1
|
Gao Z, Tian J, Han Y, Liu S, Li Z. Zirconium and Hafnium Complexes Bearing Tridentate ONN-Ligands: Extremely High Activity toward Ethylene (Co)Polymerization. Inorg Chem 2024; 63:18137-18145. [PMID: 39287224 DOI: 10.1021/acs.inorgchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The pursuit of high-performance catalysts in the realm of polyolefins is a constant goal. In this study, a range of zirconium (1-ZrCl3, 2-ZrCl3, 3-ZrCl4, 12-Zr) and hafnium (1-HfCl3, 12-Hf) complexes featuring phenoxy-imine-amine ONN-ligands (2,6-R2-C6H3-NH-C6H4-N═CH-C6H2-3,5-tBu2-OH; 1-L: R = H; 2-L: R = F; 3-L: R = iPr) were synthesized and characterized using NMR spectroscopy, as well as single-crystal X-ray diffraction for 2-ZrCl3, 3-ZrCl4, and 12-Zr. These Zr and Hf complexes exhibited remarkable efficiency for ethylene homopolymerization and copolymerization with 1-octene when paired with MAO as the cocatalyst. Notably, the Zr complexes outperformed the Hf complexes with the same ligand, underscoring the substantial impact of the metal center on catalytic performance. The substituents and coordination modes of the ligands also exerted significant influence on the catalytic behavior, affecting both the activity and properties of the resulting polymers. Particularly noteworthy was the exceptional activity of 1-ZrCl3, achieving activity as high as 6.30 × 108 g(PE)·mol-1(Zr)·h-1 for ethylene homopolymerization and generating bi- or multimodal distribution polyethylene. The activation of 1-ZrCl3 by 5 or 20 equiv of d-MAO afforded a dinuclear Zr complex bridged by two chlorides (μ-Cl2-(1-ZrCl2)2), which was analyzed and confirmed by in situ 1H NMR spectroscopy and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhihao Gao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxia Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Flores-Romero V, LeBlanc J, Chen Z, Lavoie GG. Ti and Zr complexes bearing guanidine-phenolate ligands: coordination chemistry and polymerization studies. RSC Adv 2024; 14:25889-25899. [PMID: 39156754 PMCID: PMC11328681 DOI: 10.1039/d4ra05146g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
A series of group 4 bis(isopropoxide) complexes M[N^O]2(OiPr)2, stabilized by guanidine-phenolate N^O ligands, have been prepared and used as catalysts for the polymerization of unpurified rac-lactide under solvent-free conditions at 130 °C. The resulting polylactic acid (PLA) presented heterotactic bias (P r = 0.56-0.62) with molecular weights similar to those obtained in control experiments with Zr(OiPr)4·iPrOH, Ti(OiPr)4, and Sn(Oct)2. The molecular weights were lower than expected for living polymerization due to chain transfer and/or transesterification. Zr complexes were more active than the Ti homologues, with rate constants ranging from 1.17-3.21 × 10-4 s-1, comparable to that observed with the free guanidine-phenol ligands. The corresponding bis(guanidine-phenolate) titanium dichloride complexes Ti[N^O]2Cl2 were also prepared and tested in ethylene polymerization. The low activity (up to 1.1 kgPE mol-1 h-1) was associated to the strong electron-donating ability of the guanidine moiety and to the trans-N,N-cis-O,O-cis-Cl,Cl coordination mode of the guanidine-phenolate ligand.
Collapse
Affiliation(s)
| | - Jesse LeBlanc
- York University 4700 Keele Street Toronto Ontario M3J 1P3 Canada
| | - Zichuan Chen
- York University 4700 Keele Street Toronto Ontario M3J 1P3 Canada
| | - Gino G Lavoie
- York University 4700 Keele Street Toronto Ontario M3J 1P3 Canada
| |
Collapse
|
3
|
Ghana P, Xiong S, Tekpor A, Bailey BC, Spinney HA, Henderson BS, Agapie T. Catalyst Editing via Post-Synthetic Functionalization by Phosphonium Generation and Anion Exchange for Nickel-Catalyzed Ethylene/Acrylate Copolymerization. J Am Chem Soc 2024; 146:18797-18803. [PMID: 38967615 PMCID: PMC11258788 DOI: 10.1021/jacs.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Rapid, efficient development of homogeneous catalysts featuring desired performance is critical to numerous catalytic transformations but remains a key challenge. Typically, this task relies heavily on ligand design that is often based on trial and error. Herein, we demonstrate a "catalyst editing" strategy in Ni-catalyzed ethylene/acrylate copolymerization. Specifically, alkylation of a pendant phosphine followed by anion exchange provides a high yield strategy for a large number of cationic Ni phosphonium catalysts with varying electronic and steric profiles. These catalysts are highly active in ethylene/acrylate copolymerization, and their behaviors are correlated with the electrophile and the anion used in late-stage functionalization.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shuoyan Xiong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Adjeoda Tekpor
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Brad C. Bailey
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Heather A. Spinney
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Briana S. Henderson
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Wang W. Recent Advances in the Titanium-Based Catalysts for Ring-Opening Polymerization. ACS OMEGA 2024; 9:29983-29993. [PMID: 39035956 PMCID: PMC11256339 DOI: 10.1021/acsomega.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
At present, economic development and daily life cannot be separated from organic synthetic polymers. However, a large number of nondegradable polymers have caused serious pollution to the environment. It is necessary for sustainable development to use biodegradable materials instead of traditional polymers, but it is not yet comparable in performance and cost to the competitor it will replace. Therefore, there is a long way to go to develop effective synthesis methods. Through ring-opening polymerization, some cyclic monomers, such as ε-caprolactone or lactide, can be synthesized into biodegradable polymers, which can not only replace traditional synthetic polymers in some fields but also have applications in drug delivery, surgical consumables, human implant materials, bone materials, etc. Ring-opening polymerization is a potential candidate for solving environmental pollution. For ring-opening polymerization, catalysts are very important, among which titanium catalysts have attracted much attention because of their high efficiency, economy, and nontoxicity. In this paper, the development status of organotitanium compounds as ring-opening polymerization catalysts is reviewed, including the effects of different ligand structures on polymerization behavior and polymer structure, and its development trend is prospected. We hope that this review will be helpful for developing efficient ring-opening polymerization catalysts.
