1
|
Zhang M, Liu T, Chen XQ, Jin H, Lv JJ, Wang S, Yu X, Yang C, Wang ZJ. Recent advances in electrochemical 1,2-difunctionalization of alkenes: mechanisms and perspectives. Org Biomol Chem 2025; 23:2323-2357. [PMID: 39932496 DOI: 10.1039/d4ob01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In recent years, significant achievements have been made in the field of electroorganic chemistry regarding the difunctionalization of alkenes. Researchers have developed innovative strategies utilizing the unique reactivity of electrochemical processes to synthesize complex molecules with high regioselectivity and stereoselectivity. This technology is widely applied in the total synthesis of natural products and in the pharmaceutical industry. This article reviews the research progress in the electrochemical difunctionalization of alkenes through three different radical-mediated pathways over the past five years. It includes discussions on 1,2-stereoselective and non-diastereoselective difunctionalization reactions, rearrangements, intramolecular migrations, and cyclization processes. The summary emphasizes innovative electrode designs, reaction mechanisms, and the integration with other emerging technologies, highlighting the potential of this method in modern organic chemistry. Additionally, it aims to address current challenges and propose possible solutions, providing a promising direction for electrochemically mediated difunctionalization reactions of alkenes.
Collapse
Affiliation(s)
- Mingming Zhang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ting Liu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xue-Qiu Chen
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Jing Lv
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chuntian Yang
- Wenzhou Institute of Industry & Science, Wenzhou, 325035, P. R. China
| | - Zheng-Jun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Piri-Gharaghie T, Ghourchian H, Rezaeizadeh G, Kabiri H, Rajaei N, Dhiaa AM, Ghajari G, Bahari R. (S)-3-(3,4-Dihydroxybenzyl) piperazine-2,5-dione (cyclo-Gly-L-DOPA or CG-Nio-CGLD) peptide loaded in Chitosan Glutamate-Coated Niosomes as anti-Colorectal cancer activity. BMC Pharmacol Toxicol 2024; 25:44. [PMID: 39090674 PMCID: PMC11295349 DOI: 10.1186/s40360-024-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), now the second most prevalent malignant tumor worldwide, is more prevalent in young adults. In recent decades, there has been progress in creating anti-colorectal cancer medications, including cytotoxic compounds. OBJECTIVES Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of novel formulations in preventing colorectal cancer. METHODS During this study, we assessed a new kind of niosome called cyclo-Gly-L-DOPA (CG-Nio-CGLD) made from chitosan glutamate. We evaluated the anti-colorectal cancer properties of CG-Nio-CGLD utilizing CCK-8, invasion assay, MTT assay, flow cytometry, and cell cycle analysis. The transcription of genes associated with apoptosis was analyzed using quantitative real-time PCR. At the same time, the cytotoxicity of nanomaterials on both cancer and normal cell lines was assessed using MTT assays. Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of newly developed formulations in preventing colorectal cancer. RESULTS The Nio-CGLD and CG-Nio-CGLD were spherical mean diameters of 169.12 ± 1.87 and 179.26 ± 2.17 nm, respectively. Entrapment efficiency (EE%) measurements of the Nio-CGLD and CG-Nio-CGLD were 63.12 ± 0.51 and 76.43 ± 0.34%, respectively. In the CG-Nio-CGLD group, the percentages of early, late, necrotic, and viable CL40 cells were 341.93%, 23.27%, 9.32%, and 25.48%. The transcription of the genes PP53, cas3, and cas8 was noticeably higher in the treatment group compared to the control group (P > 0.001). Additionally, the treatment group had lower BCL2 and survivin gene expression levels than the control group (P < 0.01). Additionally, CG-Nio-CGLD formulations demonstrated a biocompatible nanoscale delivery mechanism and displayed little cytotoxicity toward the CCD 841 CoN reference cell line. CONCLUSION These findings indicate that chitosan-based noisome encapsulation may enhance the effectiveness of CG-Nio-CGLD formulations in fighting cancer.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hedieh Ghourchian
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Negin Rajaei
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | | | - Ghazal Ghajari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roghayeh Bahari
- Department of Biology, Faculty of Biological Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
3
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
4
|
Akonor BG, Aniagyei A, Kwawu CR, Amankwah G, Menkah ES, Adei E. A quantum mechanistic investigation into the unusual reactions of nitrilimine and nitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. J Mol Model 2024; 30:282. [PMID: 39048781 DOI: 10.1007/s00894-024-06074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
