1
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
2
|
Smirnova I, Wu F, Brzezinski P. Stimulation of cytochrome c oxidase activity by detergents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149509. [PMID: 39251013 DOI: 10.1016/j.bbabio.2024.149509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
3
|
Allgöwer F, Pöverlein MC, Rutherford AW, Kaila VRI. Mechanism of proton release during water oxidation in Photosystem II. Proc Natl Acad Sci U S A 2024; 121:e2413396121. [PMID: 39700151 DOI: 10.1073/pnas.2413396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (Mn4O5Ca) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O2 formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated. Here, we show that the light-driven Tyr161D1 (Yz) oxidation adjacent to the Mn4O5Ca cluster, decreases the barrier for proton transfer from the putative substrate water molecule (W3/Wx) to Glu310D2, accessible to the luminal bulk. By combining hybrid quantum/classical (QM/MM) free energy calculations with atomistic molecular dynamics simulations, we probe the energetics of the proton transfer along the Cl1 pathway. We demonstrate that the proton transfer occurs via water molecules and a cluster of conserved carboxylates, driven by redox-triggered electric fields directed along the pathway. Glu65D1 establishes a local molecular gate that controls the proton transfer to the luminal bulk, while Glu312D2 acts as a local proton storage site. The identified gating region could be important in preventing backflow of protons to the Mn4O5Ca cluster. The structural changes, derived here based on the dark-state PSII structure, strongly support recent time-resolved X-ray free electron laser data of the S3 → S4 transition (Bhowmick et al. Nature 617, 2023) and reveal the mechanistic basis underlying deprotonation of the substrate water molecules. Our findings provide insight into the water oxidation mechanism of PSII and show how the interplay between redox-triggered electric fields, ion-pairs, and hydration effects control proton transport reactions.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
4
|
Tomkova A, Cizmar E, Jancura D, Fabian M. High stability of the radical at the catalytic center of cytochrome c oxidase. Arch Biochem Biophys 2024; 764:110271. [PMID: 39689752 DOI: 10.1016/j.abb.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
In aerobic organisms, cellular respiration is associated with electron transfer through a respiratory system of membrane-bound complexes. This electron flow is terminated by the reduction of dioxygen to water by respiratory oxidases. Cytochrome c oxidase (CcO) is a widely distributed heme-copper-oxygen reductase (HCO) found in all mitochondria and some bacteria. However, the sequential reduction of O2 to water in CcO generates a protein-based radical at the catalytic heme a3-CuB site. To avoid the potential damage from the radical, CcO has apparently developed protective mechanisms. Protection by transfer of the highly oxidizing equivalent over considerable distances away from the catalytic site by redox-active Tyr/Trp chains has been previously demonstrated in bovine CcO. However, the rate of the radical migration from the catalytic center has not yet been determined for any HCO. In this work, we show that the radical escapes from the catalytic center of the ferryl PM intermediate of bovine CcO within minutes, which is much longer than the time of its functional reduction during cellular respiration. Apparently, this high stability has evolved to avoid the dissipation of energy released during the oxygen reduction with substrate electrons.
Collapse
Affiliation(s)
- Adriana Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, 7 040 01, Kosice, Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| |
Collapse
|
5
|
Kovalova T, Król S, Gamiz-Hernandez AP, Sjöstrand D, Kaila VRI, Brzezinski P, Högbom M. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A 2024; 121:e2412780121. [PMID: 39531492 PMCID: PMC11588064 DOI: 10.1073/pnas.2412780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis is one of the most common causes of death worldwide, with a rapid emergence of multi-drug-resistant strains underscoring the need for new antituberculosis drugs. Recent studies indicate that lansoprazole-a known gastric proton pump inhibitor and its intracellular metabolite, lansoprazole sulfide (LPZS)-are potential antituberculosis compounds. Yet, their inhibitory mechanism and site of action still remain unknown. Here, we combine biochemical, computational, and structural approaches to probe the interaction of LPZS with the respiratory chain supercomplex III2IV2 of Mycobacterium smegmatis, a close homolog of Mycobacterium tuberculosis supercomplex. We show that LPZS binds to the Qo cavity of the mycobacterial supercomplex, inhibiting the quinol substrate oxidation process and the activity of the enzyme. We solve high-resolution (2.6 Å) cryo-electron microscopy (cryo-EM) structures of the supercomplex with bound LPZS that together with microsecond molecular dynamics simulations, directed mutagenesis, and functional assays reveal key interactions that stabilize the inhibitor, but also how mutations can lead to the emergence of drug resistance. Our combined findings reveal an inhibitory mechanism of LPZS and provide a structural basis for drug development against tuberculosis.