Collapse
Affiliation(s)
- Wei Wang
- Sinopec (Beijing) Research Institute
of Chemical Industry Co., Ltd., Sinopec
Key Laboratory of Research and Application of Medical and Hygienic
Materials, No. 14 Beisanhuan
Donglu, Chao Yang District, Beijing 100013, China
| |
Collapse
|
5
|
Romano E, Barone V, Budzelaar PHM, De Rosa C, Talarico G. Revisiting Stereoselective Propene Polymerization Mechanisms: Insights through the Activation Strain Model. Chem Asian J 2024; 19:e202400155. [PMID: 38494455 DOI: 10.1002/asia.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
The stereoelectronic factors responsible for stereoselectivity in propene polymerization with several metallocene and post-metallocene transition metal catalysts have been revisited using a combined approach of DFT calculations, the Activation Strain Model, Natural Energy Decomposition Analysis and a molecular descriptor (%VBur). There are in most cases two different paths leading to the formation of stereoerrors (SE), and the classical model does not suffice to fully understand stereoregulation. Improving stereoselectivity requires raising the energies of both SE insertion transition states. Our analyses show that the degrees of deformation of the active site (catalyst+chain) and the prochiral monomer differ for these two paths, and between different catalyst classes. Based on such analyses we discuss: a) the subtle differences in SE formation between stereoselective catalysts with different ligand frameworks; b) the reason for exceptional stereoselectivity reported for a special ansa-metallocene catalyst; c) the (double) stereocontrol origin for isoselective catalysts; d) the electronic contribution for isoselective catalysts generating SE by a modification of the ligand wrapping mode during the polymerization. Although this study will not immediately suggest new catalyst structures, we believe that understanding stereoregulation in great detail will increase our chances of success.
Collapse
Affiliation(s)
- Eugenio Romano
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138, Napoli, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di, Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | | | - Peter H M Budzelaar
- Dipartimento di Scienze Chimiche, Università degli Studi di, Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Claudio De Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di, Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Giovanni Talarico
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138, Napoli, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di, Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| |
Collapse
|
6
|
Mills LR, Simmons EM, Lee H, Nester E, Kim J, Wisniewski SR, Pecoraro MV, Chirik PJ. (Phenoxyimine)nickel-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling: Evidence for a Recovering Radical Chain Mechanism. J Am Chem Soc 2024; 146:10124-10141. [PMID: 38557045 DOI: 10.1021/jacs.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A β-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eva Nester
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Wang Y, Wang Q, Tan C, Chen C. Synthesis of Polar-functionalized Isotactic Polypropylenes Using Commercial Heterogeneous Ziegler-Natta Catalyst. J Am Chem Soc 2024; 146:6837-6845. [PMID: 38426800 DOI: 10.1021/jacs.3c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Losio S, Bertini F, Vignali A, Fujioka T, Nomura K, Tritto I. Amorphous Elastomeric Ultra-High Molar Mass Polypropylene in High Yield by Half-Titanocene Catalysts. Polymers (Basel) 2024; 16:512. [PMID: 38399890 PMCID: PMC10893264 DOI: 10.3390/polym16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp'TiCl2(N=CtBu2) [Cp' = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a cocatalyst, were investigated. The obtained polymers were studied in detail by determining their microstructure, molar masses, thermal, and mechanical properties. The Cp*-ketimide, (C5Me5)TiCl2(N=CtBu2) (2), exhibited higher catalytic activities than Cp'TiCl2(N=CtBu2) (1,3), yielding higher molar mass polymers, Mw up to 1400 Kg/mol. All the synthesized polypropylenes (PP) are atactic and highly regioregular, with predominant rrrr pentads, especially PP prepared with catalyst 1. Differential scanning calorimetry (DSC) established that the polymers are fully amorphous aPP, and no melting endotherm events are detected. Glass transition temperatures were detected between -2 and 2 °C. These polypropylenes have been established to be high-performance thermoplastic elastomers endowed with remarkably high ductility, and a tensile strain at break higher than 2000%.
Collapse
Affiliation(s)
- Simona Losio
- Institute for Chemical Sciences and Technologies “G. Natta” National Research Council, Via A. Corti 12, 20133 Milan, Italy; (S.L.); (F.B.); (A.V.)
| | - Fabio Bertini
- Institute for Chemical Sciences and Technologies “G. Natta” National Research Council, Via A. Corti 12, 20133 Milan, Italy; (S.L.); (F.B.); (A.V.)
| | - Adriano Vignali
- Institute for Chemical Sciences and Technologies “G. Natta” National Research Council, Via A. Corti 12, 20133 Milan, Italy; (S.L.); (F.B.); (A.V.)
| | - Taiga Fujioka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan (K.N.)
