1
|
Liu K, Ruan DJ, Wang XY, Zhong Q, Zhao JK. Catalyst-Free Dearomative Allylboration of Ketones with Benzo[ b]thiophenylmethyl Boronic Acids. J Org Chem 2024; 89:13725-13729. [PMID: 39222483 DOI: 10.1021/acs.joc.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel approach to the dearomative allylboration of ketones with benzo[b]thiophenylmethyl boronic acids has been developed. By leveraging the inherent reactivity of the boronic acid unit, this process occurs under mild reaction conditions without the need for a catalyst, leading to the efficient formation of homoallylic tertiary alcohols accompanied by the construction of three-dimensional sulfur-containing alicyclic scaffolds in high yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Kun Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dao-Jin Ruan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang-Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Ken Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Gonzalez KJ, Cerione C, Stoltz BM. Strategies for the Development of Asymmetric and Non-Directed Petasis Reactions. Chemistry 2024; 30:e202401936. [PMID: 38922740 DOI: 10.1002/chem.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The Petasis reaction is a multicomponent reaction of aldehydes, amines and organoboron reagents and is a useful method for the construction of substituted amines. Despite the significant advancement of the Petasis reaction since its invention in 1993, strategies for asymmetric and non-directed Petasis reactions remain limited. To date, there are very few catalytic asymmetric Petasis reactions and almost all asymmetric reports employ a chiral auxiliary. Likewise, the aldehyde component often requires a directing group, ultimately limiting the reaction's scope. In this Concept, key methods for asymmetric and non-directed Petasis reactions are discussed, focusing on how these conceptual advances can be applied to solve long-standing gaps in the Petasis literature.
Collapse
Affiliation(s)
- Kevin J Gonzalez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125, USA
| | - Chloe Cerione
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125, USA
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Zhang KX, Liu MY, Yao BY, Zhou QL, Xiao LJ. Stereoconvergent and Enantioselective Synthesis of Z-Homoallylic Alcohols via Nickel-Catalyzed Reductive Coupling of Z/ E-1,3-Dienes with Aldehydes. J Am Chem Soc 2024; 146:22157-22165. [PMID: 39102638 DOI: 10.1021/jacs.4c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai-Xiang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mei-Yu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Tan Z, Yihuo A, Wu Z, Wang F, Dong S, Feng X. Concise synthesis of chiral γ-butenolides via an allylation/lactonization cascade reaction. Chem Commun (Camb) 2024; 60:7926-7929. [PMID: 38982972 DOI: 10.1039/d4cc02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A highly enantioselective allylation/lactonization cascade was developed, which provides a concise and efficient route to chiral γ-butenolides under mild conditions. Most of the reaction examples can be completed in 10 minutes with high selectivity.
Collapse
Affiliation(s)
- Zheng Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Aying Yihuo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zhao Wu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Zhu J, Rahim F, Zhou P, Zhang A, Malcolmson SJ. Copper-Catalyzed Diastereo-, Enantio-, and ( Z)-Selective Aminoallylation of Ketones through Reductive Couplings of Azatrienes for the Synthesis of Allylic 1,2-Amino Tertiary Alcohols. J Am Chem Soc 2024; 146:20270-20278. [PMID: 39011628 PMCID: PMC11325848 DOI: 10.1021/jacs.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We introduce a method for the (Z)-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating anti-amino alcohols with >98% (Z)-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the (Z)-allylic amine moiety for diastereoselective reactions of the alkene. Calculations illustrate Curtin-Hammett control in the product formation over other possible isomers and the origin of (Z)-selectivity.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Faraan Rahim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annie Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Yang X, Zhang B, Ruan J, Duanmu K, Chen W. Palladium-Catalyzed Allylation of Endocyclic 1-Azaallyl Anions. J Org Chem 2024; 89:8896-8905. [PMID: 38856706 DOI: 10.1021/acs.joc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Endocyclic 1-azaallyl anions engage allyl acetates in a palladium-catalyzed allylation followed by reduction to give unprotected 2-(hetero)aryl-3-allylpiperidines and 2-allyl-3-arylmorpholines, products not easily accessible by other means. The allyl group is then readily transformed into a variety of functional groups. Preliminary studies on the asymmetric variant of the reaction using an enantiomerically pure BI-DIME-type ligand provide the product with moderate enantioselectivity. Computational studies suggest that energy barriers of inner-sphere reductive elimination and outer-sphere nucleophilic substitution are almost the same, which makes both of them possible reaction pathways. In addition, the inner-sphere mechanism displays an enantiodiscriminating C-C bond forming step, while the outer-sphere mechanism is much less selective, which combined to give the asymmetric variant of the reaction moderate enantioselectivity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Zhang J, Huan XD, Wang X, Li GQ, Xiao WJ, Chen JR. Recent advances in C(sp 3)-N bond formation via metallaphoto-redox catalysis. Chem Commun (Camb) 2024; 60:6340-6361. [PMID: 38832416 DOI: 10.1039/d4cc01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The C(sp3)-N bond is ubiquitous in natural products, pharmaceuticals, biologically active molecules and functional materials. Consequently, the development of practical and efficient methods for C(sp3)-N bond formation has attracted more and more attention. Compared to the conventional ionic pathway-based thermal methods, photochemical processes that proceed through radical mechanisms by merging photoredox and transition-metal catalyses have emerged as powerful and alternative tools for C(sp3)-N bond formation. In this review, recent advances in the burgeoning field of C(sp3)-N bond formation via metallaphotoredox catalysis have been highlighted. The contents of this review are categorized according to the transition metals used (copper, nickel, cobalt, palladium, and iron) together with photocatalysis. Emphasis is placed on methodology achievements and mechanistic insight, aiming to inspire chemists to invent more efficient radical-involved C(sp3)-N bond-forming reactions.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiao-Die Huan
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guo-Qing Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| |
Collapse
|
9
|
Alexeev MS, Strelkova TV, Ilyin MM, Nelyubina YV, Bespalov IA, Medvedev MG, Khrustalev VN, Kuznetsov NY. Amine adducts of triallylborane as highly reactive allylborating agents for Cu(I)-catalyzed allylation of chiral sulfinylimines. Org Biomol Chem 2024; 22:4680-4696. [PMID: 38716901 DOI: 10.1039/d4ob00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.