Collapse
Affiliation(s)
- Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| |
Collapse
|
6
|
Son YJ, Kim D, Park JW, Ko K, Yu Y, Hwang SJ. Heteromultimetallic Platform for Enhanced C-H Bond Activation: Aluminum-Incorporated Dicopper Complex Mimicking Cu-ZSM-5 Structure and Oxidative Reactivity. J Am Chem Soc 2024; 146:29810-29823. [PMID: 39420644 DOI: 10.1021/jacs.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic complexes have sparked interest across various chemical disciplines, driving advancements in research. Recent advancements in this field have shed light on complex reactions in metalloenzymes and unveiled new chemical transformations. Two primary types of bimetallic platforms have emerged: (1) systems where both metals actively participate in reactivity, and (2) systems where one metal mediates the reaction while the other regulates reactivity. This study introduces a novel multinucleating ligand platform capable of integrating both types of bimetallic systems. To demonstrate the significance of this platform, we synthesized a unique dicopper complex incorporating aluminum in its coordination environment. This complex serves as the first structural model for the active site in copper-based zeolites, highlighting the role of aluminum in hydrogen atom abstraction reactivity. Comparative studies of oxidative C-H bond activation revealed that the inclusion of aluminum significantly alters the thermodynamic driving force (by -11 kcal mol-1) for bond activation and modifies the proton-coupled electron-transfer reaction mechanism, resulting in a 14-fold rate increase. Both computational and experimental data support the high modularity of this multinucleating ligand platform, offering a new approach to fine-tune the reactivity of bimetallic complexes.
Collapse
Affiliation(s)
- Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Wan Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwangwook Ko
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeongjun Yu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Saura P, Kim H, Beghiah A, Young L, Moore AL, Kaila VRI. Proton-coupled electron transfer dynamics in the alternative oxidase. Chem Sci 2024:d4sc05060f. [PMID: 39444558 PMCID: PMC11492382 DOI: 10.1039/d4sc05060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
The alternative oxidase (AOX) is a membrane-bound di-iron enzyme that catalyzes O2-driven quinol oxidation in the respiratory chains of plants, fungi, and several pathogenic protists of biomedical and industrial interest. Yet, despite significant biochemical and structural efforts over the last decades, the catalytic principles of AOX remain poorly understood. We develop here multi-scale quantum and classical molecular simulations in combination with biochemical experiments to address the proton-coupled electron transfer (PCET) reactions responsible for catalysis in AOX from Trypanosoma brucei, the causative agent of sleeping sickness. We show that AOX activates and splits dioxygen via a water-mediated PCET reaction, resulting in a high-valent ferryl/ferric species and tyrosyl radical (Tyr220˙) that drives the oxidation of the quinol via electric field effects. We identify conserved carboxylates (Glu215, Asp100) within a buried cluster of ion-pairs that act as a transient proton-loading site in the quinol oxidation process, and validate their function experimentally with point mutations that result in drastic activity reduction and pK a-shifts. Our findings provide a key mechanistic understanding of the catalytic machinery of AOX, as well as a molecular basis for rational drug design against energy transduction chains of parasites. On a general level, our findings illustrate how redox-triggered conformational changes in ion-paired networks control the catalysis via electric field effects.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex Falmer Brighton BN1 9QG UK
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex Falmer Brighton BN1 9QG UK
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
8
|
Yuan Q, Zhang Z, Kong X, Ling Z, Zhang H, Cheng L, Wang XB. Photodetachment photoelectron spectroscopy shows isomer-specific proton-coupled electron transfer reactions in phenolic nitrate complexes. Commun Chem 2024; 7:176. [PMID: 39122780 PMCID: PMC11315994 DOI: 10.1038/s42004-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of phenolic compounds is one of the most important reactions prevalent in various biological processes, often explicitly coupled with proton transfers (PTs). Quantitative descriptions and molecular-level understanding of these proton-coupled electron transfer (PCET) reactions have been challenging. This work reports a direct observation of PCET in photodetachment (PD) photoelectron spectroscopy (PES) of hydrogen-bonded phenolic (ArOH) nitrate (NO3-) complexes, in which a much slower rising edge provides a spectroscopic signature to evidence PCET. Electronic structure calculations unveil the PCET processes to be isomer-specific, occurred only in those with their HOMOs localized on ArOH, leading to charge-separated transient states ArOH•+·NO3- triggered by ionizing phenols while simultaneously promoting PT from ArOH•+ to NO3-. Importantly, this study showcases that gas-phase PD-PES is a generic means enabling to identify PCET reactions with explicit structural and binding information.