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan (K.N.)
| | - Incoronata Tritto
- Institute for Chemical Sciences and Technologies “G. Natta” National Research Council, Via A. Corti 12, 20133 Milan, Italy; (S.L.); (F.B.); (A.V.)
| |
Collapse
|
9
|
Wen Z, Wu C, Chen J, Qu S, Li X, Wang W. Homogeneous Non-Metallocene Group 4 Metals Ligated with [N,N] Bidentate Ligand(s) for Olefin Polymerization. Polymers (Basel) 2024; 16:406. [PMID: 38337295 DOI: 10.3390/polym16030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The development of catalysts has significantly advanced the progress of polyolefin materials. In particular, group 4 (Ti, Zr, Hf) non-metallocene catalysts ligated with [N,N] bidentate ligand(s) have garnered increasing attention in the field of olefin polymerization due to their structurally stability and exceptional polymerization behaviors. Ligands containing nitrogen donors are diverse and at the core of many highly active catalysts. They mainly include amidine, guanidinato, diamine, and various N-heterocyclic ligands, which can be used to obtain a series of new polyolefin materials, such as ultrahigh molecular weight polyethylene (UHWMPE), olefin copolymers (ethylene/norbornene and ethylene/α-olefin) with high incorporations, and high isotactic or syndiotactic polypropylene after coordination with group 4 metals and activation by cocatalysts. Herein, we focus on the advancements and applications of this field over the past two decades, and introduce the catalyst precursors with [N,N] ligand(s), involving the effects of ligand structure, cocatalyst selection, and polymerization conditions on the catalytic activity and polymer properties.
Collapse
Affiliation(s)
- Zhao Wen
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Changjiang Wu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Jian Chen
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Shuzhang Qu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Xinwei Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Wei Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| |
Collapse
|
10
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. DFT insight into metals and ligands substitution effects on reactivity of phenoxy-imine catalysts for ethylene polymerization. J Mol Graph Model 2023; 125:108586. [PMID: 37567049 DOI: 10.1016/j.jmgm.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The reaction mechanism of ethylene (ET) polymerization catalyzed by the phenoxy-imine (FI) ligands using DFT calculations was studied. Among five possible isomers, isomer A which has an octahedral geometry and a (cis-N/trans-O/cis-Cl) arrangement is the most stable pre-reaction Ti-FI dichloride complex. The isomer A can be activated by MAO to form the active catalyst and the active form was used for the study of the mechanism for Ti-FI. The second ethylene insertion was found to be the rate-determining step of the catalyzed ethylene polymerization. To examine the effect of group IVB transition metals (M = Ti, Zr, Hf) substitutions, calculated activation energies at the rate-determining step (EaRDS) were compared, where values of EaRDS of Zr < Hf < Ti agree with experiments. Moreover, we examined the effect of substitution on (O, X) ligands of the Ti-phenoxy-imine (Ti-1) based catalyst. The results revealed that EaRDS of (O, N) > (O, O) > (O, P) > O, S). Hence, the (O, S) ligand has the highest potential to improve the catalytic activity of the Ti-FI catalyst. We also found the activation energy to be related to the Ti-X distance. In addition, a novel Ni-based FI catalyst was investigated. The results indicated that the nickel (II) complex based on the phenoxy-imine (O, N) ligand in the square-planar geometry is more active than in the octahedral geometry. This work provides fundamental insights into the reaction mechanism of M - FI catalysts which can be used for the design and development of M - FI catalysts for ET polymerization.
Collapse
Affiliation(s)
- Pavee Apilardmongkol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Vudhichai Parasuk
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Ishizuka T, Kogawa T, Ogawa C, Kotani H, Shiota Y, Yoshizawa K, Kojima T. Enhancement of Reactivity of a Ru IV-Oxo Complex in Oxygen-Atom-Transfer Catalysis by Hydrogen-Bonding with Amide Moieties in the Second Coordination Sphere. JACS AU 2023; 3:2813-2825. [PMID: 37885582 PMCID: PMC10598587 DOI: 10.1021/jacsau.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
We have synthesized and characterized a RuII-OH2 complex (2), which has a pentadentate ligand with two pivalamide groups as bulky hydrogen-bonding (HB) moieties in the second coordination sphere (SCS). Complex 2 exhibits a coordination equilibrium through the coordination of one of the pivalamide oxygens to the Ru center in water, affording a η6-coordinated complex, 3. A detailed thermodynamic analysis of the coordination equilibrium revealed that the formation of 3 from 2 is entropy-driven owing to the dissociation of the axial aqua ligand in 2. Complex 2 was oxidized by a CeIV salt to produce the corresponding RuIII(OH) complex (5), which was characterized crystallographically. In the crystal structure of 5, hydrogen bonds are formed among the NH groups of the pivalamide moieties and the oxygen atom of the hydroxo ligand. Further 1e--oxidation of 5 yields the corresponding RuIV(O) complex, 6, which has intramolecular HB of the oxo ligand with two amide N-H protons. Additionally, the RuIII(OH) complex, 5, exhibits disproportionation to the corresponding RuIV(O) complex, 6, and a mixture of the RuII complexes, 2 and 3, in an acidic aqueous solution. We investigated the oxidation of a phenol derivative using complex 6 as the active species and clarified the switch of the reaction mechanism from hydrogen-atom transfer at pH 2.5 to electron transfer, followed by proton transfer at pH 1.0. Additionally, the intramolecular HB in 6 exerts enhancing effects on oxygen-atom transfer reactions from 6 to alkenes such as cyclohexene and its water-soluble derivative to afford the corresponding epoxides, relative to the corresponding RuIV(O) complex (6') lacking the HB moieties in the SCS.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Taichi Kogawa
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Chisato Ogawa
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshihito Shiota
- Institute
for Materials Chemistry and Engineering, Kyushu University, Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering, Kyushu University, Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Takahiko Kojima
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
12
|
Zhu B, Liu K, Luo L, Zhang Z, Xiao Y, Sun M, Jie S, Wang WJ, Hu J, Shi S, Wang Q, Li BG, Liu P. Covalent Organic Framework-Supported Metallocene for Ethylene Polymerization. Chemistry 2023; 29:e202300913. [PMID: 37341127 DOI: 10.1002/chem.202300913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
The loading of homogeneous catalysts with support can dramatically improve their performance in olefin polymerization. However, the challenge lies in the development of supported catalysts with well-defined pore structures and good compatibility to achieve high catalytic activity and product performance. Herein, we report the use of an emergent class of porous material-covalent organic framework material (COF) as a carrier to support metallocene catalyst-Cp2 ZrCl2 for ethylene polymerization. The COF-supported catalyst demonstrates a higher catalytic activity of 31.1×106 g mol-1 h-1 at 140 °C, compared with 11.2×106 g mol-1 h-1 for the homogenous one. The resulting polyethylene (PE) products possess higher weight-average molecular weight (Mw ) and narrower molecular weight distribution (Ð) after COF supporting, that is, Mw increases from 160 to 308 kDa and Ð drops from 3.3 to 2.2. The melting point (Tm ) is also increased by up to 5.2 °C. Moreover, the PE product possesses a characteristic filamentous microstructure and demonstrates an increased tensile strength from 19.0 to 30.7 MPa and elongation at break from 350 to 1400 % after catalyst loading. We believe that the use of COF carriers will facilitate the future development of supported catalysts for highly efficient olefin polymerization and high-performance polyolefins.