Collapse
Affiliation(s)
- Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael M Ilyin
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Ivan A Bespalov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Victor N Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Peoples Friendship University of Russia, Miklukho-Maklay st. 6, 117198 Moscow, Russian Federation
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Ma J, Wang L, Qiao A, Li Z, Zhao F, Wu J. Synthesis of alkenylphosphine oxides via Tf 2O promoted addition-elimination of ketones and secondary phosphine oxides. Org Biomol Chem 2024; 22:3592-3596. [PMID: 38624160 DOI: 10.1039/d4ob00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, we describe an efficient method for the synthesis of alkenylphosphine oxides via a Tf2O promoted addition-elimination process. Various diarylphosphine oxides and alkylarylphosphine oxides react with ketones smoothly and produce alkenylphosphine oxides in moderate to excellent yields with abundant functional group compatibility. In addition, several transformations and applications of the product also demonstrate the potential value of the methodology.
Collapse
Affiliation(s)
- Jiangkai Ma
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Lianjie Wang
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Anjiang Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Fengqian Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
11
|
Hernández-Ibáñez S, Ortuño JF, Sirvent A, Nájera C, Sansano JM, Yus M, Foubelo F. Synthesis of Vicinal anti-Amino Alcohols from N- tert-Butanesulfinyl Aldimines and Cyclopropanols. J Org Chem 2024; 89:6193-6204. [PMID: 38613513 PMCID: PMC11077494 DOI: 10.1021/acs.joc.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The stereoselective synthesis of vicinal amino alcohols derivatives from 1-substituted cyclopropanols and chiral N-tert-butanesulfinyl imines is described. Cyclopropanols are easily prepared from carboxylic esters upon reaction with ethylmagnesium bromide in the presence of titanium tetraisopropoxide and undergo carbon-carbon bond cleavage by means of diethylzinc to produce, upon base deprotonation, enolized zinc homoenolates, which react with chiral sulfinyl imines in a highly regio- and stereoselective manner.
Collapse
Affiliation(s)
- Sandra Hernández-Ibáñez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Juan F. Ortuño
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Ana Sirvent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
12
|
Dong ZH, Li S, Long T, Zhan J, Ruan CK, Yan X, Chu WD, Yuan K, Liu QZ. Copper-Catalyzed Enantioselective 1,2-Allylation of Azadienes with Allylboronates. Org Lett 2024; 26:3235-3240. [PMID: 38557113 DOI: 10.1021/acs.orglett.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalytic asymmetric 1,2-allylation of aurone-derived azadienes is very difficult to achieve due to the driving force for aromatization and the greater steric hindrance of 1,2-addition compared with 1,4-addition. By taking advantage of the ability of nitrogen ligated metal complexes, we successfully demonstrated the first example of copper-catalyzed 1,2-allylation of azadienes with allylboronates for the highly enantioselective synthesis of homoallylic amines. Meanwhile, the enantioenriched 1,4-addition products could also be obtained through a subsequent 3,3-sigmatropic rearrangement of the 1,2-addition products. Extensive DFT calculations were carried out to elucidate the origins of high regioselectivity (1,2- vs 1,4-) and enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Cheng-Kai Ruan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Xu Yan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| |
Collapse
|
13
|
Zheng J, Hua R, Wang YE, Lin T, Ou M, Wu Y, Shi EH, He J, Xiong D, Mao J. Synthesis of Homoallylamines Enabled by Cobalt or Palladium Catalyzed Allylic Substitution of Azaarylmethylamines. Org Lett 2024; 26:2982-2986. [PMID: 38602341 DOI: 10.1021/acs.orglett.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pd(OAc)2/Nixantphos or CoI2/Nixantphos catalyzed allylic substitutions with weakly acidic C(sp)3-H bonds of azaarylmethylamines are described. This method facilitates access to various kinds of heteroaryl rings containing homoallylamines (39 examples, 30-98% yields) with excellent functional group tolerance and diastereoselectivity. Compared with the Pd/Nixantphos complex, the Co/Nixantphos catalysis could obtain the cyclic products with good to excellent diastereoselectivities. Importantly, the CoI2/(R,R)-Me-Duphos catalyzed reactions exhibit moderate enantioselectivity. Additionally, the scalability of this transformation is successfully demonstrated.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Rui Hua
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingjie Ou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - En-Hao Shi