CONTEXT The theoretical study investigates the [3 + 2] cycloaddition (32CA) reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. Nitrilimines and nitrile oxides are dipoles used in the synthesis of several heterocyclic compounds, including spiropyrazoline oxindoles and isoxazolines. The derivatives of these compounds are found with different biological activities, such as ion channel blockers, anti-inflammatory and anticancer agents as well as antimalarial. Conceptual density functional theory (CDFT) analysis, along with the activation energies of the 32CA reaction between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone, demonstrates concordance with the empirical findings. The 32CA reaction is found to proceed through a very polar single-step asynchronous mechanism. While deductions from the activation energies of the 32CA reaction between benzonitrile oxide and 2,3,4,5-tetraphenylcyclopentadienone are found to lead to the experimental product, the parr function analysis could not explain the observed chemo- and regioselectivity. This 32CA reaction is also found to proceed through a one-step asynchronous mechanism, though with a non-polar character. The modulation of substituents positioned at the reactive sites of the reactants is found to influence the kinetics, thermodynamics, and CDFT parameters of the two 32CA reactions, consequently impacting the observed selectivities. METHODS The 32CA reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone have been explored theoretically using the density functional theory method at the hybrid ωB97X-D coupled with the split valence triple-ξ (TZ) basis set as implemented in the Gaussian 09. Solvent effects were taken into account by full optimization of the gas phase geometries through the polarizable continuum model developed within the self-consistent reaction field.
Collapse
Affiliation(s)
- Benjamin G Akonor
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Aniagyei
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana.
| | - Caroline R Kwawu
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gabriel Amankwah
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elliot S Menkah
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
5
|
Gukathasan S, Obisesan OA, Saryazdi S, Ratliff L, Parkin S, Grossman RB, Awuah SG. A Conformationally Restricted Gold(III) Complex Elicits Antiproliferative Activity in Cancer Cells. Inorg Chem 2023; 62:13118-13129. [PMID: 37530672 PMCID: PMC11268950 DOI: 10.1021/acs.inorgchem.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Collapse
Affiliation(s)
| | | | - Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Libby Ratliff
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
6
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
7
|
Shi Z, Zhang J, Tian L, Xin L, Liang C, Ren X, Li M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023; 28:1762. [PMID: 36838752 PMCID: PMC9962477 DOI: 10.3390/molecules28041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Due to the overuse of antibiotics, bacterial resistance has markedly increased to become a global problem and a major threat to human health. Fortunately, in recent years, various new antibiotics have been developed through both improvements to traditional antibiotics and the discovery of antibiotics with novel mechanisms with the aim of addressing the decrease in the efficacy of traditional antibiotics. This manuscript reviews the antibiotics that have been approved for marketing in the last 20 years with an emphasis on the antibacterial properties, mechanisms, structure-activity relationships (SARs), and clinical safety of these antibiotics. Furthermore, the current deficiencies, opportunities for improvement, and prospects of antibiotics are thoroughly discussed to provide new insights for the design and development of safer and more potent antibiotics.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
| | - Jie Zhang
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Lei Tian
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
8
|
Yokoe H, Kiriyama A, Shimoda M, Nakajima S, Hashizume Y, Endo Y, Iwamoto R, Tsubuki M, Kanoh N. Cis-Selective Double Spirocyclization via Dearomatization and Isomerization under Thermodynamic Control. J Org Chem 2023; 88:1803-1814. [PMID: 36632764 DOI: 10.1021/acs.joc.2c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spiro compounds have been considered key scaffolds for pharmaceutical applications. Although many synthetic methods exist for monospirocycles, fewer approaches are known for dispirocycles. Here, we report a highly cis-selective method for constructing a 5/6/5-dispirocyclic structure containing pyrrolidine and γ-lactam rings with various substituents from a series of N-arylpropiolamides. The high cis-selectivity would result from isomerization under thermodynamic control. Cis- and trans-diastereomers can be in equilibrium, favoring cis-adducts.