Collapse
Affiliation(s)
- Bangban Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kan Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqiong Luo
- National-Certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou, 510663, P. R. China
| | - Ziyang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Yangke Xiao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghao Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Jijiang Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Qingyue Wang
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| |
Collapse
|
13
|
Malekshah R, Moharramnejad M, Gharanli S, Shahi M, Ehsani A, Haribabu J, Ouachtak H, Mirtamizdoust B, Kamwilaisak K, Sillanpää M, Erfani H. MOFs as Versatile Catalysts: Synthesis Strategies and Applications in Value-Added Compound Production. ACS OMEGA 2023; 8:31600-31619. [PMID: 37692216 PMCID: PMC10483527 DOI: 10.1021/acsomega.3c02552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Catalysts played a crucial role in advancing modern human civilization, from ancient times to the industrial revolution. Due to high cost and limited availability of traditional catalysts, there is a need to develop cost-effective, high-activity, and nonprecious metal-based electrocatalysts. Metal-organic frameworks (MOFs) have emerged as an ideal candidate for heterogeneous catalysis due to their physicochemical properties, hybrid inorganic/organic structures, uncoordinated metal sites, and accessible organic sections. MOFs are high nanoporous crystalline materials that can be used as catalysts to facilitate polymerization reactions. Their chemical and structural diversity make them effective for various reactions compared to traditional catalysts. MOFs have been applied in gas storage and separation, ion-exchange, drug delivery, luminescence, sensing, nanofilters, water purification, and catalysis. The review focuses on MOF-enabled heterogeneous catalysis for value-added compound production, including alcohol oxidation, olefin oligomerization, and polymerization reactions. MOFs offer tunable porosity, high spatial density, and single-crystal XRD control over catalyst properties. In this review, MOFs were focused on reactions of CO2 fixation, CO2 reduction, and photoelectrochemical water splitting. Overall, MOFs have great potential as versatile catalysts for diverse applications in the future.
Collapse
Affiliation(s)
- Rahime
Eshaghi Malekshah
- Medical
Biomaterial Research Centre (MBRC), Tehran
University of Medical Sciences, Tehran 14166-34793, Iran
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Mojtaba Moharramnejad
- Young
Researcher and Elite Group, Qom University, Qom 37161-46611, Iran
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Sajjad Gharanli
- Department
of Chemical Engineering, Faculty of Engineering, University of Qom, Qom 37161-46611, Iran
| | - Mehrnaz Shahi
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Ali Ehsani
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Jebiti Haribabu
- Facultad
de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Hassan Ouachtak
- Laboratory
of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University, Agadir 80060, Morocco
- Faculty
of Applied Science, Ait Melloul, Ibn Zohr
University, Agadir 80060, Morocco
| | - Babak Mirtamizdoust
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Khanita Kamwilaisak
- Chemical
Engineering Department, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mika Sillanpää
- Department
of Chemical Engineering, School of Mining, Metallurgy and Chemical
Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- International
Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh 173212, India
- Department
of Biological and Chemical Engineering, Aarhus University, Nørrebrogade
44, Aarhus C 8000, Denmark
- Department
of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hadi Erfani
- Department
of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| |
Collapse
|
14
|
Rana TRK, Swain A, Rajaraman G. The role of agostic interaction in the mechanism of ethylene polymerisation using Cr(III) half-sandwich complexes: What dictates the reactivity? Dalton Trans 2023; 52:11826-11834. [PMID: 37555755 DOI: 10.1039/d3dt02032k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chromium-based catalysts play a significant role in the production of ultra-high molecular weight polyethylene, and half-sandwich functionalised-metallocene complexes were proven to be one of the most suitable candidates as catalysts for generating such large polymeric-length olefins. Earlier experimental studies on olefin polymerisation using a series of catalysts such as [L1-2CrCl2] (where L1 = 1-((pyridin-2-yl)methyl)indenyl (1) and L2 = 2-methyl-1-{[4-(yridinene-1-yl)yridine-2-yl]methyl}-1H-indenyl (2)) reveal significant variation where peripheral substitution on the ligand was found to influence the reactivity significantly. However, the specific ligand position that affects the reactivity has not been established. As these reactions are fast and robust, it is challenging to establish reactive intermediates via experiments, and therefore, mechanistic clues for such reactions are elusive. Here we have undertaken a detailed computational study by employing an array of DFT (uB3LYP-D3/def2-TZVP, CASSCF/NEVPT2, and DLPNO-CCSD(T) methods to explore the substituted and non-substituted pyridine-cyclo-pentadienyl chromium complexes and their influence on the catalytic activity in ethylene polymerisation. Our study not only unravels the catalytic pathway for olefin polymerisation for such Cr(III)-half-sandwich complexes but also reveals that the energetics of the formation of pseudo-three-coordinate alkyl intermediates is key to the variation in the reactivity observed. A detailed examination using MO and NBO analysis unveils the presence of a C-H⋯Cr agostic interaction that is found to significantly stabilise this intermediate when the pyridine ligand has strong electron-donating groups at its para position. The other substitutions, such as on the cyclopentadienyl ligand, neither yield the desired stability nor the desired interaction. Further studies on models support this proposal. In order to improve the efficiency and selectivity of catalytic systems in olefin polymerisation, we strongly advocate for the integration of agostic interactions as a crucial criterion in the design of future catalysts. Considering the prevalence of electron-deficient metal centres in successful olefin polymerisation catalysts, this research prompts a broader mechanistic inquiry to propose a unified approach for this industrially crucial reaction.