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing He
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
14
|
Shezaf JZ, Santana CG, Ortiz E, Meyer CC, Liu P, Sakata K, Huang KW, Krische MJ. Leveraging the Stereochemical Complexity of Octahedral Diastereomeric-at-Metal Catalysts to Unlock Regio-, Diastereo-, and Enantioselectivity in Alcohol-Mediated C-C Couplings via Hydrogen Transfer. J Am Chem Soc 2024; 146:7905-7914. [PMID: 38478891 PMCID: PMC11446212 DOI: 10.1021/jacs.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Experimental and computational studies illuminating the factors that guide metal-centered stereogenicity and, therefrom, selectivity in transfer hydrogenative carbonyl additions of alcohol proelectrophiles catalyzed by chiral-at-metal-and-ligand octahedral d6 metal ions, iridium(III) and ruthenium(II), are described. To augment or invert regio-, diastereo-, and enantioselectivity, predominantly one from among as many as 15 diastereomeric-at-metal complexes is required. For iridium(III) catalysts, cyclometalation assists in defining the metal stereocenter, and for ruthenium(II) catalysts, iodide counterions play a key role. Whereas classical strategies to promote selectivity in metal catalysis aim for high-symmetry transition states, well-defined low-symmetry transition states can unlock selectivities that are otherwise difficult to achieve or inaccessible.
Collapse
Affiliation(s)
- Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Catherine G Santana
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Shimosato J, Sawamura M, Masuda Y. Photoinduced Platinum-Catalyzed Reductive Allylation of α-Diketones with Allylic Carbonates. Org Lett 2024; 26:2023-2028. [PMID: 38422050 DOI: 10.1021/acs.orglett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A unique process for the photoinduced platinum-catalyzed reductive allylation of α-diketones with allylic carbonates has been developed. This allylation reaction was found to proceed selectively at the more electron-deficient carbonyl group of the diketone to afford an α-keto homoallylic alcohol. Such products could be further derivatized by transformation of the remaining carbonyl group. A mechanistic investigation suggests that a ketyl radical generated in response to photoirradiation reacts with a (π-allyl)platinum complex to form a C-C bond.
Collapse
Affiliation(s)
- Junpei Shimosato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Masuda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
16
|
Deng YQ, Yan QQ, Zhang TT, Zhou Y, He CY, Liu QZ. Copper-Catalyzed Asymmetric Allylation of N-Aryl Aldimines. J Org Chem 2024; 89:313-320. [PMID: 38079214 DOI: 10.1021/acs.joc.3c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The copper-catalyzed enantioselective allylation reaction of N-aryl aldimines has been developed using a combination of Cu(OAc)2 and SPINOL-based phosphonamidite. This protocol significantly broadens the substrate scope, such that imines bearing various ortho-substituents on the N-aryl were converted smoothly into homoallylic amines in up to 99% yield and 98% ee. Taking advantage of the diversity of the N-aryl motif, three kinds of N-heterocyclic compounds were constructed, respectively, from the corresponding homoallylic amines in merely one step.
Collapse
Affiliation(s)
- Yu-Qin Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Ting-Ting Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Yi Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
17
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
18
|
Dong W, Zhao Z, Gu CZ, Liu JG, Yang S, Fang X. Copper-Catalyzed Umpolung Reactivity of Propargylic Carbonates in the Presence of Diboronates: One Stone Four Birds. J Am Chem Soc 2023; 145:27539-27554. [PMID: 38019885 DOI: 10.1021/jacs.3c09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Allylation and propargylation are two powerful synthetic strategies for making new substances that have been of significant importance in chemistry, medicine, and material fields. Conventional tactics employ various preformed allylation and propargylation reagents. In this study, a conceptually novel copper-catalyzed and B2pin2-mediated Umpolung reactivity of propargylic carbonates has been achieved for the first time, realizing both allylation and propargylation of aldehydes and ketones without additional reductants. Three types of allylation products and one type of propargylation product are generated efficiently, and all allylation products are formed with syn-configurations predominantly. The choice of ligands plays a vital role in modulating the Umpolung modes. The synthetic applications have been demonstrated in a myriad of further transformations including natural product synthesis, and systematic mechanistic studies have been conducted to reveal detailed insights into the Umpolung processes.
