1
|
Liu CM, Hao X, Hu ZB, Wen HR. Solvent-dependent Ln(III) clusters assembled by immobilization of CO 2 in air: zero-field single-molecule magnets and magnetic refrigerant materials. Dalton Trans 2024. [PMID: 39535205 DOI: 10.1039/d4dt02310b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The automatic fixation of CO2 in air played a key role in the construction of Dy(III) single-molecule magnets (SMMs) and Gd(III) magnetic refrigeration molecular materials when Ln(III)Cl3 (Ln = Dy and Gd) was reacted with a new hydrazone Schiff base ligand {H2L = (E)-N'-(4-fluoro-2-hydroxybenzylidene)pyrimidine-4-carbohydrazide}, which is condensed from pyrimidine-4-carbohydrazide and 4-fluorosalicylaldehyde. Surprisingly, the small difference in methanol and ethanol solvents leads to dramatic changes in the structures of these Ln(III) cluster complexes. When methanol and ethanol participated in the reaction, a trapezoidal pyramid Dy(III) pentanuclear cluster [Dy5L5(OH)2(CO3)(O2COMe)(MeOH)3(H2O)]·3MeOH·3.5H2O (1) and a triangular prism Dy(III) hexanuclear cluster [Dy6L6(CO3)2(EtOH)2(H2O)2Cl2]·6EtOH (2) were obtained, respectively, and a tub-like Gd(III) octanuclear cluster [Gd8L8(CO3)4(MeOH)3(H2O)5]·12MeOH·3CH2Cl2·3.25H2O (3) and a trapezoidal pyramid Gd(III) pentanuclear cluster [Gd5L4(HL)(CO3)O(OH)(EtOH)5(H2O)2Cl]·EtOH·3H2O (4) were yielded, respectively. Notably, 1 contains not only the carbonate anion, but also the monomethyl carbonate anion as the bridging ligand, which are formed by immobilizing CO2 in air, while 2, 3 and 4 contain the carbonate bridging ligand only. Magnetic properties' investigations revealed that both 1 and 2 are zero-field SMMs, with Ueff/k values of 93.2 K and 133.5 K, respectively, while 3 and 4 show large magnetocaloric effects, with the largest -ΔSm values of 27.49 J kg-1 K-1 at 2.0 K for ΔH = 7 T for 3 and 27.58 J kg-1 K-1 at 2.5 K for ΔH = 7 T for 4.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhao-Bo Hu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - He-Rui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
2
|
Bombaci M, Lo Presti F, Pellegrino AL, Lippi M, Rossi P, Tacconi L, Sorace L, Malandrino G. Bifunctional heterobimetallic 3d-4f [Co(II)-RE, RE = Dy, Eu, and Y] ionic complexes: modulation of the magnetic-luminescence behaviour. Dalton Trans 2024. [PMID: 39535900 DOI: 10.1039/d4dt01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)3]-[RE(hfa)2tetraglyme]+ (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions. Electron paramagnetic resonance (EPR) spectroscopy confirms the constancy of the electronic structure of the cobalt(II) moiety and the significant contribution of the lanthanide ions to the magnetic properties of the compounds. The non-trivial single-ion magnetic properties of cobalt(II), dysprosium(III), and europium(III) centres, and the effect of their interactions are investigated by a detailed static and dynamic magnetic susceptibility study. Moreover, optical analyses have been carried out showing the π-π* intraligand (IL) transition of the β-diketonate ligand and the d-d cobalt(II) transitions. Luminescence characterization of dysprosium(III) and europium(III) derivatives exhibits their characteristic emission bands, indicative of the unique photophysical properties conferred by the lanthanide ions. Thermal studies using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal good thermal stability and volatility properties, underscoring the interesting nature of these ionic complexes for potential deposition on suitable substrates. In summary, these heterobimetallic complexes show intriguing optical and magnetic properties with potential implications across diverse scientific disciplines, including molecular magnetism, optoelectronics, and materials science.