Collapse
Affiliation(s)
- Hiromasa Yokoe
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akiko Kiriyama
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Miho Shimoda
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Satoru Nakajima
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuna Hashizume
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuto Endo
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ryoko Iwamoto
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masayoshi Tsubuki
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
9
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
10
|
Meanwell NA, Loiseleur O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10942-10971. [PMID: 35675050 DOI: 10.1021/acs.jafc.2c00726] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Piperazine and homopiperazine are well-studied heterocycles in drug design that have found gainful application as scaffolds and terminal elements and for enhancing the aqueous solubility of a molecule. The optimization of drug candidates that incorporate these heterocycles in an effort to refine potency, selectivity, and developability properties has stimulated the design and evaluation of a wide range of bioisosteres that can offer advantage. In this review, we summarize the design and application of bioisosteres of piperazine and homopiperazine that have almost exclusively been in the drug design arena. While there are ∼100 approved drugs that incorporate a piperazine ring, only a single marketed agricultural product is built on this heterocycle. As part of the review, we discuss some of the potential reasons underlying the relatively low level of importance of this heterocycle to the design of agrochemicals and highlight the potential opportunities for their use in contemporary research programs.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Olivier Loiseleur
- Syngenta Crop Protection Research, Schaffhauserstrasse, Stein CH-4332, Switzerland
| |
Collapse
|
11
|
Cai CY, Zheng YT, Li JF, Xu HC. Cu-Electrocatalytic Diazidation of Alkenes at ppm Catalyst Loading. J Am Chem Soc 2022; 144:11980-11985. [PMID: 35772000 DOI: 10.1021/jacs.2c05126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 1,2-diamine motif is prevalent in natural products, small-molecule pharmaceuticals, and catalysts for asymmetric synthesis. Transition metal catalyzed alkene diazidation has evolved to be an attractive strategy to access vicinal primary diamines but remains challenging, especially for practical applications, due to the restriction to a certain type of olefins, the frequent use of chemical oxidants, and the requirement for high loadings of metal catalysts (1 mol % or above). Herein we report a scalable Cu-electrocatalytic alkene diazidation reaction with 0.02 mol % (200 ppm) of copper(II) acetylacetonate as the precatalyst without exogenous ligands. In addition to its use of low catalyst loading, the electrocatalytic method is scalable, compatible with a broad range of functional groups, and applicable to the diazidation of α,β-unsaturated carbonyl compounds and mono-, di-, tri-, and tetrasubstituted unactivated alkenes.
Collapse
Affiliation(s)
- Chen-Yan Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing-Fu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
12
|
Rombouts FJR, Hsiao CC, Bache S, De Cleyn M, Heckmann P, Leenaerts J, Martinéz-Lamenca C, Van Brandt S, Peschiulli A, Vos A, Gijsen HJM. Modulating physicochemical properties of tetrahydropyridine-2-amine BACE1 inhibitors with electron-withdrawing groups: A systematic study. Eur J Med Chem 2022; 228:114028. [PMID: 34920170 DOI: 10.1016/j.ejmech.2021.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022]
Abstract
A common challenge for medicinal chemists is to reduce the pKa of strongly basic groups' conjugate acids into a range that preserves the desired effects, usually potency and/or solubility, but avoids undesired effects like high volume of distribution (Vd), limited membrane permeation, and off-target binding to, notably, the hERG channel and monoamine receptors. We faced this challenge with a 3,4,5,6-tetrahydropyridine-2-amine scaffold harboring an amidine, a key structural component of potential inhibitors of BACE1, the rate-limiting enzyme in the production of Aβ species that make up amyloid plaques in Alzheimer's disease. In our endeavor to balance potency with desirable properties to achieve brain penetration, we introduced a diverse set of groups in beta position of the amidine that modulate logD, PSA and pKa. Given the synthetic challenge to prepare these highly functionalized warheads, we first developed a design flow including predicted physicochemical parameters which allowed us to select only the most promising candidates for synthesis. For this we evaluated a set of commercial packages to predict physicochemical properties, which can guide medicinal chemists in their endeavors to modulate pKa values of amidine and amine bases.