Collapse
Affiliation(s)
- Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Jing-Gong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
19
|
Zhang Z, Li J, Xi C. Nickel-Catalyzed Reductive Allylation of Aldehydes with Allylic Alcohols in the Presence of CO 2. Org Lett 2023; 25:8178-8182. [PMID: 37933552 DOI: 10.1021/acs.orglett.3c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
CO2-assisted and Ni-catalyzed direct reductive allylation of aldehydes utilizing allylic alcohols as allylic precursor has been reported. Various homoallyl alcohols could be synthesized in excellent yield with enhanced regioselectivity and stereoselectivity for alkyl- and aryl-substituted aldehydes under mild conditions. For different substrates, proper collocation of the catalytic precursor and ligand is crucial. Preliminary mechanistic studies supported the reaction pathway through a sequential allyl hydrocarbonate formation/allylnickelation/coordination insertion process by the Ni(I)/Ni(III) catalytic cycle, which has been proven by cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Zeyu Zhang
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayuan Li
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chanjuan Xi
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- State Key Laboratory of Elemento Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
20
|
Zhao H, Li X, Zhang M. Nickel-catalyzed mild synthesis of functional γ-amino butyric acid esters via direct α-C(sp 3)-H allylation of N-alkyl anilines with allyl sulfones. Org Biomol Chem 2023; 21:8883-8887. [PMID: 37902574 DOI: 10.1039/d3ob01494k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Herein, by employing a readily available Ni(OAc)2·4H2O/TBHP catalyst system, we present a new method for mild synthesis of α-methylene-γ-amino butyric acid esters via direct α-C(sp3)-H allylation of N-alkyl anilines with allyl sulfones under oxidative nickel catalysis. The synthetic protocol proceeds with good substrate and functional group compatibility, operational simplicity, the use of base metal catalysts and easily accessible feedstocks, and no need for pre-functionalization of the α-site of N-alkyl anilines. In addition, the obtained products are applicable for further elaboration of functional molecules.
Collapse
Affiliation(s)
- He Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
- Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xiu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
21
|
Yan H, Shan JR, Zhang F, Chen Y, Zhang X, Liao Q, Hao E, Shi L. Radical Crotylation of Aldehydes with 1,3-Butadiene by Photoredox Cobalt and Titanium Dual Catalysis. Org Lett 2023; 25:7694-7699. [PMID: 37842952 DOI: 10.1021/acs.orglett.3c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metal-hydride hydrogen atom transfer (MHAT) has been recognized as a powerful method for alkene functionalization; however, photochemical MAT-mediated chemoselective functionalization of dienes remains undeveloped. In this study, we report a radical strategy (1e-) through MHAT using photoredox cobalt and titanium dual catalysis for aldehyde crotylation with butadiene, achieving excellent regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Huaipu Yan
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Fengzhi Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuqing Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinyi Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qian Liao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Xu M, Lu Q, Gong B, Ti W, Lin A, Yao H, Gao S. Copper-Catalyzed Enantioselective and Regiodivergent Allylation of Ketones with Allenylsilanes. Angew Chem Int Ed Engl 2023; 62:e202311540. [PMID: 37667513 DOI: 10.1002/anie.202311540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
We report herein a regiodivergent and enantioselective allyl addition to ketones with allenylsilanes through copper catalysis. With the combination of CuOAc, a Josiphos-type bidentate phosphine ligand and PhSiH3 , allyl addition to a variety of ketones furnishes branched products in excellent enantioselectivities. The regioselectivity is completely reversed by employing the P-stereogenic ligand BenzP*, affording the linear products with excellent enantioselectivities and good Z-selectivities. The linear Z-product could be converted to E-product via a catalytic geometric isomerization of the Z-alkene group. The silyl group in the products could provide a handle for downstream elaboration.
Collapse
Affiliation(s)
- Menghua Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qingbin Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
23
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
24
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
25
|
Liu J, Chen M. Stereoselective syntheses of 2-methyl-1,3-diol acetals via Re-catalyzed [1,3]-allylic alcohol transposition. Chem Sci 2023; 14:8103-8108. [PMID: 37538826 PMCID: PMC10395275 DOI: 10.1039/d2sc07059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/01/2023] [Indexed: 08/05/2023] Open
Abstract
Rhenium-catalyzed stereoselective transposition of allylic alcohols is reported. In the presence of 1 mol% of Re2O7, (E)- or (Z)-δ-hydroxymethyl-anti-homoallylic alcohols were converted into the acetals of 2-methyl-1,3-syn-diols with excellent diastereoselectivities. 1,3-syn-Diol acetals can also be synthesized from (E)-δ-hydroxymethyl-syn-homoallylic alcohols.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| |
Collapse
|
26
|
Masuda R, Yasukawa T, Yamashita Y, Maki T, Yoshida T, Kobayashi S. Heterogeneous Single-Atom Zinc on Nitrogen-Doped Carbon Catalyzed Electrochemical Allylation of Imines. J Am Chem Soc 2023. [PMID: 37224473 DOI: 10.1021/jacs.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organometallic reagents are effective for carbon-carbon bond formation; however, consumption of stoichiometric amounts of metals is problematic. We developed electrochemical allylation reactions of imines catalyzed by nitrogen-doped carbon-supported single-atom zinc, which were fixed on a cathode to afford a range of homoallylic amines efficiently. The system could suppress generation of metallic waste, and the catalyst electrode showed advantages over bulk zinc in terms of activity and robustness. An electrochemical flow reaction was also successfully performed to produce the homoallylic amine continuously with minimum amounts of waste.