Collapse
Affiliation(s)
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| |
Collapse
|
15
|
Nifant’ev IE, Komarov PD, Kostomarova OD, Kolosov NA, Ivchenko PV. MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization. Polymers (Basel) 2023; 15:3095. [PMID: 37514483 PMCID: PMC10384419 DOI: 10.3390/polym15143095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Modern industry of advanced polyolefins extensively uses Group 4 metallocene and post-metallocene catalysts. High-throughput polyolefin technologies demand the use of heterogeneous catalysts with a given particle size and morphology, high thermal stability, and controlled productivity. Conventional Group 4 metal single-site heterogeneous catalysts require the use of high-cost methylalumoxane (MAO) or perfluoroaryl borate activators. However, a number of inorganic phases, containing highly acidic Lewis and Brønsted sites, are able to activate Group 4 metal pre-catalysts using low-cost and affordable alkylaluminums. In the present review, we gathered comprehensive information on MAO- and borate-free activating supports of different types and discussed the surface nature and chemistry of these phases, examples of their use in the polymerization of ethylene and α-olefins, and prospects of the further development for applications in the polyolefin industry.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel D. Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
| | | | - Nikolay A. Kolosov
- NIOST LLC, Kuzovlevsky Tr. 2-270, 634067 Tomsk, Russia; (O.D.K.); (N.A.K.)
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
16
|
Fang XY, Qin L, Liu J, Shi H, Sun XL, Kuang X, Gao Y, Tang Y. Synthesis and characterization of oxazoline-amine zirconium complexes for ethylene homo- and co-polymerization catalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Xiong S, Ghana P, Bailey BC, Spinney HA, Henderson BS, Espinosa MR, Agapie T. Impact of Labile Ligands on Catalyst Initiation and Chain Propagation in Ni-Catalyzed Ethylene/Acrylate Copolymerization. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Wang YB, Nan C, Zhuo W, Zou C, Jiang H, Hao XQ, Chen C, Song MP. Amine-Imine Nickel Catalysts with Pendant O-Donor Groups for Ethylene (Co)Polymerization. Inorg Chem 2023; 62:5105-5113. [PMID: 36933227 DOI: 10.1021/acs.inorgchem.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenlong Nan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Weize Zhuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
19
|
Peng D, Xu M, Tan C, Chen C. Emulsion Polymerization Strategy for Heterogenization of Olefin Polymerization Catalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Dan Peng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Menghe Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Ullah Khan W, Mazhar H, Shehzad F, Al-Harthi MA. Recent Advances in Transition Metal-Based Catalysts for Ethylene Copolymerization with Polar Comonomer. CHEM REC 2023; 23:e202200243. [PMID: 36715494 DOI: 10.1002/tcr.202200243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The synthesis of polar functionalized polyolefin (PFP) offers improvement in mixing properties, polymer surface, and rheological properties with the potential of upgraded polyolefins for modern and ingenious applications. The synthesis of PFP from metal-based catalyzed olefin (non-polar in nature) copolymerization with polar comonomers embodies energy-efficient, atom-efficient, and apparently an upfront methodology. Despite their outstanding success during conventional polymerization of olefin, 3rd and 4th group (early transition metal)-based catalysts, owing to their electrophilic nature, face challenges mainly due to Lewis basic sites of the polar monomers. On the contrary, late transition metal-based catalysts have also made progress, in recent years, for PFP synthesis. The recent past has also witnessed several advancements in the development of dominating palladium-based catalysts while their lower resistance towards ligand functional groups has limited the practical application of abundant and cheaper nickel-based catalysts. However, the relentless efforts of the scientific community, during the past half-decade, have indicated rigorous progress in the development of nickel-based catalysts for PFP synthesis. In this review, we have abridged the recent research trends in both early as well as late transition metal-based catalyst development. Furthermore, we have highlighted the role of transition metal-based catalysts in influencing the polymer properties.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mamdouh A Al-Harthi
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
21
|
Zhang CL, Zhou T, Li YQ, Lu X, Guan YB, Cao YC, Cao GP. Microenvironment Modulation of Metal-Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205898. [PMID: 36534903 DOI: 10.1002/smll.202205898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal-organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high-performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs-based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.