Collapse
Affiliation(s)
| | - Chien-Chi Hsiao
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Solène Bache
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Michel De Cleyn
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Pauline Heckmann
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Jos Leenaerts
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | | | - Sven Van Brandt
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Aldo Peschiulli
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Ann Vos
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Harrie J M Gijsen
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| |
Collapse
|
13
|
Malashchuk A, Chernykh AV, Perebyinis MY, Komarov IV, Grygorenko OO. Monoprotected Diamines Derived from 1,5‐Disubstituted (Aza)spiro[2.3]hexane Scaffolds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andrii Malashchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Mariana Y. Perebyinis
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Igor V. Komarov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
14
|
Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J Chem Inf Model 2021; 62:2171-2185. [PMID: 34928600 DOI: 10.1021/acs.jcim.1c00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs. The chemical space was defined by corresponding synthons─fragments contributed to the final molecules upon reaction. They allow an analysis of BB physicochemical properties and diversity, unbiased by the leaving and protective groups in actual reagents. The main classes of BBs were analyzed in terms of their availability, rule-of-two-defined quality, and diversity. Available BBs were eventually compared to a reference set of biologically relevant synthons derived from ChEMBL fragmentation, in order to illustrate how well they cover the actual medicinal chemistry needs. This was performed on a newly constructed universal generative topographic map of synthon chemical space that enables visualization of both libraries and analysis of their overlapped and library-specific regions.
Collapse
Affiliation(s)
- Yuliana Zabolotna
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Sergey V Ryabukhin
- The Institute of High Technologies, Kyiv National Taras Shevchenko University, 64 Volodymyrska Street, Kyiv 01601, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Dragos Horvath
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Konstantin S Gavrilenko
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Gilles Marcou
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Yurii S Moroz
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Oleksandr Oksiuta
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alexandre Varnek
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
15
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
16
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
17
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Wang MM, Nguyen TVT, Waser J. Diamine Synthesis via the Nitrogen-Directed Azidation of σ- and π-C-C Bonds. J Am Chem Soc 2021; 143:11969-11975. [PMID: 34339216 DOI: 10.1021/jacs.1c06700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diamines are essential building blocks for the synthesis of agrochemicals, drugs, and organic materials, yet their synthesis remains challenging, as both nitrogens need to be differentiated and diverse substitution patterns (1,2, 1,3, or 1,4) are required. We report herein a new strategy giving access to 1,2, 1,3, and 1,4 amido azides as orthogonally protected diamines based on the nitrogen-directed diazidation of alkenes, cyclopropanes, and cyclobutanes. Commercially available copper thiophene-2-carboxylate (CuTc, 2 mol %) as catalyst promoted the diazidation of both π and σ C-C bonds within 10 min in the presence of readily available oxidants and trimethylsilyl azide. Selective substitution of the formed α-amino azide by carbon nucleophiles (electron-rich aromatic, malonate, organosilicon, organoboron, organozinc, and organomagnesium compounds) was then achieved in a one-pot fashion, leading to the formation of 1,2-, 1,3-, and 1,4-diamines with the amino groups protected orthogonally as an amide/carbamate and an azide.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Pipim GB, Tia R, Adei E. Quantum chemical investigation of the formation of spiroheterocyclic compounds via the (3 + 2) cycloaddition reaction of 1-methyl-3-(2,2,2-trifluoroethylidene) pyrrolidin-2-one with diazomethane and nitrone derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Mulamreddy R, Hou X, Chemtob S, Lubell WD. 6-Hydroxymethyl Indolizidin-2-one Amino Acid Synthesis, Conformational Analysis, and Biomedical Application as Dipeptide Surrogates in Prostaglandin-F 2α Modulators. Org Lett 2021; 23:5192-5196. [PMID: 34161105 DOI: 10.1021/acs.orglett.1c01733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Hydroxymethyl indolizidin-2-one amino acids were synthesized in 10 steps from l-serine by intramolecular ring opening of a symmetrical epoxide and lactam formation. X-ray analyses indicated the bicycles replicated ideal peptide type II' β-turn central dihedral angle geometry. Inside a prostaglandin-F2α receptor modulator, the 6-hydroxymethyl analogue retained inhibitory activity on myometrial contractility.