Collapse
Affiliation(s)
- Ryusuke Masuda
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tei Maki
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yoshida
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Prusty P, Jeganmohan M. Co(III)-Catalyzed three-component assembling of N-(2-pyrimidyl) indoles with dienes and formaldehyde. Chem Commun (Camb) 2023. [PMID: 37219398 DOI: 10.1039/d3cc00875d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A highly regio- and chemoselective three-component assembling of N-pyrimidyl indoles with dienes and formaldehyde in the presence of a Co(III) catalyst was demonstrated. The scope of the reaction was investigated with a variety of indole derivatives to synthesize substituted homoallylic alcohols. Both butadiene and isoprene units were compatible with the reaction. To understand the reaction mechanism, various investigations were carried out, and suggested the plausibility of a reaction mechanism involving C-H bond activation as a key step.
Collapse
Affiliation(s)
- Priyambada Prusty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
28
|
Kong L, Han X, Hu P, Wang F, Li X. Three-component regioselective carboamidation of 1,3-enynes via rhodium(III)-catalyzed C-H activation. Chem Commun (Camb) 2023; 59:6690-6693. [PMID: 37161763 DOI: 10.1039/d3cc01666h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rhodium-catalyzed regio- and stereoselective three-component carboamidation of 1,3-enynes has been realized using indoles and dioxazolones as the functionalizing reagents. A wide range of multi-substituted skipped 1,4-dienes have been constructed in good yields and excellent stereoselectivity. The stereoselectivity is under substrate control. 1,3-Enynes bearing a relatively bulky alkyne terminus reacted with Z-selectivity. In contrast, a sterically less hindered alkyne terminus tends to predominantly give the E-configured skipped diene.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, China
| | - Xi Han
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| |
Collapse
|
29
|
Lu JL, Zhang Z, Deng JT, Ma AJ, Peng JB. Molybdenum-Mediated Reductive Hydroamination of Vinylcyclopropanes with Nitroarenes: Synthesis of Homoallylamines. Org Lett 2023; 25:2991-2995. [PMID: 37126019 DOI: 10.1021/acs.orglett.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A molybdenum-mediated reductive hydroamination of vinylcyclopropanes with nitroarenes has been developed. A broad range of substituted homoallylamines were prepared in good to excellent yields from readily available starting materials. No noble metal catalysts were used in this reaction, and Mo(CO)6 acted as both catalyst and reductant. This protocol provides an effective method for the selective synthesis of substituted homoallylamines from easily available nitroarenes.
Collapse
Affiliation(s)
- Jin-Liang Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
30
|
Abonia R, Insuasty D, Laali KK. Recent Advances in the Synthesis of Propargyl Derivatives, and Their Application as Synthetic Intermediates and Building Blocks. Molecules 2023; 28:molecules28083379. [PMID: 37110613 PMCID: PMC10146578 DOI: 10.3390/molecules28083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A.A. 25360, Colombia
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Barranquilla 081007, Atlántico, Colombia
| | - Kenneth K Laali
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
31
|
Lin P, Joshi C, McGinnis TM, Mallojjala SC, Sanford AB, Hirschi JS, Jarvo ER. Stereospecific Nickel-Catalyzed Cross-Electrophile Coupling Reaction of Alkyl Mesylates and Allylic Difluorides to Access Enantioenriched Vinyl Fluoride-Substituted Cyclopropanes. ACS Catal 2023; 13:4488-4499. [PMID: 37066042 PMCID: PMC10088041 DOI: 10.1021/acscatal.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Cross-electrophile coupling reactions involving direct C-O bond activation of unactivated alkyl sulfonates or C-F bond activation of allylic gem-difluorides remain challenging. Herein, we report a nickel-catalyzed cross-electrophile coupling reaction between alkyl mesylates and allylic gem-difluorides to synthesize enantioenriched vinyl fluoride-substituted cyclopropane products. These complex products are interesting building blocks with applications in medicinal chemistry. Density functional theory (DFT) calculations demonstrate that there are two competing pathways for this reaction, both of which initiate by coordination of the electron-deficient olefin to the low-valent nickel catalyst. Subsequently, the reaction can proceed by oxidative addition of the C-F bond of the allylic gem-difluoride moiety or by directed polar oxidative addition of the alkyl mesylate C-O bond.
Collapse
Affiliation(s)
- Patricia
C. Lin
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Chetan Joshi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Tristan M. McGinnis
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Amberly B. Sanford
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S. Hirschi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Elizabeth R. Jarvo
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
32
|
Jung Y, Yoo SY, Jin Y, You J, Han S, Yu J, Park Y, Cho SH. Iridium-Catalyzed Chemo-, Diastereo-, and Enantioselective Allyl-Allyl Coupling: Accessing All Four Stereoisomers of (E)-1-Boryl-Substituted 1,5-Dienes by Chirality Pairing. Angew Chem Int Ed Engl 2023; 62:e202218794. [PMID: 36718077 DOI: 10.1002/anie.202218794] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.