Collapse
Affiliation(s)
- Matteo Bombaci
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Francesca Lo Presti
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna L Pellegrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Martina Lippi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Leonardo Tacconi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Sorace
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Graziella Malandrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
3
|
Leiszner SS, Perfetti M, Damgaard-Møller E, Chen YS, Iversen BB. The effect of second coordination sphere interactions on the magnetic anisotropy of transition metals. Dalton Trans 2024. [PMID: 39530683 DOI: 10.1039/d4dt02873b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the study of mononuclear transition metal single molecule magnets (SMMs), extensive research has concentrated on identifying optimal coordination geometries around the central metal ion to enhance SMM properties. However, the role of non-covalent interactions in the second coordination sphere has been relatively underexplored. Here, we study the impact of non-covalent Cl⋯H interactions on the magnetic anisotropy of the central Co(II) ion in the distorted axially compressed octahedral complex CoCl2(tu)4 (1) (tu = SC(NH2)2). By performing cantilever torque magnetometry on 1, the orientation of the magnetic easy axis is found to deviate by almost 40° from the axial Co-Cl bond. Theoretical modelling on structural modifications of the structure of 1, quantifies how the distance between the Cl ligand and the nearest H-atom significantly influences the orientation of the magnetic easy axis and the D-value. Experimental chemical bonding analysis based on multipole modelling of synchrotron X-ray diffraction data on 1 reveal that the nearby H-atoms polarize the electron density of the Cl-ligands. This polarization results in reduced electron density at the axial positions on the Co octahedra, explaining the calculated increase in the magnitude of the D-value, when the H-atoms are moved away from Cl in silico. Topological analysis of theoretical electron densities on modified structures of 1 corroborates an increase in the electron density at the Co-Cl bond critical point, as the nearby H-atoms are moved further from Cl. These findings demonstrate the significant influence that non-covalent interactions have on the magnetic anisotropy of mononuclear transition metals and opens the possibility of utilizing these interactions in the design of transition metal based SMMs.
Collapse
Affiliation(s)
- Sofie S Leiszner
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Emil Damgaard-Møller
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - Bo B Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Rama-Martínez G, Osorio-Celis M, Sabater-Algarra Y, Sánchez-Brunete D, Llamas-Saiz AL, Quirós-Díez EP, Vázquez ME, Vázquez López M, Giménez López MDC. Single-ion magnetism in novel Btp-based cobalt complexes of different charge. Dalton Trans 2024. [PMID: 39531014 DOI: 10.1039/d4dt02338b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The magnetic behavior of single-ion metal complexes may be influenced by the nature and composition of the secondary coordination sphere that can be composed of solvent molecules and counterions bound through non-covalent interactions. However, achieving precise control over the outer-coordination sphere of these magnetic complexes to demonstrate its influence on their magnetic properties presents a challenge. A strategy for varying the number of counterions, while simultaneously preserving the arrangement of the ligand atoms around the metal center without altering its oxidation state, is to adjust the overall formal charge of the complex. This adjustment could lead to changes in the magnetic properties of single-ion metal complexes. In this study, we present two novel ligands featuring the coordinating unit Btp (2,6-bis(1,2,3-triazol-4-yl)pyridine). These ligands are equipped with functional groups that can potentially undergo deprotonation. By carefully selecting the solvents used during the crystallization process of the complexes, we can tune at will the charge of the complexes, thus modifying the composition of the CoII complexes' outer-coordination sphere. We show that, by modifying these conditions, we can tailor the secondary coordination sphere of both charged (mono- and dicationic) and neutral anisotropic CoII metal complexes to show field-induced single-ion magnetism, influencing in turn the size of the barrier to reversal of the magnetization and their slow relaxation process.