Collapse
Affiliation(s)
- Ramakotaiah Mulamreddy
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - Xin Hou
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal H3T 1C5, QC, Canada
| | - Sylvain Chemtob
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal H3T 1C5, QC, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| |
Collapse
|
21
|
Kharchenko SH, Iampolska AD, Radchenko DS, Vashchenko BV, Voitenko ZV, Grygorenko OO. A Diversity‐Oriented Approach to Large Libraries of Artificial Macrocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Anna D. Iampolska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Zoia V. Voitenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
22
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
24
|
Li HH, Li JQ, Zheng X, Huang PQ. Photoredox-Catalyzed Decarboxylative Cross-Coupling of α-Amino Acids with Nitrones. Org Lett 2021; 23:876-880. [PMID: 33433222 DOI: 10.1021/acs.orglett.0c04101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A decarboxylative cross-coupling reaction of α-amino acids with nitrones via visible-light-induced photoredox catalysis has been established for easy access to β-amino hydroxylamines and vicinal diamines with structural diversity, which is featured with simple operation, mild conditions, readily available α-amino acids, and a broad scope of nitrone substrates. The application of this protocol can furnish efficient synthetic strategies for some valuable vicinal diamine-containing molecules.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Qi Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiao Zheng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
25
|
Zhou K, Bao M, Sha H, Dong G, Hong K, Xu X, Hu W. Highly diastereoselective synthesis of vicinal diamines via a Rh-catalyzed three-component reaction of diazo compounds with diarylmethanimines and ketimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00083g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh-catalyzed selective three-component reaction of diazo compounds with diarylmethanimines and ketimines is reported that offers an efficient and convenient access to vicinal diamine derivatives with two tertiary stereocenters in high yields.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
26
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2020; 60:2074-2077. [DOI: 10.1002/anie.202012049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
27
|
Zhu WR, Liu K, Weng J, Huang WH, Huang WJ, Chen Q, Lin N, Lu G. Catalytic Asymmetric Synthesis of Vicinal Tetrasubstituted Diamines via Umpolung Cross-Mannich Reaction of Cyclic Ketimines. Org Lett 2020; 22:5014-5019. [DOI: 10.1021/acs.orglett.0c01578] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wei-Hua Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wei-Jie Huang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Qing Chen
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Ning Lin
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
28
|
Sakai H, Inoue H, Murata K, Toba T, Takemoto N, Matsumoto T, Kawabata T. Second basic pKa: An overlooked parameter in predicting phospholipidosis-inducing potential of diamines. Bioorg Med Chem Lett 2020; 30:126933. [DOI: 10.1016/j.bmcl.2019.126933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
|
29
|
Verma P, Richter JM, Chekshin N, Qiao JX, Yu JQ. Iridium(I)-Catalyzed α-C(sp 3)-H Alkylation of Saturated Azacycles. J Am Chem Soc 2020; 142:5117-5125. [PMID: 32098471 DOI: 10.1021/jacs.9b12320] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saturated azacycles are commonly encountered in bioactive compounds and approved therapeutic agents. The development of methods for functionalization of the α-methylene C-H bonds of these highly privileged building blocks is of great importance, especially in drug discovery. While much effort has been dedicated toward this goal by using a directed C-H activation approach, the development of directing groups that are both general as well as practical remains a significant challenge. Herein, the design and development of novel amidoxime directing groups is described for Ir(I)-catalyzed α-C(sp3)-H alkylation of saturated azacycles using readily available olefins as coupling partners. This protocol extends the scope of saturated azacycles to piperidines, azepane, and tetrahydroisoquinoline that are incompatible with our previously reported directing group. A variety of olefin coupling partners, including previously unreactive disubstituted terminal olefins and internal olefins, are compatible with this transformation. The selectivity for a branched α-C(sp3)-alkylation product is also observed for the first time when acrylate is used as the reaction partner. The development of practical, one-step installation and removal protocols further adds to the utility of amidoxime directing groups.