Collapse
Affiliation(s)
- Chuan-Lei Zhang
- Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing, 261433, P. R. China
| | - Tao Zhou
- Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing, 261433, P. R. China
| | - Yong-Qing Li
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, 200062, P. R. China
| | - Xin Lu
- Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing, 261433, P. R. China
| | - Ye-Bin Guan
- Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing, 261433, P. R. China
| | - Yu-Cai Cao
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, 200062, P. R. China
| | - Gui-Ping Cao
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
22
|
Xing Y, Xu L, Liu S, Li Z. Dinuclear Group 4 Metal Complexes Bearing Anthracene-Bridged Bifunctional Amido-Ether Ligands: Remarkable Metal Effect and Cooperativity toward Ethylene/1-Octene Copolymerization. Inorg Chem 2023; 62:2859-2869. [PMID: 36719090 DOI: 10.1021/acs.inorgchem.2c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two types of bifunctional amido-ether ligands (syn-L and anti-L) with the rigid anthracene skeleton were designed to support dinuclear group 4 metal complexes. All organic ligands and organometallic complexes (syn-M2 and anti-M2; M = Hf, Zr, and Ti) were fully characterized by 1H and 13C NMR spectroscopies and elemental analyses. The anti-Hf2 complex showed two confirmations at room temperature with C2-symmetry or S2-symmetry that can inter-exchange, as indicated by VT NMR, while only a C2-symmetric isomer was observed for syn-Hf2 complex at room temperature. However, for Zr and Ti analogues, both syn and anti complexes exhibited only one conformation at room temperature. The molecular structures of complexes syn-Hf2, anti-Hf2, and syn-Ti2 in the solid state were further determined by single-crystal X-ray diffraction, revealing the distances between two metal centers in syn-M2 from 7.138 Å (syn-Ti2) to 7.321 Å (syn-Hf2) but a much farther separation in anti-M2 (8.807 Å in C2-symmetric anti-Hf2). The mononuclear complex (2-CH3O-C6H4-N-C14H9)Zr(NMe2)3 (mono-Zr1) was also prepared for control experiments. In the presence of alkyl aluminum (AlEt3) as the alkylating agent and trityl borate ([Ph3C][B(C6F5)4]) as the co-catalyst, all metal complexes were tested for copolymerization of ethylene with 1-octene at high temperature (130 °C). The preliminary polymerization results revealed that the activity was highly dependent upon the nature of metal centers, and syn-Zr2 showed the highest activity of 9600 kg(PE)·mol-1 (Zr)·h-1, which was about 17- and 2.2-fold higher than those of syn-Hf2 and syn-Ti2, respectively. Benefitting from both steric proximity and electronical interaction of two metal centers, syn-Zr2 exhibited significant cooperativity in comparison to anti-Zr2 and mono-Zr1, with regard to activity and molecular weight and 1-octene incorporation of resultant copolymers.
Collapse
Affiliation(s)
- Yanhong Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingling Xu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
23
|
‘Catalyst + X’ strategies for transition metal-catalyzed olefin-polar monomer copolymerization. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Xue M, Luo Y, Ren S, Li T, You Q, Xie G. Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes for ethylene (co)polymerization. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
26
|
Fursov EA, Shabalin AY, Potapov AG, Chesalov YA, Prikhod’ko SA, Adonin NY. Relationship between the Structure of Fluorine-Containing Phenoxy-Imine Complexes, Their Spectral Properties and Activity in Ethylene Polymerization. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Suo H, Faisca Phillips AM, Satrudhar M, Martins LMDRS, G. da Silva MDF, Pombeiro AJL, Han M, Sun W. Achieving ultra‐high molecular weight polyethylenes by vanadium aroylhydrazine‐arylolates. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Ana Maria Faisca Phillips
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisbon Portugal
| | - Manas Satrudhar
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisbon Portugal
- Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias Lisbon Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisbon Portugal
| | - Maria de Fátima G. da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisbon Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisbon Portugal
- Рeoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry Moscow Russian Federation
| | - Mingyang Han
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
28
|
Chen Y, Zhou S, Yang W, Liu S. Hafnium and Zirconium Complexes Bearing SNN-Ligands Enhancing Catalytic Performances toward Ethylene/1-Octene Copolymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yanjun Chen
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Shengmei Zhou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Weiqun Yang
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Shaofeng Liu
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
29
|
Zhao Y, Li H, Xin S, Li H, Luo Y, He S. DFT Studies on the Early-Transition-Metal-Catalyzed Polymerization of Polar Monomers with a Methylene Spacer between Vinyl and Functional Groups. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huashu Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shixuan Xin
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Hao Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
30
|
Bodkhe DV, Chikkali SH. Ti-Iminocarboxylate Catalyzed Polymerization of Ethylene to Highly Crystalline, Disentangled, Ultrahigh Molecular Weight Polyethylene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Udomsasporn K, Chumsaeng P, Phomphrai K. Enhancement of Ethylene and Ethylene/1-Hexene (Co)polymerization Activities by Titanium(IV) and Zirconium(IV) Complexes Bearing Constrained Hydroxyindanone-Imine Ligands. Inorg Chem 2022; 61:16992-16996. [PMID: 36261078 DOI: 10.1021/acs.inorgchem.2c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of catalysts for ethylene and ethylene/1-hexene (co)polymerizations bearing constrained hydroxyindanone-imine ligands was developed for titanium(IV) and zirconium(IV) metals with variations of steric and electronic contributions on the ligands. X-ray crystal structures revealed significantly higher open space for the constrained titanium and zirconium complexes, compared to the conventional FI counterparts. Upon activation with MAO, significantly higher ethylene polymerization activities (up to 379.4 kg-PE/mmol-M h for Zr) and notably almost doubled 1-hexene content in the ethylene/1-hexene copolymerizations were observed as a result of the constrained five-membered ring backbone.
Collapse
Affiliation(s)
- Kwanchanok Udomsasporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| | - Phongnarin Chumsaeng
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
32
|
Gagieva SC, Magomedov KF, Tuskaev VA, Bogdanov VS, Kurmaev DA, Golubev EK, Denisov GL, Nikiforova GG, Evseeva MD, Saracheno D, Buzin MI, Dzhevakov PB, Privalov VI, Bulychev BM. Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins. Polymers (Basel) 2022; 14:4397. [PMID: 36297979 PMCID: PMC9609217 DOI: 10.3390/polym14204397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
A series of bis(phenoxy-imine) (FI) titanium(IV) and zirconium(IV) complexes have been synthesized. The effect of the nature of the activator (MAO, combinations EtnAlCl3-n + Bu2Mg and iBu3Al + [Ph3C]+[B(C6F5)4]-) on the catalytic activity and properties of the resulting polymers was studied. It was found that Ti-Fi complexes, despite the nature of the outgoing ligands (Cl or iPrO) in the presence of Al/Mg activators, effectively catalyze the polymerization of ethylene (with the formation of UHMWPE); copolymerization of ethylene with 1-octene (with the formation of ultra-high molecular weight copolymers); and the ternary copolymerization of ethylene, propylene and 5-vinyl-2-norbornene (with the formation of polyolefin elastomers). It has been shown that Zr-FI complexes are not activated by these Al/Mg compositions. The resulting UHMWPE can be processed by a solventless method into high-strength and high-modulus oriented films; however, their mechanical characteristics do not exceed those obtained using MAO.
