1
|
See NW, Roseli RB, Wimmer N, Le TT, Krenske EH, Ferro V. Origins of Temperature-Dependent Anomeric Selectivity in Glycosylations with an L-Idose Thioglycoside. Chemistry 2024; 30:e202400331. [PMID: 38977407 DOI: 10.1002/chem.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
L-Idose thioglycosides are useful glycosyl donors for the construction of glycosaminoglycan oligosaccharides. When activated with NIS and catalytic TMSOTf in the presence of methanol, the stereoselectivity of O-glycosylation displays an intriguing dependence on the reaction temperature, with an increased preference for formation of the α-glycoside at higher temperatures. Using a combination of vt-NMR spectroscopy and DFT calculations, we show how a simple mechanistic model, based on competing reactions of the iodinated thioglycoside, can explain the main features of the temperature dependence. In this model, the increased selectivity at high temperature is attributed to differences among the entropy and energy terms of the competing reaction pathways. Neighbouring-group participation (giving an intermediate acyloxonium ion) plays an increasingly dominant role as temperature is raised. The general features of this kinetic regime may also apply more broadly to other glycosylations that likewise favour α-glycoside formation at high temperature.
Collapse
Affiliation(s)
- Nicholas W See
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Ras Baizureen Roseli
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Tri T Le
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
2
|
Ziemniak M, Pawlędzio S, Zawadzka-Kaźmierczuk A, Dominiak PM, Trzybiński D, Koźmiński W, Zieliński R, Fokt I, Priebe W, Woźniak K, Pająk B. X-ray wavefunction refinement and comprehensive structural studies on bromo-substituted analogues of 2-deoxy-d-glucose in solid state and solution. RSC Adv 2022; 12:8345-8360. [PMID: 35424802 PMCID: PMC8985090 DOI: 10.1039/d1ra08312k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 03/05/2022] [Indexed: 11/21/2022] Open
Abstract
The structural studies on two bromo-substituted derivatives of 2-deoxy-d-glucose (2-DG), namely 2-deoxy-2-bromo-d-glucose (2-BG) and 2-deoxy-2-bromo-d-mannose (2-BM) are described. 2-DG itself is an inhibitor of hexokinase, the first enzyme in the glycolysis process, playing a vital role in both cancer cell metabolism and viral replication in host cells. Because of that, 2-DG derivatives are considered as potential anti-cancer and anti-viral drugs. An X-ray quantum crystallography approach allowed us to obtain more accurate positions of hydrogen atoms by applying Hirshfeld atom refinement, providing a better description of hydrogen bonding even in the case of data from routine X-ray experiments. Obtained structures showed that the introduction of bromine at the C2 position in the pyranose ring has a minor influence on its conformation but still, it has a noticeable effect on the crystal structure. Bromine imposes the formation of a layered supramolecular landscape containing hydrogen bonds, which involves the bromine atom. Periodic DFT calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings and highlighted energetic changes upon bromine substitution. Based on molecular wavefunction from the refinement, we calculated the electrostatic potential, Laplacian, and ELI-D, and applied them to charge-density studies, which confirmed the geometry of hydrogen bonding and involvement of the bromine atom with these intermolecular interactions. NMR studies in the solution show that both compounds do not display significant differences in their anomeric equilibria compared to 2-DG, and the pyranose ring puckering is similar in both aqueous and solid state.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Anna Zawadzka-Kaźmierczuk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Paulina M Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Izabela Fokt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology Kozielska 4 01-163 Warsaw Poland
| |
Collapse
|
3
|
Wang P, Wang J, Yin W, Wang X, Song N, Ren S, Li M. Direct β-Mannosylation of Primary Alcohol Acceptors: Trisaccharide Iteration Assembly of β-1,6-Oligomannosides Corresponding to Kakelokelose. Org Lett 2022; 24:971-976. [PMID: 35045255 DOI: 10.1021/acs.orglett.1c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold(I)-catalyzed stereoselective β-glycosylation of primary alcohols is achieved using the orthogonally protected mannosyl α-ortho-hexynylbenzoate (OABz) donors devoid of 4,6-O-tethering groups used in conventionally constructing β-mannosidic bonds. The potential of this methodology is showcased by the first assembly of β-1,6-tri/hexa-/nonamannosides and related sulfated congeners through a convergent strategy. The synthesis features the stereocontrolled β-glycosylation of α-trimannosyl OABz donors and the late-stage sulfonation. This work is expected to expedite the preparation of β-1,6-mannans and functionalized derivatives.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junlin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Yin
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sumei Ren
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Abstract
l-Rhamnose forms the key components of important antigenic oligo- and polysaccharides of a variety of pathogens. Obtaining 1,2-cis stereoselectivity in the glycosylation of l-rhamnoside is quite challenging due to the unavailability of neighboring group participation and disfavoring of the anomeric effect and stereoelectronic effect of the substituents on the C-2 axial position. Nevertheless, various methodologies have been developed exploiting diverse pathways for obtaining β-stereoselectivity in the glycosylation of l-rhamnose. This review describes the recent advances in β-l-rhamnosylation and its applications in the total synthesis of β-l-rhamnose-containing biologically important oligosaccharides.