Collapse
Affiliation(s)
- Pritha Verma
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeremy M Richter
- Research & Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
30
|
Domingo LR, Ghodsi F, Ríos-Gutiérrez M. A Molecular Electron Density Theory Study of the Synthesis of Spirobipyrazolines through the Domino Reaction of Nitrilimines with Allenoates. Molecules 2019; 24:molecules24224159. [PMID: 31744134 PMCID: PMC6891705 DOI: 10.3390/molecules24224159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The reaction of diphenyl nitrilimine (NI) with methyl 1-methyl-allenoate yielding a spirobipyrazoline has been studied within molecular electron density theory (MEDT) at the MPWB1K/6-311G(d) computational level in dichloromethane. This reaction is a domino process that comprises two consecutive 32CA reactions with the formation of a pyrazoline intermediate. Analysis of the relative Gibbs free energies indicates that both 32CA reactions are highly regioselective, the first one being also completely chemoselective, in agreement with the experimental outcomes. The geometries of the TSs indicate that they are associated to asynchronous bond formation processes in which the shorter distance involves the C1 carbon of diphenyl NI. Despite the zwitterionic structure of diphenyl NI, the appearance of a pseudoradical structure at the beginning of the reaction path, with a very low energy cost, suggests that the 32CA reaction between diphenyl NI, a strong nucleophile, and the allenoate, a moderate electrophile, should be mechanistically considered on the borderline between pmr-type and cb-type 32CA reactions, somewhat closer to the latter.
Collapse
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain;
- Correspondence:
| | - Fatemeh Ghodsi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan 98135-674, Iran;
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
31
|
Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry 2019; 26:1196-1237. [PMID: 31429510 DOI: 10.1002/chem.201903232] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 12/20/2022]
Abstract
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.
Collapse
Affiliation(s)
- Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kiev, 02660, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Duncan B Judd
- Awridian Ltd., Stevenage Bioscience Catalyst, Gunnelswood Road, Stevenage, Herts, SG1 2FX, UK
| |
Collapse
|
32
|
Arai N, Ohkuma T. Stereoselective Construction of Methylenecyclobutane-Fused Indolines through Photosensitized [2+2] Cycloaddition of Allene-Tethered Indole Derivatives. Org Lett 2019; 21:1506-1510. [PMID: 30789275 DOI: 10.1021/acs.orglett.9b00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Irradiation of 1-(hexa-4,5-dienoyl)indole derivatives in the presence of an aromatic ketone by a high-pressure mercury lamp through Pyrex glass gave the corresponding cyclized products stereoselectively in high yields. The major part of the products was an all- cis-fused methylenecyclobutane-type compound produced through [2+2] cycloaddition, accompanied by small amounts of alkynes via 1,5-hydrogen transfer of a biradical intermediate. Among a range of aromatic ketones, 3',4'-dimethoxyacetophenone was found to sensitize the substrate quite effectively.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Division of Applied Chemistry, Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido 060-8628 , Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry, Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido 060-8628 , Japan.,Frontier Chemistry Center, Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido 060-8628 , Japan
| |
Collapse
|
33
|
Sun W, Jiang F, Liu H, Gao X, Jia H, Zhang C, Guo H. Double [3 + 2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Reddy TR, Rao DS, Kashyap S. Visible-light activated metal catalyst-free vicinal diazidation of olefins with sulfonium iodate(i) species. Chem Commun (Camb) 2019; 55:2833-2836. [DOI: 10.1039/c9cc00007k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented visible-light inspired selective radical azidation of unactivated and diverse substituted vinylarenes with sulfonium iodate reagent has been realized. The intrinsic radical process triggered by light tolerated several synthetically useful functionalities enabling two new carbon-hetero bonds which display distinctive late-stage applications to biologically relevant scaffolds.