Collapse
Affiliation(s)
- Gustavo Rama-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marcelo Osorio-Celis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Yolanda Sabater-Algarra
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Diego Sánchez-Brunete
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Antonio L Llamas-Saiz
- Unidade de Raios X. Área de Infraestruturas de Investigación, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenia P Quirós-Díez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - María Del Carmen Giménez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Li L, Ding YS, Zheng Z. Lanthanide-Based Molecular Magnetic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202410019. [PMID: 39058519 DOI: 10.1002/anie.202410019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Magnetic semiconductors, with integrated properties of ferromagnets and semiconductors, are significant for developing next-generation spintronic devices. Herein two atomically precise clusters of dysprosium(III) tellurides, formulated respectively as [Na2(15-crown-5)3(py)2][(η5-Cp*Dy)5(Te)6](py)4 (Dy5Te6, Cp*=pentamethylcyclopentadienyl; py=pyridine) and [K(2,2,2-cryptand)]2[(η5-Cp*Dy)6(Te3)(Te2)2(Te)3] (Dy6Te10), are reported. Crystallographic studies revealed the presence of multifarious tellurido ligands within the polyhedral cluster cores. Spectroscopic and magnetic studies showed that both clusters are single-molecule magnets exhibiting slow magnetic relaxation behaviors at low temperatures and semiconductors with low optical band gaps comparable to benchmark semiconductors. These clusters represent probably the first lanthanide-based molecular magnetic semiconductors.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
6
|
Lu GL, Chiu ST, Lin PH, Long J. Modulating magnetic anisotropy in linear tetranuclear dysprosium(III) complexes via coordinated anions. Dalton Trans 2024. [PMID: 39470254 DOI: 10.1039/d4dt01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the synthesis, structures, and magnetic properties of two novel linear tetranuclear complexes with the general formula [Dy4(Hheb)2(heb)4X2(MeOH)4] (X- = NO3-, OAc-; H2heb = (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazide, OAc- = acetate). The rigid ligands (Hheb-/heb2-) incorporate phenoxide groups and bridge the Dy3+ ions in an unusual tetranuclear linear assembly. Notably, we demonstrate through magnetic measurements and theoretical calculations how the anion (X) coordinated at the peripheral Dy3+ centers acts as a switch, significantly changing the magnetic anisotropy of the entire complex. This control over magnetic anisotropy through the selection of the coordinated anion offers a promising avenue for tailoring the functionality of single-molecule magnets.
Collapse
Affiliation(s)
- Guan-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shih-Ting Chiu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
7
|
Armenis AS, Mondal A, Giblin SR, Raptopoulou CP, Psycharis V, Alexandropoulos DI, Tang J, Layfield RA, Stamatatos TC. Unveiling new [1+1] Schiff-base macrocycles towards high energy-barrier hexagonal bipyramidal Dy(III) single-molecule magnets. Chem Commun (Camb) 2024; 60:12730-12733. [PMID: 39397697 DOI: 10.1039/d4cc04551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The employment of the [1+1] condensation approach for the preparation of new macrocyclic scaffolds (LN6 and LN3O3) towards high-performance Dy(III) single-molecule magnets (SMMs) with pseudo-D6h symmetry is described. Engineering of the macrocycles denticity from LN6 to LN3O3 leads to a mononuclear SMM with a large Ueff value of 1300 K. The experimental results are supported by ab initio calculations, which indicate relaxation of the magnetization via the second-excited state.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | | | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | | |
Collapse
|
8
|
Huang KY, Cardenas L, Ellington AD, Walker DJF. Supercharged fluorescent proteins detect lanthanides via direct antennae signaling. Nat Commun 2024; 15:9200. [PMID: 39448572 PMCID: PMC11502933 DOI: 10.1038/s41467-024-53106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations. Here, we demonstrate that negatively supercharged proteins can bind and quantitatively report concentrations of lanthanides via an underutilized lanthanide-to-chromophore pathway of energy transfer. The top-performing sensors detect lanthanides in the micromolar to millimolar range and remain unperturbed by environmentally significant concentrations of competing metals. As a demonstration of the versatility and adaptability of this energy transfer method, we show proximity and signal transmission between the lanthanides and a supramolecular assembly of supercharged proteins, paving the way for the detection of lanthanides via programmable protein oligomers and materials.
Collapse
Affiliation(s)
- Kevin Y Huang
- Army Research Laboratory-South, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Lizette Cardenas
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA
- Bennett Aerospace, Raleigh, NC, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - David J F Walker
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA.
- Bioconscientia, LLC, Austin, TX, USA.
| |
Collapse
|
9
|
Vipanchi, Vignesh KR, Armenis AS, Alexandropoulos DI, Stamatatos TC. Elevating the Performance of Heterometallic 3d/4f SMMs: The Role of Diamagnetic Co III and Zn II Ions in Magnetization Dynamics. Chemphyschem 2024; 25:e202400385. [PMID: 38890803 DOI: 10.1002/cphc.202400385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Recent advances in the synthesis of 3d/4f Single-Molecule Magnets (SMMs) have revealed the effective role of incorporating diamagnetic CoIII or ZnII ions to enhance the magnetic properties of LnIII ions. This concept highlights notable examples of CoIII/LnIII and ZnII/LnIII SMMs documented in the recent literature, illustrating how the selection of various peripheral and/or bridging ligands can modulate the magnetic anisotropy of 4f metal ions, thereby increasing their energy barriers.