Collapse
Affiliation(s)
- Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
5
|
Li T, Wang J, Zhu X, Zhou X, Sun S, Wang P, Cao H, Yu G, Li M. Synthesis of Rare 6-Deoxy-d-/l-Heptopyranosyl Fluorides: Assembly of a Hexasaccharide Corresponding to Campylobacter jejuni Strain CG8486 Capsular Polysaccharide. J Am Chem Soc 2021; 143:11171-11179. [PMID: 34260212 DOI: 10.1021/jacs.1c05048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-β-d-6didoHepp-(1→4)-β-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging β-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of β-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinhao Zhu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shaozi Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Nolen EG, Hornik ES, Jeans KB, Zhong W, LaPaglia DM. Synthesis of C-linked α-Gal and α-GalNAc-1'-hydroxyalkanes by way of C2 functionality transfer. Tetrahedron Lett 2021; 73. [PMID: 34393282 DOI: 10.1016/j.tetlet.2021.153109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inspired by reports of water sculpted Tn antigen (α-GalNAc-O-Ser/Thr) epitopes and our interest in producing metabolically more stable C-linked analogs of Tn, we explored the utility of C2 functionality on α-Gal-C-alkenes to deliver hydroxyl to the pendant alkenyl chain. Toward this end, a cyclic carbonate approach gave rise to a single C-linked α-Gal-1'(S)-hydroxyethane in 3 steps, and use of a 2-(hydroxyimino)galactoside cyclization transferred an oxygen to a pendant cis-substituted C-linked alkene affording the R-configuration at the newly formed stereocenter (7:1 dr). Reduction and acetylation of the resultant isoxazoline demonstrated this approach as a viable route to C-linked α-GalNAc-1'-hydroxyalkanes.
Collapse
Affiliation(s)
- Ernest G Nolen
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Ezra S Hornik
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kendra B Jeans
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Weiyu Zhong
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Danielle M LaPaglia
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
7
|
Jayaraman N. Display of Rich Reactivities of Endo- and Exocyclic Unsaturated Sugars that Parallel the Native Sugars. CHEM REC 2021; 21:3049-3062. [PMID: 33960656 DOI: 10.1002/tcr.202100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022]
Abstract
Unsaturated monosaccharides expand the scope of reactivities in a sugar, directly leading to the development of newer methodologies, molecular structures and functional entities. The unsaturation as a reactive moiety can either be within the molecule, namely, endocyclic, or as a pendant moiety around the molecule, namely, exocyclic. One carbon homologations aided by reactions at the unsaturated moiety expand the molecular structures in both endo- and exocyclic sugars and lead to structures that are largely hitherto unknown. Molecular shifts and rearrangements permit interchanging the reactivities from one carbon to the other in unsaturated sugars. Activations of exocyclic unsaturated sugars also find newer possibilities to reactions central to the sugar chemistry, namely, the glycosylations. The personal reflections result from a couple of decades of explorations that traverse through the unsaturated sugars from different vantage points.
Collapse
|
8
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism‐Related Bacterium
Clostridium bolteae
Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
9
|
Klingler FD. The scientific legacy of Frieder W. Lichtenthaler. Adv Carbohydr Chem Biochem 2020; 77:121-149. [PMID: 33004111 DOI: 10.1016/bs.accb.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article presents a selection of topics from Professor Frieder W. Lichtenthaler's scientific lifework. It describes his contributions to, and further development of, the nitromethane cyclization of dialdehydes leading to amino sugars and amino nucleosides, as well as a new coupling methodology for purine nucleosides. A number of chiral building blocks derived from sugars like the "sugar enolones," enollactones, hydroxyhexenals, and their synthetic applications in natural product syntheses are covered. The article further describes the chemistry of "ulosyl bromides" and their glycosidation reactions, including those with bifunctional acceptors, which led to the synthesis of spectinomycin and gomphoside. Lichtenthaler's work on the preparation of synthetically useful building blocks from disaccharides that are readily available in bulk quantities, and his studies on the reactivity, as well as the selective O-functionalization of sucrose, higher oligosaccharides, and cyclodextrins based on computer simulations, are highlighted. The article also presents his research on the syntheses of chiral building blocks from readily available ketoses and their synthetic applications. Finally the chapter concludes with his significant contributions in the field of the history of carbohydrate chemistry.