Collapse
Affiliation(s)
- Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| |
Collapse
|
33
|
Li Y, Zhang W, Yang S, Wang X, Liu Y, Ji D, Chen Q. Nickel‐Catalyzed Unsymmetrical Bis‐Allylation of Alkynes. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Sa‐Na Yang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
34
|
Xu Y, Wang J, Deng GJ, Shao W. Recent advances in the synthesis of chiral α-tertiary amines via transition-metal catalysis. Chem Commun (Camb) 2023; 59:4099-4114. [PMID: 36919669 DOI: 10.1039/d3cc00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The significance of chiral α-tertiary amines in medicinal chemistry and drug development has been unquestionably established in the last few decades. α-Tertiary amines are attractive structural motifs for natural products, bioactive molecules and pharmaceuticals and are preclinical candidates. Their syntheses have been the focus of intensive research, and the development of new methods has continued to attract more and more attention. In this review, we present the progress in the last decade in the development of synthetic methods for the assembly of chiral ATAs via transition-metal catalysis. To date, the effective approaches in this area could be categorized into three strategies: enantioselective direct and indirect Mannich addition to ketimines; umpolung asymmetric alkylation of imine derivatives; and asymmetric C-N cross-coupling of tertiary alkyl electrophiles. Several related developing strategies for the synthesis of ATAs, such as hydroamination of alkenes, HAT amination approaches and the C-C coupling of α-aminoalkyl fragments, are also described in this article. These strategies have emerged as attractive C-C and C-N bond-forming protocols for enantioselective construction of chiral α-tertiary amines, and to some extent are complementary to each other, showing the prospect of application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jiajia Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
35
|
Zhang Z, Liu J, Gao S, Su B, Chen M. Highly Stereoselective Syntheses of α,α-Disubstituted ( E)- and ( Z)-Crotylboronates. J Org Chem 2023. [PMID: 36791418 DOI: 10.1021/acs.joc.2c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report herein stereoselective syntheses of α,α-disubstituted (E)- and (Z)-crotylboronates. Starting from α-boryl (E)- or (Z)-crotylboronate, base-mediated alkylation occurred exclusively at the position α to the boryl groups to give targeted boronates while retaining the geometries of the alkenes in the starting crotylboronates. Under proper conditions, the resulting α,α-disubstituted crotylboronates underwent aldehyde addition to give allylated products with high stereoselectivities.
Collapse
Affiliation(s)
- Zheye Zhang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bo Su
- College of Pharmacy, State Key Laboratory of Medical Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
36
|
Li Y, Zhang WS, Yang SN, Wang XY, Liu Y, Ji DW, Chen QA. Nickel-Catalyzed Unsymmetrical Bis-Allylation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300036. [PMID: 36826223 DOI: 10.1002/anie.202300036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a β-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.
Collapse
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sa-Na Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
37
|
Sangster JJ, Ruscoe RE, Cosgrove SC, Mangas-Sánchez J, Turner NJ. One-Pot Chemoenzymatic Cascade for the Enantioselective C(1)-Allylation of Tetrahydroisoquinolines. J Am Chem Soc 2023; 145:4431-4437. [PMID: 36790859 PMCID: PMC9983016 DOI: 10.1021/jacs.2c09176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, we report a one-pot, chemoenzymatic process for the synthesis of enantioenriched C(1)-allylated tetrahydroisoquinolines. This transformation couples a monoamine oxidase (MAO-N)-catalyzed oxidation with a metal catalyzed allylboration, followed by a biocatalytic deracemization to afford allylic amine derivatives in both high yields and good to high enantiomeric excess. The cascade is operationally simple, with all components added at the start of the reaction and can be used to generate key building blocks for further elaboration.
Collapse
|
38
|
Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. Asymmetric Ruthenium-Catalyzed Carbonyl Allylations by Gaseous Allene via Hydrogen Auto-Transfer: 1° vs 2° Alcohol Dehydrogenation for Streamlined Polyketide Construction. ACS Catal 2023; 13:1662-1668. [PMID: 37869365 PMCID: PMC10586519 DOI: 10.1021/acscatal.2c05425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols 2a-2r with the gaseous allene (propadiene) 1a to form enantiomerically enriched homoallylic alcohols 3a-3r with complete atom-efficiency. Using formic acid as reductant, aldehydes dehydro-2a and dehydro-2c participate in reductive C-C coupling with allene to deliver adducts 3a and 3c with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition. Notably, due to a kinetic preference for primary alcohol dehydrogenation, chemoselective C-C coupling of 1°,2°-1,3-diols occurs in the absence of protecting groups. As illustrated by the synthesis of C7-C15 of spirastrellolide B and F (7 vs 17 steps), C3-C10 of cryptocarya diacetate (3 vs 7 or 9 steps), and a fragment common to C8'-C14' of mycolactone F (1 vs 4 steps) and C22-C28 marinomycin A (1 vs 9 steps), this capability streamlines type I polyketide construction.