Collapse
Affiliation(s)
- Vipanchi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Kuduva R Vignesh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | | | | |
Collapse
|
10
|
Kumari K, Singh SK. Substituted fullerenes as a promising capping ligand towards stabilization of exohedral Dy(III) based single-ion magnets: a theoretical study. Dalton Trans 2024; 53:16495-16511. [PMID: 39228355 DOI: 10.1039/d4dt02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Organometallic dysprosocenium-based molecular magnets are the forefront runners in offering giant magnetic anisotropy and blocking temperatures close to the boiling point of liquid nitrogen. Attaining linearity in the organometallic dysprosocenium complexes is the key to generating giant magnetic anisotropy and blocking barriers. In the present study, we have unravelled the coordination ability of the substituted fullerene (C55X5)- (where X = CCH3, B, and N) generated by fencing around the five-membered ring of fullerene towards stabilizing a new family of exohedral dysprosium organometallic complexes showcasing giant magnetic anisotropy and blockade barriers. Eight exohedral mononuclear dysprosium organometallic complexes, namely [Dy(η5-C55X5)(η4-C4H4)] (1), [Dy(η5-C55X5)(η5-Cp)]+ (2), [Dy(η5-C55X5)(η5-Cp*)]+ (3), [Dy(η5-C55X5)(η6-C6H6)]2+ (4), [Dy(η5-C55X5)(η8-C8H8)] (5), [Dy(η5-C55X5)2]+ (6) (where X = CCH3), [Dy(η5-C55B5)2]+ (7) and [Dy(η5-C55N5)2]+ (8), were studied using scalar relativistic density functional theory (SR-DFT) and the complete active space self-consistent field (CASSCF) methodology to shed light on the structure, stability, bonding and single-ion magnetic properties. SR-DFT calculations predict complexes 1-8 to be highly stable, with a strictly linear geometry around the Dy(III) ion in complexes 6-8. Energy Decomposition Analysis (EDA) predicts the following order for interaction energy (ΔEint value): 5 > 1 > 2 ≈ 3 > 6 > 7 > 8 > 4, with sizable 4f-ligand covalency in all the complexes. CASSCF calculations on complexes 1-8 predict stabilization of mJ |±15/2〉 as the ground state for all the complexes except for 5, with the following trend in the Ucal values: 6 (1573 cm-1) ≈ 3 (1569 cm-1) > 1 (1538 cm-1) > 8 (1347 cm-1) > 2 (1305 cm-1) > 7 (1284 cm-1) > 4 (1125 cm-1) > 5 (108 cm-1). Ab initio ligand field theory (AILFT) analysis provides a rationale for Ucal ordering, where π-type 4f-ligand interactions in complexes 1-4 and 6-8 offer giant barrier height while the large (C8H8)2- rings generate δ-type interaction in 5, which diminishes the axiality in the ligand field. Our detailed finding suggests that the exohedral organometallic dysprosocenium complexes are more linear compared to bent [DyCp*2]+ cations and display a giant barrier height exceeding 1500 cm-1 with negligible quantum tunnelling of magnetization (QTM) - a new approach to design highly anisotropic dysprosium organometallic complexes.
Collapse
Affiliation(s)
- Kusum Kumari
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502284, India.
| | - Saurabh Kumar Singh
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502284, India.
| |
Collapse
|
11
|
Zychowicz M, Dzielak H, Rzepiela J, Chorazy S. Synergy of Experiment and Broadened Exploration of Ab Initio Calculations for Understanding of Lanthanide-Pentacyanidocobaltate Molecular Nanomagnets and Their Optical Properties. Inorg Chem 2024; 63:19213-19226. [PMID: 39219448 PMCID: PMC11483780 DOI: 10.1021/acs.inorgchem.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
We present a synergistic experimental-theoretical methodology for the investigation of lanthanide-based single-molecule magnets (SMMs), demonstrated using the example of novel heterometallic molecules incorporating Nd3+/Ce3+ ions combined with three different, rarely explored, pentacyanidocobaltate(III) metalloligands, [CoIII(CN)5(azido/nitrito-N/iodido)]3-. The theoretical part of our approach broadens the exploration of ab initio calculations for lanthanide(III) complexes toward the convenient simulations of such physical characteristics as directional dependences of Helmholtz energy, magnetization, susceptibility, and their thermal and field evolution, as well as light absorption and emission bands. This work was conducted using newly designed SlothPy software (https://slothpy.org). It is introduced as an open-source Python library for simulating various physical properties from first-principles based on results of electronic structure calculations obtained within popular quantum chemistry packages. The computational results were confronted with spectroscopic and ac/dc-magnetic data, the latter analyzed using previously designed relACs software. The combination of experimental and computational methods gave insight into phonon-assisted magnetic relaxation mechanisms, disentangling them from the temperature-independent quantum tunneling of magnetization and emphasizing the role of local-mode processes. This study provides an understanding of the changes in lanthanide(III) magnetic anisotropy introduced with pentacyanidocobaltates(III) modifications, theoretically exploring also potential applications of reported compounds as anisotropy switches or optical thermometers.
