbohydrates. Several approaches have been studied to standardize the preparative methods for accessing vinyl sulfone-modified carbohydrates at least on a gram scale. Reactions of these modified carbohydrates with appropriate reagents afford a large number of new chemical entities primarily via (i) Michael addition reactions, (ii) desulfostannylation, (iii) Michael-initiated ring-closure reactions, and (iv) cycloaddition reactions. A wide range of desulfonylating reagents in the context of sensitive molecules such as carbohydrates have also been extensively studied. Applications of these strategies have led to the synthesis of (a) amino sugars and branched-chain sugars, (b) C-glycosides, (c) enantiomerically pure cyclopropanes, five- and six-membered carbocycles, (d) saturated oxa-, aza-, and thio-monocyclic heterocycles, (e) bi-and tricyclic saturated oxa and aza heterocycles, (f) enantiomerically pure and trisubstituted pyrroles, (g) 1,5-disubstituted 1,2,3-triazolylated carbohydrates and the corresponding triazole-linked di- and trisaccharides, (h) divinyl sulfone-modified carbohydrates and densely functionalized S,S-dioxothiomorpholines, and (i) modified nucleosides. Details of reaction conditions were incorporated as much as possible and mechanistic discussions were included wherever necessary.
Collapse
Affiliation(s)
- Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
42
|
Yamasaki K, Yamauchi A, Inokuma T, Miyakawa Y, Wang Y, Oriez R, Yamaoka Y, Takasu K, Tanaka N, Kashiwada Y, Yamada K. Mechanistic Support for Intramolecular Migrative Cyclization of Propargyl Sulfones Provided by Catalytic Asymmetric Induction with a Chiral Counter Cation Strategy. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kohta Yamasaki
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Akiho Yamauchi
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Tsubasa Inokuma
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yasunori Miyakawa
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yinli Wang
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Raphaël Oriez
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Ken‐ichi Yamada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| |
Collapse
|
43
|
Guo Z, Zhao Y, Wang Y, Xie M, Zhang J. Construction of 3-Sulfonyl Naphthalenes via Tandem Reaction of 1,4-Diyn-3-yl Esters with Sodium Sulfinates. J Org Chem 2021; 86:6247-6258. [PMID: 33874722 DOI: 10.1021/acs.joc.1c00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polysubstituted 3-sulfonyl naphthalenes were constructed in good to high yields by AlCl3-mediated tandem reaction of 1,4-diyn-3-yl esters and sodium sulfinates. This reaction proceeded under mild reaction conditions and tolerated a variety of functional groups. Moreover, the mechanistic studies indicated that the initial formation of allene under DBU from 1,4-diyn-3-yl ester and a sequence of nucleophilic addition of sodium sulfinate, the formation of allene, and intramolecular cyclization might be involved.
Collapse
Affiliation(s)
- Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
44
|
Galván J, Piro O, Echeverria G, Molina R, Arena M, Aguilar EC, Ulic S, Tuttolomondo M, Altabef AB. Synthesis, characterization and crystal structure of bis-(methylsulfonylmethyl) sulfone, a symmetric acyclic trisulfone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Xu H, Ye R, Li Z, Han M, Meng L. Multicomponent Assembly of α,α‐Bis‐Sulfonyl Arylketones and Multiple Substituted Conjugated Dienes Induced by Visible‐Light Irradiation without Additives and Photocatalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Man‐Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| |
Collapse
|
46
|
Zheng M, Gao K, Zhang Y, Lu H. Visible-light photoredox-catalyzed aryl radical in situ SO 2-capture reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00099c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aryl radical in situ SO2-capture reaction is developed for the synthesis of various β-keto, allyl and alkynyl arylsulfone derivatives.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yanhu Zhang
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
47
|
Sun J, Miao T, Li P, Wang L. t-BuOK-Mediated Reductive Desulfonylation/Dehydrogenation for the Synthesis of 2-Substituted 1,3-Dienes and Their [4+2] Cycloaddition Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Zhang X, Yang J, Xiong N, Han Z, Duan X, Zeng R. Indium-mediated annulation of 2-azidoaryl aldehydes with propargyl bromides to [1,2,3]triazolo[1,5- a]quinolines. Org Biomol Chem 2021; 19:6346-6352. [PMID: 34231622 DOI: 10.1039/d1ob01183a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient indium-mediated cascade annulation reaction of 2-azidoaryl aldehydes with propargyl bromides is reported. The aromatic 5/6/6-fused heterocycles, [1,2,3]triazolo[1,5-a]quinoline derivatives, could be constructed in one pot in moderate yields with a broad substrate scope. Mechanistic studies indicated that the reaction proceeded through allenol formation, azide-allene [3 + 2] cycloaddition, and dehydration. The synthetic potential of the products including the denitrogenative functionalization and the Pd-catalyzed coupling reactions has also been explored.
Collapse
Affiliation(s)
- Xiaomin Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Jiali Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Ni Xiong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Zhe Han
- School of Nuclear Science and Technology, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China
| | - Xinhua Duan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China. and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
49
|
Ge D, Wang X, Chu XQ. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org Chem Front 2021. [DOI: 10.1039/d1qo00798j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in SOMOphilic alkynylation reactions by using acetylenic sulfones as functional reagents are summarized.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
50
|
Xiong B, Chen L, Xu J, Sun H, Li X, Li Y, Lian Z. Catalytic AgF-Initiated Intramolecular 1,3-Sulfonyl Migration of gem-Difluorovinyl Sulfonates to α,α-Difluoro-β-ketosulfones. Org Lett 2020; 22:9263-9268. [PMID: 33205980 DOI: 10.1021/acs.orglett.0c03492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic amount of silver fluoride is presented. α,α-Difluoro-β-ketosulfones were successfully prepared in excellent yields. This method features high chemoselectivity, good functional group tolerance, high atom economy, and mild, environmentally benign reaction conditions. Furthermore, mechanistic experiments indicate that this migration proceeds in an intermolecular pathway and the corresponding sulfinates are possible intermediates.
Collapse
Affiliation(s)
- Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jie Xu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haotian Sun
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiong Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|