Collapse
Affiliation(s)
- Svetlana Ch. Gagieva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Kasim F. Magomedov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Vladislav A. Tuskaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Vyacheslav S. Bogdanov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Dmitrii A. Kurmaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Evgenii K. Golubev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya Str., 70, 117393 Moscow, Russia
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Galina G. Nikiforova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Maria D. Evseeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Daniele Saracheno
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Mikhail I. Buzin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Pavel B. Dzhevakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Viktor I. Privalov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31, Leninsky Prospect, 119991 Moscow, Russia
| | - Boris M. Bulychev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
33
|
Vaillant-Coindard V, Théron B, Printz G, Chotard F, Balan C, Rousselin Y, Richard P, Tolbatov I, Fleurat-Lessard P, Bodio E, Malacea-Kabbara R, Bayardon J, Dagorne S, Le Gendre P. Phenoxy-Amidine Ligands: Toward Lactic Acid-Tolerant Catalysts for Lactide Ring-Opening Polymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentin Vaillant-Coindard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Benjamin Théron
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Gaël Printz
- Institut de Chimie de Strasbourg (UMR-CNRS 7177), Université de Strasbourg, 67000 Strasbourg, France
| | - Florian Chotard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Cédric Balan
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Philippe Richard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Iogann Tolbatov
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Jérôme Bayardon
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg (UMR-CNRS 7177), Université de Strasbourg, 67000 Strasbourg, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université Bourgogne Franche-Comté, 21078 Dijon, France
| |
Collapse
|
34
|
Gagieva SC, Tuskaev VA, Magomedov KF, Moskalenko MA, Pavlov AA, Meshchankina MY, Shcherbina MA, Bulychev BM. Immobilized on MgCl2 bis(phenoxy-imine) complexes of Ti and Zr as catalysts for preparing UHMWPE and ethylene/higher α-olefin copolymers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03885-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Tran TV, Lee E, Nguyen YH, Nguyen HD, Do LH. Customizing Polymers by Controlling Cation Switching Dynamics in Non-Living Polymerization. J Am Chem Soc 2022; 144:17129-17139. [PMID: 36069706 DOI: 10.1021/jacs.2c07098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling the chain growth process in non-living polymerization reactions is difficult because chain termination typically occurs faster than the time it takes to apply an external trigger. To overcome this limitation, we have developed a strategy to regulate non-living polymerizations by exploiting the chemical equilibria between a metal catalyst and secondary metal cations. We have prepared two nickel phenoxyphosphine-polyethylene glycol variants, one with 2-methoxyphenyl (Ni1) and another with 2,6-dimethoxyphenyl (Ni2) phosphine substituents. Ethylene polymerization studies using these complexes in the presence of alkali salts revealed that chain growth is strongly dependent on electronic effects, whereas chain termination is dependent on both steric and electronic effects. By adjusting the solvent polarity, we can favor polymerizations via non-switching or dynamic switching modes. For example, in a 100:0.2 mixture of toluene/diethyl ether, reactions of Ni1 and both Li+ and Na+ cations in the presence of ethylene yielded bimodal polymers with different relative fractions depending on the Li+/Na+ ratio used. In a 98:2 mixture of toluene/diethyl ether, reactions of Ni2 and Cs+ in the presence of ethylene generated monomodal polyethylene with dispersity <2.0 and increasing molecular weight as the amount of Cs+ added increased. Solution studies by NMR spectroscopy showed that cation exchange between the nickel complexes and alkali cations in 98:2 toluene/diethyl ether is fast on the NMR time scale, which supports our proposed dynamic switching mechanism.
Collapse
Affiliation(s)
- Thi V Tran
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Eryn Lee
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Yennie H Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Hieu D Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| |
Collapse
|
36
|
Romano E, Budzelaar PHM, De Rosa C, Talarico G. Unconventional Stereoerror Formation Mechanisms in Nonmetallocene Propene Polymerization Systems Revealed by DFT Calculations. J Phys Chem A 2022; 126:6203-6209. [PMID: 36054494 PMCID: PMC9483984 DOI: 10.1021/acs.jpca.2c04935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An unconventional
mechanism for the stereoerror formation in propene
polymerization catalyzed by C1-symmetric
salalen-M systems (M = Zr, Hf) is suggested by DFT calculations. While
propagation happens with the ligand in its fac-mer conformation, a change of ligand wrapping mode from fac-mer to fac-fac is the main source of the lower stereoselectivities
obtained with Zr and Hf. This is different for the Ti analogues, where
the ligand fac-mer wrapping mode
does not play a role. Activation strain analysis indicates that the
preference for a chain stationary mechanism of the Zr/Hf species is
due to the energy required to distort the reactants (ΔEStrain) rather than to their mutual interaction
(ΔEInt).