Collapse
Affiliation(s)
- Mikolaj Zychowicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Hubert Dzielak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jan Rzepiela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
12
|
Tarannum I, Singh SK. Unravelling the electronic structure, bonding, and magnetic properties of inorganic dysprosocene analogues [Dy(E 4) 2] - (E = N, P, As, CH). Phys Chem Chem Phys 2024. [PMID: 39373561 DOI: 10.1039/d4cp03016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organometallic sandwich complexes of Dy(III) ion are ubiquitous for designing high-temperature single-ion magnets with blocking temperatures close to the liquid nitrogen boiling point. Magnetic bistability at the molecular level makes them potential candidates for nano-scale information storage materials. In the present contribution, we have thoroughly investigated the electronic structure, bonding, covalency, and magnetic anisotropy of inorganic dysprosocene complexes with a general formula of [Dy(E4)2]- (where E = N, P, As, CH) using state-of-the-art scalar relativistic density functional theory (SR-DFT), and a multiconfigurational complete active space self-consistent field (CASSCF) method with the N-electron valence perturbation theory (NEVPT2). Geometry optimization calculations predict stabilization of the [Dy(E4)2]- complexes with a linear geometry and D4h local symmetry Dy(III) ion in [Dy(N4)2]- (1) and [Dy(P4)2]- (2) complexes, while a bent geometry has been observed for the [Dy(As4)2]- (3), [Dy(P2(CH)2)2]- (4), and [Dy(As2(CH)2)2]- (5) complexes. Energy decomposition analysis (EDA) and natural bonding orbital (NBO) calculations reveal sizable 5d-ligand covalency followed by 6s/6p and weak 4f-ligand covalency in complexes 1-5. Both the natural localized molecular orbitals (NLMOs) at the DFT level and ab initio-based ligand field theory (AILFT) at the NEVPT2 level of theory predict an increase in the Dy-ligand covalency as we move from N to As. Spin-Hamiltonian parameter analysis of complexes 1-5 reveals stabilization of the mJ |±15/2〉 as the ground state with highly axial g values (gxx ∼ gyy ∼ 0 and gzz ∼ 20) and the barrier height of 2902, 1214, 1104, 1845, and 1509 K for 1-5, respectively. The Orbach effective demagnetization barrier (Ueff) for complexes 1-5 ranges between 2416-1175 K, with a record Ueff value of 2416 K observed for 1. In addition, we have explored the role of heavy element effects on the magnetic anisotropy by turning off the spin-orbit coupling of the pnictogens (N, P, and As), and our calculations clearly predict that heavy atoms in the first coordination sphere help in increasing the barrier height for magnetic relaxation. Heavy elements like P and As significantly enhance the SOC contributions, thereby providing a platform for designing and optimizing Dy(III) complexes with tailored magnetic behaviors.
Collapse
Affiliation(s)
- Ibtesham Tarannum
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
13
|
Wang Y, Luo QC, Zheng YZ. Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands. Angew Chem Int Ed Engl 2024; 63:e202407016. [PMID: 38953597 DOI: 10.1002/anie.202407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those "shining stars" of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.