Collapse
Affiliation(s)
- Qinqin Yuan
- Department of Chemistry, Anhui University, 230601, Hefei, China
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ziheng Zhang
- Department of Chemistry, Anhui University, 230601, Hefei, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, 455000, Anyang, China
| | - Zicheng Ling
- Department of Chemistry, Anhui University, 230601, Hefei, China
| | - Hanhui Zhang
- Institute of Advanced Science Facilities, 518107, Shenzhen, China.
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 230601, Hefei, China.
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
9
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Torić J, Karković Marković A, Mustać S, Pulitika A, Jakobušić Brala C, Pilepić V. Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions. Int J Mol Sci 2024; 25:6341. [PMID: 38928048 PMCID: PMC11203655 DOI: 10.3390/ijms25126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.
Collapse
Affiliation(s)
- Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Stipe Mustać
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Anamarija Pulitika
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Viktor Pilepić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| |
Collapse
|
11
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
13
|
Liu N, Li L, Qin X, Li X, Xie Y, Chen X, Gao J. Theoretical Insights into the Generation Mechanism of the Tyr 122 Radical Catalyzed by Intermediate X in Class Ia Ribonucleotide Reductase. Inorg Chem 2023; 62:19498-19506. [PMID: 37987809 DOI: 10.1021/acs.inorgchem.3c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides in all organisms. There is an ∼35 Å long-range electron-hole transfer pathway during the catalytic process of class Ia RNR, which can be described as Tyr122β ↔ [Trp48β]? ↔ Tyr356β ↔ Tyr731α ↔ Tyr730α ↔ Cys439α. The formation of the Y122• radical initiates this long-range radical transfer process. However, the generation mechanism of Y122• is not yet clear due to confusion over the intermediate X structures. Based on the two reported X structures, we examined the possible mechanisms of Y122• generation by density functional theory (DFT) calculations. Our examinations revealed that the generation of the Y122• radical from the two different core structures of X was via a similar two-step reaction, with the first step of proton transfer for the formation of the proton receptor of Y122 and the second step of a proton-coupled long-range electron transfer reaction with the proton transfer from the Y122 hydroxyl group to the terminal hydroxide ligand of Fe1III and simultaneously electron transfer from the side chain of Y122 to Fe2IV. These findings provide an insight into the formation mechanism of Y122• catalyzed by the double-iron center of the β subunit of class Ia RNR.
Collapse
Affiliation(s)
- Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST. The catalytic reaction of cytochrome c oxidase probed by in situ gas titrations and FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149000. [PMID: 37516233 DOI: 10.1016/j.bbabio.2023.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cytochrome c oxidase (CcO) is a transmembrane heme‑copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.