Collapse
Affiliation(s)
- Franz Dietrich Klingler
- Formerly of the Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
10
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism-Related Bacterium Clostridium bolteae Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020; 59:20529-20537. [PMID: 32734715 DOI: 10.1002/anie.202007209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The gut pathogen Clostridium bolteae has been associated with the onset of autism spectrum disorder (ASD). To create vaccines against C. bolteae, it is important to identify exact protective epitopes of the immunologically active capsular polysaccharide (CPS). Here, a series of C. bolteae CPS glycans, up to an octadecasaccharide, was prepared. Key to achieving the total syntheses is a [2+2] coupling strategy based on a β-d-Rhap-(1→3)-α-d-Manp repeating unit that in turn was accessed by a stereoselective β-d-rhamnosylation. The 4,6-O-benzylidene-induced conformational locking is a powerful strategy for forming a β-d-mannose-type glycoside. An indirect strategy based on C2 epimerization of β-d-quinovoside was efficiently achieved by Swern oxidation and borohydride reduction. Sequential glycosylation, and regioselective and global deprotection produced the disaccharide and tetrasaccharide, up to the octadecasaccharide. Glycan microarray analysis of sera from rabbits immunized with inactivated C. bolteae bacteria revealed a humoral immune response to the di- and tetrasaccharide, but none of the longer sequences. The tetrasaccharide may be a key motif for designing glycoconjugate vaccines against C. bolteae.
Collapse
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
11
|
Chennaiah A, Dahiya A, Dubbu S, Vankar YD. A Stereoselective Synthesis of an Imino Glycal: Application in the Synthesis of (-)-1-epi-Adenophorine and a Homoimindosugar. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ande Chennaiah
- Department of Chemistry; Indian Institute of Technology Kanpur; -208016 Kanpur India
| | - Amit Dahiya
- Department of Chemistry; Indian Institute of Technology Kanpur; -208016 Kanpur India
| | - Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; -208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; -208016 Kanpur India
| |
Collapse
|
12
|
Dubbu S, Vankar YD. Reaction of 1,2-Anhydrosugars with Arynes: An Approach to 1,2-Dihydrobenzofuran-Fused C
-Aryl Glycosides and C2-O
-Phenolic Glycals. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
13
|
Begum Z, Shankar G, Sirisha K, Reddy BS. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids. Carbohydr Res 2018; 461:1-3. [DOI: 10.1016/j.carres.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/04/2018] [Accepted: 03/04/2018] [Indexed: 01/17/2023]
|
14
|
Braidy N, Essa MM, Poljak A, Selvaraju S, Al-Adawi S, Manivasagm T, Thenmozhi AJ, Ooi L, Sachdev P, Guillemin GJ. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer's disease. Oncotarget 2018; 7:64589-64604. [PMID: 27486879 PMCID: PMC5323101 DOI: 10.18632/oncotarget.10905] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/17/2016] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing abnormal Amyloid Beta (Aβ) aggregates, intracellular neurofibrillary tangles containing hyperphosphorylated tau protein, microglia-dominated neuroinflammation, and impairments in synaptic plasticity underlying cognitive deficits. Therapeutic strategies for the treatment of AD are currently limited. In this study, we investigated the effects of dietary supplementation of 4% pomegranate extract to a standard chow diet on neuroinflammation, and synaptic plasticity in APPsw/Tg2576 mice brain. Treatment with a custom mixed diet (pellets) containing 4% pomegranate for 15 months ameliorated the loss of synaptic structure proteins, namely PSD-95, Munc18-1, and SNAP25, synaptophysin, phosphorylation of Calcium/Calmodulin Dependent Protein Kinase IIα (p-CaMKIIα/ CaMKIIα), and phosphorylation of Cyclic AMP-Response Element Binding Protein (pCREB/CREB), inhibited neuroinflammatory activity, and enhanced autophagy, and activation of the phophoinositide-3-kinase-Akt-mammalian target of rapamycin signaling pathway. These neuroprotective effects were associated with reduced β-site cleavage of Amyloid Precursor Protein in APPsw/Tg2576 mice. Therefore, long-term supplementation with pomegranates can attenuate AD pathology by reducing inflammation, and altering APP-dependent processes.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Al Khoudh, Oman
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Oman
| | - Subash Selvaraju
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Al Khoudh, Oman
| | - Samir Al-Adawi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman.,College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Oman
| | | | | | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, MND and Neurodegenerative Diseases Research Centre, Macquarie University, NSW, Australia
| |
Collapse
|
15
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
|
17
|
Cyman M, Wielińska J, Myszka H, Trzybiński D, Sikorski A, Nowacki A, Liberek B. Influence of the oxime and anomeric configurations on the stability of 2-deoxy-2-hydroxyimino- d -hexopyranosides. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Borowski D, Zweiböhmer T, Ziegler T. 1,2-Annulated Sugars: Synthesis of Polyhydroxylated 2,10-Dioxadecalins with β-mannoConfiguration. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Borowski
- Institute of Organic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Tobias Zweiböhmer
- Institute of Organic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| |
Collapse
|
19
|
Vannam R, Peczuh MW. A practical and scalable synthesis of carbohydrate based oxepines. Org Biomol Chem 2016; 14:3989-96. [PMID: 27056249 DOI: 10.1039/c6ob00262e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, seven-step synthesis of carbohydrate based oxepines is reported using per-O-acetyl septanoses as key intermediates. The scope of the synthesis was evaluated by varying both the pyranose starting materials and protecting groups incorporated into the oxepine products. The practicality of the method make it amenable to scale up as demonstrated by the gram-scale synthesis of the d-glucose derived oxepine.