Collapse
Affiliation(s)
| | | | - Sudhir Kashyap
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| |
Collapse
|
35
|
Feskov IO, Chernykh AV, Kuchkovska YO, Daniliuc CG, Kondratov IS, Grygorenko OO. 3-((Hetera)cyclobutyl)azetidines, “Stretched” Analogues of Piperidine, Piperazine, and Morpholine: Advanced Building Blocks for Drug Discovery. J Org Chem 2018; 84:1363-1371. [DOI: 10.1021/acs.joc.8b02822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Illia O. Feskov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ivan S. Kondratov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
36
|
Mondal S, Verma A, Saha S. Conformationally Restricted Triarylmethanes: Synthesis, Photophysical Studies, and Applications. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sankalan Mondal
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| | - Abhineet Verma
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| | - Satyen Saha
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| |
Collapse
|
37
|
Menapara T, Tak RK, Saravanan S, Kureshy RI, Khan NUH, Ganguly B, Si MK. Isatin N-protected ketimines with nitromethane catalyzed by chiral binol linked monomeric macrocyclic Cu(II)–salen complex. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Homon AA, Hryshchuk OV, Trofymchuk S, Michurin O, Kuchkovska Y, Radchenko DS, Grygorenko OO. Synthesis of 3-Azabicyclo[3.2.0]heptane-Derived Building Blocks via [3+2] Cycloaddition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anton A. Homon
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Oleg Michurin
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Yuliya Kuchkovska
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
39
|
Ma C, Du J, Liang Y, Feng W. Diastereoselective Synthesis of Vicinal Diamines by Aza-Michael Addition of Chiral Phenethylamine to Nitroalkenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201802673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunying Ma
- Department of New Drug Research and Development; Institute of Materia Medical; Chinese Academy of Medical Sciences & Peking Union Medical College 1 Xian Nong Tan Street, Xicheng District, Beijing; China 100050
| | - Jianxun Du
- Department of New Drug Research and Development; Institute of Materia Medical; Chinese Academy of Medical Sciences & Peking Union Medical College 1 Xian Nong Tan Street, Xicheng District, Beijing; China 100050
| | - Yuhua Liang
- Department of New Drug Research and Development; Institute of Materia Medical; Chinese Academy of Medical Sciences & Peking Union Medical College 1 Xian Nong Tan Street, Xicheng District, Beijing; China 100050
| | - Wenhua Feng
- Department of New Drug Research and Development; Institute of Materia Medical; Chinese Academy of Medical Sciences & Peking Union Medical College 1 Xian Nong Tan Street, Xicheng District, Beijing; China 100050
| |
Collapse
|
40
|
Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Milbeo P, Moulat L, Didierjean C, Aubert E, Martinez J, Calmès M. C
1
-Symmetric 1,2-Diaminobicyclo[2.2.2]octane Ligands in Copper-Catalyzed Asymmetric Henry Reaction: Catalyst Development and DFT Studies. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Pierre Milbeo
- IBMM; UMR 5247 CNRS-Université Montpellier-ENSCM; Place Eugène Bataillon 34095 Montpellier France
| | - Laure Moulat
- IBMM; UMR 5247 CNRS-Université Montpellier-ENSCM; Place Eugène Bataillon 34095 Montpellier France
| | - Claude Didierjean
- CNRS, CRM2; Université de Lorraine; Boulevard des Aiguillettes 54506 Nancy France
| | - Emmanuel Aubert
- CNRS, CRM2; Université de Lorraine; Boulevard des Aiguillettes 54506 Nancy France
| | - Jean Martinez
- IBMM; UMR 5247 CNRS-Université Montpellier-ENSCM; Place Eugène Bataillon 34095 Montpellier France
| | - Monique Calmès
- IBMM; UMR 5247 CNRS-Université Montpellier-ENSCM; Place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|
42
|
Abstract
AbstractAn approach to the synthesis of 7-methyl-4-azaindole, which is a valuable building block for drug discovery programs, is described. The method relies on using a bromine atom as a ‘place holding group’ for one of the carbon atoms of the pyridine ring throughout the reaction sequence, and it is removed only upon the final reductive cyclization leading to the azaindole ring. Exhaustive hydrogenation of the target product proceeds in a diastereoselective manner and leads to a bicyclic conformationally restricted diamine derivative.