Collapse
Affiliation(s)
- Federico Baserga
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Julian Storm
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Division of Physical Chemistry, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
| |
Collapse
|
15
|
Depenbrock F, Limpke T, Bill E, SantaLucia DJ, van Gastel M, Walleck S, Oldengott J, Stammler A, Bögge H, Glaser T. Reactivities and Electronic Structures of μ-1,2-Peroxo and μ-1,2-Superoxo Co IIICo III Complexes: Electrophilic Reactivity and O 2 Release Induced by Oxidation. Inorg Chem 2023; 62:17913-17930. [PMID: 37838986 DOI: 10.1021/acs.inorgchem.3c02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Peroxo complexes are key intermediates in water oxidation catalysis (WOC). Cobalt plays an important role in WOC, either as oxides CoOx or as {CoIII(μ-1,2-peroxo)CoIII} complexes, which are the oldest peroxo complexes known. The oxidation of {CoIII(μ-1,2-peroxo)CoIII} complexes had usually been described to form {CoIII(μ-1,2-superoxo)CoIII} complexes; however, recently the formation of {CoIV(μ-1,2-peroxo)CoIII} species were suggested. Using a bis(tetradentate) dinucleating ligand, we present here the synthesis and characterization of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} and {CoIII(μ-OH)2CoIII} complexes. Oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} at -40 °C in CH3CN provides the stable {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} species and activates electrophilic reactivity. Moreover, {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} catalyzes water oxidation, not molecularly but rather via CoOx films. While {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} can be reversibly deprotonated with DBU at -40 °C in CH3CN, {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} undergoes irreversible conversions upon reaction with bases to a new intermediate that is also the decay product of {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} in aqueous solution at pH > 2. Based on a combination of experimental methods, the new intermediate is proposed to have a {CoII(μ-OH)CoIII} core formed by the release of O2 from {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} confirmed by a 100% yield of O2 upon photocatalytic oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII}. This release of O2 by oxidation of a peroxo intermediate corresponds to the last step in molecular WOC.
Collapse
Affiliation(s)
- Felix Depenbrock
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Daniel J SantaLucia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| |
Collapse
|
16
|
Jancura D, Tomkova A, Sztachova T, Berka V, Fabian M. Examination of 'high-energy' metastable state of the oxidized (O H) bovine cytochrome c oxidase: Proton uptake and reaction with H 2O 2. Arch Biochem Biophys 2023; 747:109758. [PMID: 37748626 DOI: 10.1016/j.abb.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Reoxidized cytochrome c oxidase appears to be in a 'high-energy' metastable state (OH) in which part of the energy released in the redox reactions is stored. The OH is supposed to relax to the resting 'as purified' oxidized state (O) in a time exceeding 200 ms. The catalytic heme a3-CuB center of these two forms should differ in a protonation and ligation state and the transition of OH-to-O is suggested to be associated with a proton transfer into this center. Employing a stopped-flow and UV-Vis absorption spectroscopy we investigated a proton uptake during the predicted relaxation of OH. It is shown, using a pH indicator phenol red, that from the time when the oxidation of the fully reduced CcO is completed (∼25 ms) up to ∼10 min, there is no uptake of a proton from the external medium (pH 7.8). Moreover, interactions of the assumed OH, generated 100 ms after oxidation of the fully reduced CcO, and the O with H2O2 (1 mM), result in the formation of two ferryl intermediates of the catalytic center, P and F, with very similar kinetics and the amounts of the formed ferryl states in both cases. These results implicate that the relaxation time of the catalytic center during the OH-to-O transition is either shorter than 100 ms or there is no difference in the structure of heme a3-CuB center of these two forms.
Collapse
Affiliation(s)
- D Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - A Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - T Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - V Berka
- Department of Internal Medicine, University of Texas Health Science Center, 77030, Houston, Texas, USA
| | - M Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| |
Collapse
|
17
|
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Collapse
Affiliation(s)
- Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
18
|
Zhu M, Wang S, Li Z, Li J, Xu Z, Liu X, Huang X. Tyrosine residues initiated photopolymerization in living organisms. Nat Commun 2023; 14:3598. [PMID: 37328460 PMCID: PMC10276049 DOI: 10.1038/s41467-023-39286-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Towards intracellular engineering of living organisms, the development of new biocompatible polymerization system applicable for an intrinsically non-natural macromolecules synthesis for modulating living organism function/behavior is a key step. Herein, we find that the tyrosine residues in the cofactor-free proteins can be employed to mediate controlled radical polymerization under 405 nm light. A proton-coupled electron transfer (PCET) mechanism between the excited-state TyrOH* residue in proteins and the monomer or the chain transfer agent is confirmed. By using Tyr-containing proteins, a wide range of well-defined polymers are successfully generated. Especially, the developed photopolymerization system shows good biocompatibility, which can achieve in-situ extracellular polymerization from the surface of yeast cells for agglutination/anti-agglutination functional manipulation or intracellular polymerization inside yeast cells, respectively. Besides providing a universal aqueous photopolymerization system, this study should contribute a new way to generate various non-natural polymers in vitro or in vivo to engineer living organism functions and behaviours.