Collapse
Affiliation(s)
- Raghu Vannam
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U-3060, Storrs, CT 06269, USA.
| | | |
Collapse
|
20
|
Singh GP, Watson AJA, Fairbanks AJ. Achiral 2-Hydroxy Protecting Group for the Stereocontrolled Synthesis of 1,2-cis-α-Glycosides by Six-Ring Neighboring Group Participation. Org Lett 2015; 17:4376-9. [PMID: 26308903 DOI: 10.1021/acs.orglett.5b02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylation of a fully armed donor bearing a 2-O-(trimethoxybenzenethiol) ethyl ether protecting group is completely α-selective with a range of carbohydrate alcohol acceptors. Low-temperature NMR studies confirm the intermediacy of cyclic sulfonium ion intermediates arising from six-membered β-sulfonium ring neighboring group participation. Selective protecting group removal is achieved in high yield in a single operation by S-methylation and base-induced β-elimination.
Collapse
Affiliation(s)
- Govind P Singh
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| | - Andrew J A Watson
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| | - Antony J Fairbanks
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
21
|
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
22
|
Kaji E, Yamamoto D, Shirai Y, Ishige K, Arai Y, Shirahata T, Makino K, Nishino T. Thermodynamically Controlled Regioselective Glycosylation of Fully Unprotected Sugars through Bis(boronate) Intermediates. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Zhang J, Singh S, Hughes RR, Zhou M, Sunkara M, Morris AJ, Thorson JS. A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis. Chembiochem 2014; 15:647-52. [PMID: 24677528 PMCID: PMC4051237 DOI: 10.1002/cbic.201300779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/18/2022]
Abstract
A set of 2-chloro-4-nitrophenyl glucosamino-/xylosaminosides were synthesized and assessed as potential substrates in the context of glycosyltransferase-catalyzed formation of the corresponding UDP/TDP-α-D-glucosamino-/xylosaminosugars and in single-vessel model transglycosylation reactions. This study highlights a robust platform for aminosugar nucleotide synthesis and reveals OleD Loki to be a proficient catalyst for U/TDP-aminosugar synthesis and utilization
Collapse
Affiliation(s)
- Jianjun Zhang
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Shanteri Singh
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Ryan R. Hughes
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Maoquan Zhou
- Dr. M. Zhou School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Manjula Sunkara
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Andrew J. Morris
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Jon S. Thorson
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
24
|
Frihed TG, Walvoort MTC, Codée JDC, van der Marel GA, Bols M, Pedersen CM. Influence of O6 in Mannosylations Using Benzylidene Protected Donors: Stereoelectronic or Conformational Effects? J Org Chem 2013; 78:2191-205. [DOI: 10.1021/jo302455d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tobias Gylling Frihed
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen, Denmark
| | - Marthe T. C. Walvoort
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Gijs A. van der Marel
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen, Denmark
| | | |
Collapse
|
25
|
Manabe S, Satoh H. Unique Reactivity of Pyranosides with 2,3-trans Carbamate Group; Renaissance of Endocyclic Cleavage Reaction. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Giordano M, Iadonisi A. Polymethylhydrosiloxane (PMHS): A Convenient Option for Synthetic Applications of the Iodine/Silane Combined Reagent - Straightforward Entries to 2-Hydroxyglycals and Useful Building-Blocks of Glucuronic Acid and Glucosamine. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Reddy YS, Lahiri R, Vankar YD. Palladium-Catalyzed Improved Regio- and Stereoselective O-Glycosylation of D-Glucal-Derived β- and α-Vinyl Oxiranes. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Daskhan GC, Jayaraman N. Synthesis of 2-Deoxy-2-C-alkyl Glycal and Glycopyranosides from 2-Hydroxy Glycal Ester. J Org Chem 2012; 77:2185-91. [DOI: 10.1021/jo202240f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gour Chand Daskhan
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|