Collapse
Affiliation(s)
- Connor Saludares
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Cate G Santana
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Brian J Spinello
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
39
|
Braire J, Macé A, Zaier R, Cordier M, Vidal J, Lalli C, Martel A, Carreaux F. Catalytic Enantioselective Allylboration and Related Reactions of Isatins Promoted by Chiral BINOLs: Scope and Mechanistic Studies. J Org Chem 2023; 88:1469-1492. [PMID: 36690446 DOI: 10.1021/acs.joc.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An improvement in the catalytic enantioselective allylboration of isatins with 2-allyl-1,3,2-dioxaborolane in the presence of chiral BINOL derivatives is reported, offering an efficient one-step access to enantioenriched N-unprotected 3-allyl-3-hydroxy-2-oxindoles. This catalytic process is also effective for the crotylboration reaction with enantiomeric ratios (er) up to 97:3, as well as for the asymmetric synthesis of homopropargylic alcohols via an allenyl addition to indoline-2,3-diones. Origins of the high enantioselectivity in chiral BINOL-catalyzed allylboration of isatins were examined by DFT calculations. A hypothetical scenario suggested a crucial internal hydrogen bonding between the amide group (C═O···H-O) and the ethylene hydroxyl of the transient chiral mixed boronate ester, generating a rigid and stabilized system that favors the addition of the allylboron species to the Re face of the ketone function. The key role of the alcohol additive (t-BuOH or t-AmOH) in the enantioselective allylboration reaction of isatins has also been shown on the basis of a kinetics study and computational calculations by favoring the transesterification of the 2-allyl-1,3,2-dioxaborolane with BINOL via proton transfer processes.
Collapse
Affiliation(s)
- Julien Braire
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Aurélie Macé
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Rania Zaier
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Joëlle Vidal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Claudia Lalli
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Arnaud Martel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - François Carreaux
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
40
|
Lee Y, Lee H, Lee Y, Cho S, Lee J, Kang J, Jung B, Lee Y. Synthesis of α-Borylmethyl-( E)-allylborons via Cu-Catalyzed Diboration of 1-Substituted Allenols and Their Application in Stereoselective Aldehyde Allylation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yeonjoo Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Hwiwoong Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yurim Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Juhyung Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Joongoo Kang
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
41
|
Fu H, Qiao T, Carceller JM, MacMillan SN, Hyster TK. Asymmetric C-Alkylation of Nitroalkanes via Enzymatic Photoredox Catalysis. J Am Chem Soc 2023; 145:787-793. [PMID: 36608280 DOI: 10.1021/jacs.2c12197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tertiary nitroalkanes and the corresponding α-tertiary amines represent important motifs in bioactive molecules and natural products. The C-alkylation of secondary nitroalkanes with electrophiles is a straightforward strategy for constructing tertiary nitroalkanes; however, controlling the stereoselectivity of this type of reaction remains challenging. Here, we report a highly chemo- and stereoselective C-alkylation of nitroalkanes with alkyl halides catalyzed by an engineered flavin-dependent "ene"-reductase (ERED). Directed evolution of the old yellow enzyme from Geobacillus kaustophilus provided a triple mutant, GkOYE-G7, capable of synthesizing tertiary nitroalkanes in high yield and enantioselectivity. Mechanistic studies indicate that the excitation of an enzyme-templated charge-transfer complex formed between the substrates and cofactor is responsible for radical initiation. Moreover, a single-enzyme two-mechanism cascade reaction was developed to prepare tertiary nitroalkanes from simple nitroalkenes, highlighting the potential to use one enzyme for two mechanistically distinct reactions.
Collapse
Affiliation(s)
- Haigen Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.,Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022, Spain
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
42
|
Chen X, Patel K, Marek I. Stereoselective Construction of Tertiary Homoallyl Alcohols and Ethers by Nucleophilic Substitution at Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202212425. [PMID: 36413111 PMCID: PMC10107121 DOI: 10.1002/anie.202212425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
An efficient method for the stereoselective construction of tertiary C-O bonds via a stereoinvertive nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl carbinol derivatives using water, alcohols and phenols as nucleophiles has been developed. This substitution reaction proceeds under mild conditions and tolerates several functional groups, providing a new access to the stereoselective formation of highly congested tertiary homoallyl alcohols and ethers.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Kaushalendra Patel
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| |
Collapse
|
43
|
Boni YT, Vaitla J, Davies HML. Catalyst Controlled Site- and Stereoselective Rhodium(II) Carbene C(sp 3)-H Functionalization of Allyl Boronates. Org Lett 2023; 25:5-10. [PMID: 36563330 DOI: 10.1021/acs.orglett.2c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhodium(II) catalyst-controlled site- and stereoselective carbene insertion into the distal allylic C(sp3)-H bond of allyl boronates is reported. The optimum chiral catalyst for this reaction is Rh2(S-TPPTTL)4. The fidelity and asymmetric induction of this catalytic transformation allows for a highly diastereoselective and enantioselective C-C bond formation without interference from the allyl boronate functionality. The resulting functionalized allyl boronates are susceptible to stereoselective allylations, generating products with control of stereochemistry at four contiguous stereogenic centers.