Collapse
Affiliation(s)
- Mei Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| |
Collapse
|
19
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
20
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Cao YC, Liao RZ. QM Calculations Revealed that Outer-Sphere Electron Transfer Boosted O-O Bond Cleavage in the Multiheme-Dependent Cytochrome bd Oxygen Reductase. Inorg Chem 2023; 62:4066-4075. [PMID: 36857027 DOI: 10.1021/acs.inorgchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.
Collapse
Affiliation(s)
- Yu-Chen Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
22
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
23
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
24
|
Allen JP, Chamberlain KD, Williams JC. Identification of amino acid residues in a proton release pathway near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2023; 155:23-34. [PMID: 36197600 DOI: 10.1007/s11120-022-00968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Insight into control of proton transfer, a crucial attribute of cellular functions, can be gained from investigations of bacterial reaction centers. While the uptake of protons associated with the reduction of the quinone is well characterized, the release of protons associated with the oxidized bacteriochlorophyll dimer has been poorly understood. Optical spectroscopy and proton release/uptake measurements were used to examine the proton release characteristics of twelve mutant reaction centers, each containing a change in an amino acid residue near the bacteriochlorophyll dimer. The mutant reaction centers had optical spectra similar to wild-type and were capable of transferring electrons to the quinones after light excitation of the bacteriochlorophyll dimer. They exhibited a large range in the extent of proton release and in the slow recovery of the optical signal for the oxidized dimer upon continuous illumination. Key roles were indicated for six amino acid residues, Thr L130, Asp L155, Ser L244, Arg M164, Ser M190, and His M193. Analysis of the results points to a hydrogen-bond network that contains these residues, with several additional residues and bound water molecules, forming a proton transfer pathway. In addition to proton transfer, the properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination. The characteristics of this pathway are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.
Collapse
Affiliation(s)
- J P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - K D Chamberlain
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - J C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| |
Collapse
|
25
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
27
|
Auman D, Ecker F, Mader SL, Dorst KM, Bräuer A, Widmalm G, Groll M, Kaila VRI. Peroxy Intermediate Drives Carbon Bond Activation in the Dioxygenase AsqJ. J Am Chem Soc 2022; 144:15622-15632. [PMID: 35980821 DOI: 10.1021/jacs.2c05650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenases catalyze stereoselective oxygen atom transfer in metabolic pathways of biological, industrial, and pharmaceutical importance, but their precise chemical principles remain controversial. The α-ketoglutarate (αKG)-dependent dioxygenase AsqJ synthesizes biomedically active quinolone alkaloids via desaturation and subsequent epoxidation of a carbon-carbon bond in the cyclopeptin substrate. Here, we combine high-resolution X-ray crystallography with enzyme engineering, quantum-classical (QM/MM) simulations, and biochemical assays to describe a peroxidic intermediate that bridges the substrate and active site metal ion in AsqJ. Homolytic cleavage of this moiety during substrate epoxidation generates an activated high-valent ferryl (FeIV = O) species that mediates the next catalytic cycle, possibly without the consumption of the metabolically valuable αKG cosubstrate. Our combined findings provide an important understanding of chemical bond activation principles in complex enzymatic reaction networks and molecular mechanisms of dioxygenases.