Collapse
|
43
|
Wang FL, Dong XY, Lin JS, Zeng Y, Jiao GY, Gu QS, Guo XQ, Ma CL, Liu XY. Catalytic Asymmetric Radical Diamination of Alkenes. Chem 2017. [DOI: 10.1016/j.chempr.2017.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
|
45
|
Tummalapalli SR, Bhat R, Waitt C, Eshuis H, Rotella DP. Synthesis and computational analysis of conformationally restricted [3.2.2]- and [3.2.1]-3-azabicyclic diamines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Mwenda ET, Nguyen HM. Enantioselective Synthesis of 1,2-Diamines Containing Tertiary and Quaternary Centers through Rhodium-Catalyzed DYKAT of Racemic Allylic Trichloroacetimidates. Org Lett 2017; 19:4814-4817. [PMID: 28876951 DOI: 10.1021/acs.orglett.7b02256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amination of racemic secondary and tertiary allylic trichloroacetimidates possessing β-nitrogen substituents and proximal nitrogen-containing heterocycles, via chiral diene-ligated rhodium-catalyzed dynamic kinetic asymmetric transformations (DYKAT), provides branched allylic 1,2-diamines with high enantioselectivity. The catalytic system can be applied to the synthesis of 1,2-diamines possessing two contiguous stereocenters with excellent diastereoselectivity. Furthermore, the nitrogen-containing heterocycles suppress competing vinyl azirdine formation, allowing for the high enantioselective syntheses of 1,2-diamines possessing tertiary and quaternary centers.
Collapse
Affiliation(s)
- Edward T Mwenda
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| |
Collapse
|
47
|
Liu H, Jia H, Wang B, Xiao Y, Guo H. Synthesis of Spirobidihydropyrazole through Double 1,3-Dipolar Cycloaddition of Nitrilimines with Allenoates. Org Lett 2017; 19:4714-4717. [PMID: 28858517 DOI: 10.1021/acs.orglett.7b01961] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double 1,3-dipolar cycloaddition of allenoates with nitrilimines has been achieved under mild reaction conditions, affording a variety of spirobidihydropyrazoles in moderate to excellent yields with excellent diastereoselectivities. The reaction diastereoselectively constructs double dihydropyrazole moieties and two chiral centers including a spiro carbon center.
Collapse
Affiliation(s)
- Honglei Liu
- Department of Applied Chemistry, China Agricultural University , Beijing 100193, P. R. China
| | - Hao Jia
- Department of Applied Chemistry, China Agricultural University , Beijing 100193, P. R. China
| | - Bo Wang
- Department of Applied Chemistry, China Agricultural University , Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Applied Chemistry, China Agricultural University , Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University , Beijing 100193, P. R. China
| |
Collapse
|
48
|
Yashin NV, Averina EB, Vasilenko DA, Grishin YK, Osolodkin DI, Palyulin VA, Kuznetsova TS, Zefirov NS. Synthesis of novel non-natural spiro[2.3]hexane amino acids, the conformationally restricted analogs of γ-aminobutyric acid. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Huang QX, Zheng QT, Duan Y, Lin JH, Xiao JC, Zheng X. Diastereoselective Synthesis of CF3-Containing Vicinal Diamines. J Org Chem 2017; 82:8273-8281. [DOI: 10.1021/acs.joc.7b01261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiu-xia Huang
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qu-tong Zheng
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yaya Duan
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing Zheng
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
50
|
Rajkumar S, Clarkson GJ, Shipman M. Regio- and Stereocontrolled Synthesis of 3-Substituted 1,2-Diazetidines by Asymmetric Allylic Amination of Vinyl Epoxide. Org Lett 2017; 19:2058-2061. [PMID: 28375013 DOI: 10.1021/acs.orglett.7b00653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-catalyzed asymmetric allylic amination of rac-vinyl epoxide with unsymmetrical 1,2-hydrazines proceeds with excellent regio- and stereocontrol, which after further ring closure provides differentially protected 3-vinyl-1,2-diazetidines in good yields. The chirality at C-3 exerts stereocontrol over the nitrogen centers in the 1,2-diazetidine with all substituents orientating themselves trans to their neighbors. Efficient functionalization without rupture of the strained ring is demonstrated (e.g., by cross-metathesis), establishing the first general route to C-3-substituted 1,2-diazetidines in enantioenriched form.
Collapse
Affiliation(s)
- Sundaram Rajkumar
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michael Shipman
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|