Collapse
Affiliation(s)
- Eugenio Romano
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Peter H M Budzelaar
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Claudio De Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Giovanni Talarico
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
37
|
McDaniel T, Smith NE, Cueny E, Landis CR. Dual-Chain Polymerization at an Early Transition-Metal Single-Site Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanner McDaniel
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas E. Smith
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric Cueny
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clark R. Landis
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear Block Copolymer Synthesis. Chem Rev 2022; 122:14471-14553. [PMID: 35960550 DOI: 10.1021/acs.chemrev.2c00189] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Glen R Jones
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Dung Nguyen
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Anthony Keyes
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hasaan Rauf
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Estela Ordonez
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Valentin Puchelle
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hatice Basbug Alhan
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Chenying Zhao
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Eva Harth
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| |
Collapse
|
39
|
Peng L, Zhao Y, Yang T, Tong Z, Tang Z, Orita A, Qiu R. Zirconium-Based Catalysts in Organic Synthesis. Top Curr Chem (Cham) 2022; 380:41. [PMID: 35951161 DOI: 10.1007/s41061-022-00396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO2 fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.,Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
40
|
Oleynik IV, Oleynik II. Design of Postmetallocene Catalytic Systems of Arylimine Type for Olefin Polymerization: XIX. Synthesis of N-(4-Allyloxy-2,3,5,6-tetrafluorophenyl)salicylaldimines and Their Complexes with Titanium(IV) Dichloride. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Zhang H, Zhang Z, Cai Z, Li M, Liu Z. Influence of Silica-Supported Alkylaluminum on Heterogeneous Zwitterionic Anilinonaphthoquinone Nickel and Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
42
|
Yu D, Garcia A, Blum SA, Welsher KD. Growth Kinetics of Single Polymer Particles in Solution via Active-Feedback 3D Tracking. J Am Chem Soc 2022; 144:14698-14705. [PMID: 35867381 DOI: 10.1021/jacs.2c04990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability to directly observe chemical reactions at the single-molecule and single-particle level has enabled the discovery of behaviors otherwise obscured by ensemble averaging in bulk measurements. However powerful, a common restriction of these studies to date has been the absolute requirement to surface tether or otherwise immobilize the chemical reagent/reaction of interest. This constraint arose from a fundamental limitation of conventional microscopy techniques, which could not track molecules or particles rapidly diffusing in three dimensions, as occurs in solution. However, many chemical processes occur entirely in the solution phase, leaving single-particle/-molecule analysis of this critical area of science beyond the scope of available technology. Here, we report the first kinetics studies of freely diffusing and actively growing single polymer-particles at the single-particle level freely diffusing in solution. Active-feedback single-particle tracking was used to capture three-dimensional (3D) trajectories and real-time volumetric images of freely diffusing polymer particles (D ≈ 10-12 m2/s) and extract the growth rates of individual particles in the solution phase. The observed growth rates show that the average growth rate is a poor representation of the true underlying variability in polymer-particle growth behavior. These data revealed statistically significant populations of faster- and slower-growing particles at different depths in the sample, showing emergent heterogeneity while particles are still freely diffusing in solution. These results go against the prevailing premise that chemical processes in freely diffusing solution will exhibit uniform kinetics. We anticipate that these studies will launch new directions of solution-phase, nonensemble-averaged measurements of chemical processes.
Collapse
Affiliation(s)
- Donggeng Yu
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Kevin D Welsher
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| |
Collapse
|
43
|
Shoshani MM, Xiong S, Lawniczak JJ, Zhang X, Miller TF, Agapie T. Phosphine-Phenoxide Nickel Catalysts for Ethylene/Acrylate Copolymerization: Olefin Coordination and Complex Isomerization Studies Relevant to the Mechanism of Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manar M. Shoshani
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd., Brownsville, Texas 78520, United States
| | - Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - James J. Lawniczak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
44
|
Alzamly A, Bakiro M, Hussein Ahmed S, Siddig LA, Nguyen HL. Linear α-olefin oligomerization and polymerization catalyzed by metal-organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Vittoria A, Urciuoli G, Costanzo S, Tammaro D, Cannavacciuolo FD, Pasquino R, Cipullo R, Auriemma F, Grizzuti N, Maffettone PL, Busico V. Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Vittoria
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Gaia Urciuoli
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Salvatore Costanzo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Daniele Tammaro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Felicia Daniela Cannavacciuolo
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Rossana Pasquino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Roberta Cipullo
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Finizia Auriemma
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Nino Grizzuti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Vincenzo Busico
- Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cintia 21, Napoli 80126, Italy
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| |
Collapse
|
46
|
Gao Y, Christianson MD, Wang Y, Coons MP, Chen J, Zhang J, Marshall S, Lohr TL, Klosin J, Marks TJ. Alkane-Soluble Bis[tris(alkylphenyl)carbenium] Diborate Cocatalyst for Olefin Polymerizations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanshan Gao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Christianson
- Corporate R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - Yang Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Marc P. Coons
- Corporate R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - Jiazhen Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jialong Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Steve Marshall
- Corporate R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - Tracy L. Lohr
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jerzy Klosin
- Corporate R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
47
|
Sun Y, Xu S, You F, Shi X. Synthesis and characterization of the titanium catalysts supported by pyrrolide-benzoxazole ligands and their application in ethylene polymerization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Fricker AE, Samolova E, Rheingold AL, Green DB, Brereton KR, Fritsch JM. Synthesis, spectroscopy, and crystallography of magnesium, aluminum, and zinc complexes supported by a tridentate ketoiminate. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. Exploring the Reaction Mechanism of Heterobimetallic Nickel‐Alkali Catalysts for Ethylene Polymerization: Secondary‐Metal‐Ligand Cooperative Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pavee Apilardmongkol
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| | - Manussada Ratanasak
- Hokkaido University Catalysis Theory Research Division, Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, Japan, 001-0021 001-0021 Sapporo JAPAN
| | - Jun-ya Hasegawa
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo 001-0021 Sappporo JAPAN
| | - Vudhichai Parasuk
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| |
Collapse
|
50
|
Cao L, Cai Z, Li M. Phosphinobenzenamine Nickel Catalyzed Efficient Copolymerization of Methyl Acrylate with Ethylene and Norbornene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lixin Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion - Israel Institute of Technology, Shantou 515063, P. R. China
| |
Collapse
|