Collapse
Affiliation(s)
- Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Kevin M Dorst
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Alois Bräuer
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
28
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
29
|
Arima H, Nakazono T, Wada T. Proton Relay Effects on Oxygen Reduction Reaction Catalyzed by Dinuclear Cobalt Polypyridyl Complexes with OH Groups on Bipyridine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
30
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Wang YF, Zhang MT. Proton-Coupled Electron-Transfer Reduction of Dioxygen: The Importance of Precursor Complex Formation between Electron Donor and Proton Donor. J Am Chem Soc 2022; 144:12459-12468. [PMID: 35776107 DOI: 10.1021/jacs.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction has drawn extensive attention for its widespread occurrence in chemistry, biology, and materials science. The mechanistic studies via model systems such as tyrosine and phenol oxidation have gradually deepened the understanding of PCET reactions, which was widely accepted and applied to bond activation and transformation. However, direct PCET activation of nonpolar bonds such as the C-H bond, O2, and N2 has yet to be explored. Herein, we report that the interaction between electron donor and proton donor could overcome the barrier of direct O2 activation via a concerted electron-proton transfer mechanism. This work provides a new strategy for developing direct PCET activation of nonpolar bonds.
Collapse
Affiliation(s)
- Yu-Fan Wang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13:3615. [PMID: 35750769 PMCID: PMC9232578 DOI: 10.1038/s41467-022-31413-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA
| | - Jonathan V Dietz
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Javier Seravalli
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
33
|
Mori H, Yokomori S, Dekura S, Ueda A. Proton-electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chem Commun (Camb) 2022; 58:5668-5682. [PMID: 35420071 DOI: 10.1039/d1cc06826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected. This feature article highlights the recent progress in the development of functionalities of dynamic proton-electron coupling in molecular materials. Herein, single-unit conductivity by self-doping, quantum spin liquid state coupled with quantum fluctuation of protons, switching of conductivity and magnetism triggered by the disorder-order transition of deuterons, and their external responses under pressure and in the presence of an electric field are introduced. In addition, as for the functionalities of proton-d/π-electron coupling in metal dithiolene complexes, magnetic switching with multiple PCET and vapochromism induced by electron transfer through hydrogen-bond (H-bond) formation is introduced experimentally and theoretically. We also outlined the basic and applied issues and potential challenges for development of proton-electron-coupled molecular materials, functionalities, and devices.
Collapse
Affiliation(s)
- Hatsumi Mori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - So Yokomori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Akira Ueda
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
34
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
35
|
Shah SSA, Najam T, Bashir MS, Javed MS, Rahman AU, Luque R, Bao SJ. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106279. [PMID: 35338585 DOI: 10.1002/smll.202106279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Recent progress in synthetic strategies, analysis techniques, and computational modeling assist researchers to develop more active catalysts including metallic clusters to single-atom active sites (SACs). Metal coordinated N-doped carbons (M-N-C) are the most auspicious, with a large number of atomic sites, markedly performing for a series of electrochemical reactions. This perspective sums up the latest innovative and computational comprehension, while giving credit to earlier/pioneering work in carbonaceous assembly materials towards robust electrocatalytic activity for proton exchange membrane fuel cells via inclusive performance assessment of the oxygen reduction reaction (ORR). M-Nx -Cy are exclusively defined active sites for ORR, so there is a unique possibility to intellectually design the relatively new catalysts with much improved activity, selectivity, and durability. Moreover, some SACs structures provide better performance in fuel cells testing with long-term durability. The efforts to understand the connection in SACs based M-Nx -Cy moieties and how these relate to catalytic ORR performance are also conveyed. Owing to comprehensive practical application in the field, this study has covered very encouraging aspects to the current durability status of M-N-C based catalysts for fuel cells followed by degradation mechanisms such as macro-, microdegradation, catalytic poisoning, and future challenges.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Aziz-Ur Rahman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, Cordoba, E14014, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str, Moscow, 117198, Russian Federation
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
36
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
37
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