Collapse
Affiliation(s)
- Yidian Wang
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
14
|
Kumar Sahu P, Konar S. Enhancement of Effective Energy Barrier and Magnetic Blocking Temperature in Tetraoxolene Radical Coupled Dinuclear Dysprosium Complex. Chemistry 2024:e202402439. [PMID: 39278828 DOI: 10.1002/chem.202402439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
A well-judged combination of a high axial ligand field and a bridging radical ligand in a dinuclear lanthanide complex provides a single-molecule magnet with a higher effective energy barrier for magnetic relaxation and blocking temperature compared to its non-radical analog due to significant magnetic exchange coupling between radical and Ln(III) ions. In this work, we report two chloranilate (CA) bridged dinuclear dysprosium complexes, [{(bbpen)Dy(μ2-CA)Dy(bbpen)}] (1Dy) and [{(bbpen)Dy(μ2-CA⋅)Dy(bbpen)}-{CoCp2}+] (2Dy), where 2Dy is the radical bridged Dy-complex obtained via the chemical reduction of bridging CA moiety (H2bbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine). The presence of high electronegative phenoxide moiety enhances the axial anisotropy of pseudo-square antiprismatic Dy(III) ions. The diffused spin of radical is efficiently coupled with anisotropic Dy(III) centres and decreases the quantum tunnelling of magnetization (QTM) in the magnetic relaxation process. The magnetic relaxation of 1Dy follows Orbach, Raman, and QTM processes whereas for 2Dy it follows Orbach and Raman Processes. Due to less involvement of the QTM relaxation process, 2Dy shows a higher thermal energy barrier (Ueff=700 K) and a high blocking temperature (6.7 K), compared to its non-radical analog. Remarkably, the radical coupled 2Dy complex shows the highest energy barrier among the radical bridged Dy(III)-based SMMs to date.
Collapse
Affiliation(s)
- Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
15
|
Mondal S, Chauhan D, Guizouarn T, Pointillart F, Rajaraman G, Steiner A, Baskar V. Self-Assembled Lanthanide Phosphinate Square Grids (Ln = Er, Dy, and Tb): Dy 4 Shows SMM/SMT and Tb 4 SMT Behavior. Inorg Chem 2024. [PMID: 39264390 DOI: 10.1021/acs.inorgchem.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tetranuclear [2 × 2] square-grid-like LnIII clusters have been synthesized by reacting LnCl3·6H2O salts with bis[α-hydroxy(p-bromophenyl)methyl]phosphinic acid [R2PO2H, where R = CH(OH)PhBr] and pivalic acid. Single-crystal X-ray diffraction studies show the formation of [Me4N]2[Ln4(μ2-η1:η1-PO2R2)8(η2-CO2But)4(μ4-CO3)] [Ln = Er (1), Dy (2), and Tb (3)]. Direct-current studies reveal significant ferromagnetic interactions between DyIII in 2 and TbIII in 3 and an antiferromagnetic interaction between ErIII in 1. Dynamic magnetic susceptibility measurements confirm a single-molecule magnet (SMM) behavior in both 0 and 1200 Oe applied magnetic fields for 2. Complexes 2 and 3 show single molecular toroic (SMT) behavior with a mixed magnetic moment.
Collapse
Affiliation(s)
- Suman Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Deepanshu Chauhan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Thierry Guizouarn
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Fabrice Pointillart
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD U.K
| | | |
Collapse
|
16
|
Monni N, Dey S, García-López V, Oggianu M, Baldoví JJ, Mercuri ML, Clemente-León M, Coronado E. Tunable SIM properties in a family of 3D anilato-based lanthanide-MOFs. Inorg Chem Front 2024; 11:5913-5923. [PMID: 39263226 PMCID: PMC11385371 DOI: 10.1039/d4qi01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024]
Abstract
By reacting a 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (H2trz2An) anilato linker with LnIII ions (LnIII = Dy, Tb, Ho), two different series of polymorphs, formulated as [Ln2(trz2An)3(H2O)4] n ·10H2O (DyIII, 1a; TbIII, 2a, HoIII, 3a) and [Ln2(trz2An)3(H2O)4] n ·7H2O (DyIII, 1b, TbIII, 2b, HoIII, 3b) have been obtained. In these series the two DyIII-coordination networks (1a and 1b) and the TbIII-coordination polymer (2b) show a Single Ion Magnet (SIM) behavior. 1-3a MOFs show reversible structural flexibility upon removal of a coordinated water molecule from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Ln2(trz2An)3(H2O)2] n ·2H2O (DyIII, 1a_des; TbIII, 2a_des, HoIII, 3a_des) involving shrinkage/expansion of the hexagonal-rectangular networks. Noteworthy, 2b represents the first example of a TbIII-anilate-based coordination polymer showing SIM behaviour to date and the best SIM properties within the polymorphs. Theoretical investigation via ab initio CASSCF calculations supports this behavior, since 2b shows less mixing between the m J states of the ground state among all the studied complexes.