Collapse
Affiliation(s)
- Yannick T Boni
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Janakiram Vaitla
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M L Davies
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
44
|
Luo J, Deng Y, Deng T, Deng L. Catalytic Enantioconvergent Conjugate Addition of Organosilanes via a Strategy of Fluorodesilylation. J Am Chem Soc 2022; 144:23264-23270. [PMID: 36512757 DOI: 10.1021/jacs.2c10777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorodesilylation is a widely used strategy to activate organosilanes as nucleophiles for the development of organic transformations. To date, highly enantioselective catalytic fluorodesilylations have been limited to the activation of silyl ethers, organosilanes bearing specific substituents such as trifluoromethyl and cyanide, allylsilanes, and acylsilanes. However, the catalytic enantioconvergent reaction of racemic organosilanes bearing variable substituents via fluorodesilylation has been rarely reported. We report an unprecedented enantioconvergent fluorodesilylation of racemic organosilanes bearing various substituents with a chiral ammonium fluoride. Notably, these results demonstrated that the fluorodesilylation could potentially be a general strategy for the development of catalytic asymmetric reactions of racemic organosilanes.
Collapse
Affiliation(s)
- Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Yu Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Tianran Deng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| |
Collapse
|
45
|
Ji H, Lin D, Tai L, Li X, Shi Y, Han Q, Chen LA. Nickel-Catalyzed Enantioselective Coupling of Acid Chlorides with α-Bromobenzoates: An Asymmetric Acyloin Synthesis. J Am Chem Soc 2022; 144:23019-23029. [DOI: 10.1021/jacs.2c10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dengkai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lanzhu Tai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyu Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiaorong Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
46
|
Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Stereo- and Site-Selective Crotylation of Alcohol Proelectrophiles via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by Methylallene and Butadiene. Angew Chem Int Ed Engl 2022; 61:e202212814. [PMID: 36201364 PMCID: PMC9712268 DOI: 10.1002/anie.202212814] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols with methylallene (1,2-butadiene) or 1,3-butadiene to form products of anti-crotylation with good to excellent levels of diastereo- and enantioselectivity. Distinct from other methods, direct crotylation of primary alcohols in the presence of unprotected secondary alcohols is possible, enabling generation of spirastrellolide B (C9-C15) and leucascandrolide A (C9-C15) substructures in significantly fewer steps than previously possible.
Collapse
Affiliation(s)
| | | | - Yoon Cho
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Jessica Wu
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| |
Collapse
|
47
|
Mayer RJ, Hampel N, Ofial AR, Mayr H. Resolving the Mechanistic Complexity in Triarylborane-Induced Conjugate Additions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Robert J. Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Nathalie Hampel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| |
Collapse
|
48
|
Aelterman M, Biremond T, Jubault P, Poisson T. Electrochemical Synthesis of gem-Difluoro- and γ-Fluoro-Allyl Boronates and Silanes. Chemistry 2022; 28:e202202194. [PMID: 36067044 PMCID: PMC9828158 DOI: 10.1002/chem.202202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/12/2023]
Abstract
The electrochemical synthesis of fluorinated allyl silanes and boronates was disclosed. The addition of electrogenerated boryl or silyl radicals onto many α-trifluoromethyl or α-difluoromethylstyrenes in an undivided cell allowed the formation of a large panel of synthetically useful gem-difluoro and γ-fluoroallyl boronates and silanes (64 examples, from 31 % to 95 % yield). In addition, a scale up of the reactions under continuous flow was showcased using an electrochemical reactor with promising volumetric productivity (688 g.L-1 .h-1 and 496 g.L-1 .h-1 ). Moreover, the synthetic utility of these building blocks was highlighted through versatile transformations. Finally, plausible reaction mechanisms were suggested to explain the formation of the products.
Collapse
Affiliation(s)
- Maude Aelterman
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tony Biremond
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Thomas Poisson
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
- Institut Universitaire de France1 rue Descartes75231ParisFrance
| |
Collapse
|
49
|
Ortiz E, Shezaf JZ, Shen W, Krische MJ. Historical perspective on ruthenium-catalyzed hydrogen transfer and survey of enantioselective hydrogen auto-transfer processes for the conversion of lower alcohols to higher alcohols. Chem Sci 2022; 13:12625-12633. [PMID: 36516346 PMCID: PMC9645367 DOI: 10.1039/d2sc05621f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023] Open
Abstract
Ruthenium-catalyzed hydrogen auto-transfer reactions for the direct enantioselective conversion of lower alcohols to higher alcohols are surveyed. These processes enable completely atom-efficient carbonyl addition from alcohol proelectrophiles in the absence of premetalated reagents or metallic reductants. Applications in target-oriented synthesis are highlighted, and a brief historical perspective on ruthenium-catalyzed hydrogen transfer processes is given.
Collapse
Affiliation(s)
- Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Weijia Shen
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| |
Collapse
|
50
|
Oswal P, Arora A, Bahuguna A, Purohit S, Joshi K, Sharma P, Kumar A. Palladacycle versus coordination complex of palladium(II) with a bulky organophosphorus (P,N) ligand: application in catalysis of allylation of aldehydes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|