38
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
39
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
40
|
Du WGH, Götz AW, Noodleman L. Mössbauer Property Calculations on Fea33+∙∙∙H2O∙∙∙CuB2+ Dinuclear Center Models of the Resting Oxidized as-Isolated Cytochrome c Oxidase. Chemphyschem 2022; 23:e202100831. [PMID: 35142420 PMCID: PMC9054037 DOI: 10.1002/cphc.202100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP‐D3(BJ) density functional method on previously obtained (W.‐G. Han Du, et al., Inorg Chem. 2020, 59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) “as‐isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2O molecule has H‐bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin‐coupled.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- The Scripps Research Institute, Integrative Structural and Computational Biology, UNITED STATES
| | | | - Louis Noodleman
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Hz112, 10550 North Torrey Pines Road, 92037, La Jolla, UNITED STATES
| |
Collapse
|
41
|
Tsviklist V, Guest RL, Raivio TL. The Cpx Stress Response Regulates Turnover of Respiratory Chain Proteins at the Inner Membrane of Escherichia coli. Front Microbiol 2022; 12:732288. [PMID: 35154019 PMCID: PMC8831704 DOI: 10.3389/fmicb.2021.732288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
The Cpx envelope stress response is a major signaling pathway monitoring bacterial envelope integrity, activated both internally by excessive synthesis of membrane proteins and externally by a variety of environmental cues. The Cpx regulon is enriched with genes coding for protein folding and degrading factors, virulence determinants, and large envelope-localized complexes. Transcriptional repression of the two electron transport chain complexes, NADH dehydrogenase I and cytochrome bo3, by the Cpx pathway has been demonstrated, however, there is evidence that additional regulatory mechanisms exist. In this study, we examine the interaction between Cpx-regulated protein folding and degrading factors and the respiratory complexes NADH dehydrogenase I and succinate dehydrogenase in Escherichia coli. Here we show that the cellular need for Cpx-mediated stress adaptation increases when respiratory complexes are more prevalent or active, which is demonstrated by the growth defect of Cpx-deficient strains on media that requires a functional electron transport chain. Interestingly, deletion of several Cpx-regulated proteolytic factors and chaperones results in similar growth-deficient phenotypes. Furthermore, we find that the stability of the NADH dehydrogenase I protein complex is lower in cells with a functional Cpx response, while in its absence, protein turnover is impaired. Finally, we demonstrated that the succinate dehydrogenase complex has reduced activity in E. coli lacking the Cpx pathway. Our results suggest that the Cpx two-component system serves as a sentry of inner membrane protein biogenesis, ensuring the function of large envelope protein complexes and maintaining the cellular energy status of the cell.
Collapse
Affiliation(s)
- Valeria Tsviklist
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Randi L. Guest
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Tracy L. Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Tracy L. Raivio,
| |
Collapse
|
42
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
43
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Tyburski R, Hammarström L. Strategies for switching the mechanism of proton-coupled electron transfer reactions illustrated by mechanistic zone diagrams. Chem Sci 2022; 13:290-301. [PMID: 35059179 PMCID: PMC8694376 DOI: 10.1039/d1sc05230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis. However, determination and tuning of the PCET mechanism is often non-trivial. Here, we apply mechanistic zone diagrams to illustrate the competition between concerted and stepwise PCET-mechanisms in the oxidation of 4-methoxyphenol by Ru(bpy)33+-derivatives in the presence of substituted pyridine bases. These diagrams show the dominating mechanism as a function of driving force for electron and proton transfer (ΔG0ET and ΔG0PT) respectively [Tyburski et al., J. Am. Chem. Soc., 2021, 143, 560]. Within this framework, we demonstrate strategies for mechanistic tuning, namely balancing of ΔG0ET and ΔG0PT, steric hindrance of the proton-transfer coordinate, and isotope substitution. Sterically hindered pyridine bases gave larger reorganization energy for concerted PCET, resulting in a shift towards a step-wise electron first-mechanism in the zone diagrams. For cases when sufficiently strong oxidants are used, substitution of protons for deuterons leads to a switch from concerted electron–proton transfer (CEPT) to an electron transfer limited (ETPTlim) mechanism. We thereby, for the first time, provide direct experimental evidence, that the vibronic coupling strength affects the switching point between CEPT and ETPTlim, i.e. at what driving force one or the other mechanism starts dominating. Implications for solar fuel catalysis are discussed. The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis.![]()
Collapse
Affiliation(s)
- Robin Tyburski
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| |
Collapse
|
45
|