Collapse
Affiliation(s)
- Noemi Monni
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - Sourav Dey
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Víctor García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
17
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
18
|
Nandy R, Jagličić Z, Jana NC, Brandão P, Bustamante F, Aravena D, Panja A. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn-Dy-Zn complexes with a compartmental Schiff base. Dalton Trans 2024; 53:13968-13981. [PMID: 39101745 DOI: 10.1039/d4dt01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present herein magneto-structural studies of three heterometallic Zn2Dy complexes: [Zn2Dy(L)2Cl2(H2O)](ClO4)·4H2O (1), [Zn2Dy(L)2Br2(H2O)](ClO4)·4H2O (2) and [Zn2Dy(L)2(OAc)I(H2O)]I3·4H2O (3), utilizing a new Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-diaminocyclohexane (H2L). Complexes 1 and 2 exhibit remarkable magnetic relaxation behaviour with relatively high energy barriers in zero field (Ueff: 244 K for 1 and 211 K for 2) and notable hysteresis temperatures, despite the low local geometric symmetry around the central DyIII ions. The SMM performance of these complexes is further enhanced under an applied magnetic field, with Ueff increasing to 309 K for 1 and 269 K for 2, positioning them as elite members within the Zn-Dy SMM family. These findings emphasize the substantial influence of remote modulation on ZnII beyond the first coordination sphere of DyIII ions on their dynamic magnetic relaxation properties. Ab initio studies demonstrate that the relative orientation of the phenoxo-oxygen donor atoms around the DyIII ion is critical for determining the magnetic anisotropy and relaxation dynamics in these systems. Additionally, experimental and theoretical investigations reveal that the coordination of the bridging acetate towards the hard plane, combined with significant distortion from the ideal ZnO2Dy diamond core arrangement caused by the acetate ion, results in low magnetic anisotropy in complex 3, thereby leading to field-induced SMM behaviour. Overall, this study unveils the effects of co-ligands on the SMM performance in a series of linear trinuclear Zn-Dy-Zn complexes, which exhibit low local geometric symmetry around the DyIII centres.
Collapse
Affiliation(s)
- Rakhi Nandy
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fabián Bustamante
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Daniel Aravena
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
19
|
Garcia NA, Tafuri VC, Abdu RB, Roberts CC. Elucidating the Impact of Rare Earth or Transition Metal Identity on the Physical and Electronic Structural Properties of a Series of Redox-Active Tris(amido) Complexes. Inorg Chem 2024; 63:15283-15293. [PMID: 39102431 DOI: 10.1021/acs.inorgchem.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The use of redox-active ligands with the f-block elements has been employed to promote unique chemical transformations and explore their unique emergent electronic properties for a myriad of applications. In this study, we report eight new tris(amido) metal complexes: 1-Ln (Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+), 1-La, and 1-Ti (an early transition metal analogue). The one-electron oxidation of the tris(amido) ligand was conducted to generate semi-iminato complexes 2-Ln, 2-La, and 2-Ti, and these complexes were studied using EPR. Tris(amido) complexes 1-Ln, 1-La, and 1-Ti were fully characterized using a range of spectroscopic (NMR and UV-vis/NIR) and physical techniques (X-ray diffraction and cyclic voltammetry, with the exception of 1-La). Computational methods were employed to further elucidate the electronic structures of these complexes. Lastly, complexes 1-Ln, 1-La, and 1-Ti were probed as catalysts for alkyl-alkyl cross-coupling, and the initial rate of the reaction was measured to explore the influence of the metal ion.
Collapse
Affiliation(s)
- Nicholas A Garcia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Victoria C Tafuri
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rana B Abdu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Lussier D, Ito E, McClain KR, Smith PW, Kwon H, Rutkauskaite R, Harvey BG, Shuh DK, Long JR. Metal-Halide Covalency, Exchange Coupling, and Slow Magnetic Relaxation in Triangular (Cp iPr5) 3U 3X 6 (X = Cl, Br, I) Clusters. J Am Chem Soc 2024; 146:21280-21295. [PMID: 39044394 PMCID: PMC11311243 DOI: 10.1021/jacs.3c11678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.