Kaila VRI. Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I. Acc Chem Res 2021; 54:4462-4473. [PMID: 34894649 PMCID: PMC8697550 DOI: 10.1021/acs.accounts.1c00524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Biological energy conversion is catalyzed by membrane-bound proteins
that transduce chemical or light energy into energy forms that power
endergonic processes in the cell. At a molecular level, these catalytic
processes involve elementary electron-, proton-, charge-, and energy-transfer
reactions that take place in the intricate molecular machineries of
cell respiration and photosynthesis. Recent developments in structural
biology, particularly cryo-electron microscopy (cryoEM), have resolved
the molecular architecture of several energy transducing proteins,
but detailed mechanistic principles of their charge transfer reactions
still remain poorly understood and a major challenge for modern biochemical
research. To this end, multiscale molecular simulations provide a
powerful approach to probe mechanistic principles on a broad range
of time scales (femtoseconds to milliseconds) and spatial resolutions
(101–106 atoms), although technical challenges
also require balancing between the computational accuracy, cost, and
approximations introduced within the model. Here we discuss how the
combination of atomistic (aMD) and hybrid quantum/classical molecular
dynamics (QM/MM MD) simulations with free energy (FE) sampling methods
can be used to probe mechanistic principles of enzymes responsible
for biological energy conversion. We present mechanistic explorations
of long-range proton-coupled electron transfer (PCET) dynamics in
the highly intricate respiratory chain enzyme Complex I, which functions
as a redox-driven proton pump in bacterial and mitochondrial respiratory
chains by catalyzing a 300 Å fully reversible PCET process. This
process is initiated by a hydride (H–) transfer
between NADH and FMN, followed by long-range (>100 Å) electron
transfer along a wire of 8 FeS centers leading to a quinone biding
site. The reduction of the quinone to quinol initiates dissociation
of the latter to a second membrane-bound binding site, and triggers
proton pumping across the membrane domain of complex I, in subunits
up to 200 Å away from the active site. Our simulations across
different size and time scales suggest that transient charge transfer
reactions lead to changes in the internal hydration state of key regions,
local electric fields, and the conformation of conserved ion pairs,
which in turn modulate the dynamics of functional steps along the
reaction cycle. Similar functional principles, which operate on much
shorter length scales, are also found in some unrelated proteins,
suggesting that enzymes may employ conserved principles in the catalysis
of biological energy transduction processes.
Collapse
Affiliation(s)
- Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
46
|
Samireddi S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong KT, Chen KH, Chen LC. Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103823. [PMID: 34665522 DOI: 10.1002/smll.202103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Collapse
Affiliation(s)
- Satyanarayana Samireddi
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - V Aishwarya
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Saravanakumar Muthusamy
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Ken-Tsung Wong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
47
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
48
|
Dragelj J, Mroginski MA, Knapp EW. Beating Heart of Cytochrome c Oxidase: The Shared Proton of Heme a3 Propionates. J Phys Chem B 2021; 125:9668-9677. [PMID: 34427096 DOI: 10.1021/acs.jpcb.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome c oxidase (CcO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CcO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary. One specific pump-active PLS couples to the redox reaction, thus energizing the proton to move across the membrane against electric potential and proton gradient. The PLS should also prevent proton backflow. Therefore, the propionates of the two redox-active hemes in CcO were suggested as PLS candidates although, according to CcO crystal structures, none of the four propionates can be protonated on account of strong H-bonds. Here, we show that modeling the local structure around heme a3 propionates enhances significantly their capability of carrying a proton jointly. This was not possible for the propionates of heme a. The modeled structures are stable in molecular dynamics simulations (MDS) and are energetically similar to the crystal structure. Precise electrostatic energy computations of MDS data are used to estimate the pKA values of all titratable residues in CcO. For the modeled structures, the heme a3 propionates have pKA values high enough to host a proton transiently but not too high to fix the proton permanently. The change in pKA throughout the redox reaction is sufficient to push the proton to the P-side of the membrane and to provide the protons with the necessary amount of energy for ATP synthesis.
Collapse
Affiliation(s)
- Jovan Dragelj
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany.,Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Ernst Walter Knapp
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
49
|
|
50
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|