Collapse
Affiliation(s)
- Daniel
J. Lussier
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emi Ito
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - K. Randall McClain
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Patrick W. Smith
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryte Rutkauskaite
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Batista L, Paul S, Molina-Jirón C, Jaén JA, Fensker D, Fuhr O, Ruben M, Wernsdorfer W, Moreno-Pineda E. Magnetic behaviour of a spin-canted asymmetric lanthanide quinolate trimer. Dalton Trans 2024; 53:12927-12935. [PMID: 39041069 DOI: 10.1039/d4dt01588f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An asymmetrical dysprosium trimer with a molecular formula of [Dy3(hq)7(hqH)(NO3)2(H2O)] was obtained through a reflux reaction employing as starting material Dy(NO3)3·nH2O and 8-quinolinoline as ligand. Magnetic susceptibility investigations show the system to be an SMM, which was corroborated by sub-Kelvin μSQUID studies. Upon cooling, the magnetic susceptibility also exhibits a decrease in the χMT product, which was confirmed to be due to intramolecular antiferromagnetic interactions. μSQUID measurements, moreover, reveal a marked magnetic behaviour in the angular dependence of the hysteresis loops. The latter is a direct consequence of the non-colinear spin arrangement of the anisotropy axes of each Dy(III) ion in [Dy3(hq)7(hqH)(NO3)2(H2O)] and the interaction between the ions, as also evidenced by CASSCF calculations. Our results evidence the effect of spin canting along with the intramolecular interactions, which can induce non-trivial magnetic behaviour in SMMs.
Collapse
Affiliation(s)
- Lester Batista
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. Física, 0824, Panamá
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
| | - Concepción Molina-Jirón
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Bioquímica, 0824, Panamá.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Juan A Jaén
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| | - Dieter Fensker
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Eufemio Moreno-Pineda
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| |
Collapse
|
22
|
Jabeur W, Korb M, Hamdi M, Holub M, Princík D, Zeleňák V, Sanchez-Coronilla A, Shalash M, Čižmár E, Naïli H. Structural, optical and magnetic properties of a new metal-organic Co II-based complex. RSC Adv 2024; 14:25048-25061. [PMID: 39135970 PMCID: PMC11317920 DOI: 10.1039/d4ra02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
A mononuclear cobalt(ii) complex [C5H8N3]2[CoCl4(C5H7N3)2] (I) was synthesized and structurally characterized. Single crystal X-ray diffraction analysis indicates that monometallic Co(ii) ions acted as coordination nodes in a distorted octahedral geometry, giving rise to a supramolecular architecture. The latter is made up of a ½ unit form composed of an anionic element [Co0.5Cl2(C5H7N3)]- and one 2-amino-4-methylpyrimidinium cation [C5H8N3]+. The crystalline arrangement of this compound adopts the sandwich form where inorganic parts are sandwiched between the organic sheets following the [100] direction. More information regarding the structure hierarchy has been supplied based on Hirshfeld surface analysis; the X⋯H (X = N, Cl) interactions play a crucial role in stabilizing the self-assembly process of I, complemented by the intervention of π⋯π electrostatic interaction created between organic entities. Thermal analyses were carried out to study the thermal behavior process. Static magnetic measurements and ab initio calculations of compound I revealed the easy-axis anisotropy character of the central Co(ii) ion. Two-channel field-induced slow-magnetic relaxation was observed; the high-frequency channel is characterized by underbarrier relaxation with U eff = 16.5 cm-1, and the low-frequency channel involves a direct relaxation process affected by the phonon-bottleneck effect.
Collapse
Affiliation(s)
- Wiem Jabeur
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| | - Marcus Korb
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Mohamed Hamdi
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Mariia Holub
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Dávid Princík
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | | | - Marwan Shalash
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Houcine Naïli
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| |
Collapse
|
23
|
Gharu A, Vignesh KR. Theoretical exploration of single-molecule magnetic and single-molecule toroic behaviors in peroxide-bridged double-triangular {MII3LnIII3} (M = Ni, Cu and Zn; Ln = Gd, Tb and Dy) complexes. Dalton Trans 2024. [PMID: 39087311 DOI: 10.1039/d4dt01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Detailed state-of-the-art ab initio and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {M3Ln3} triangular complexes having the molecular formula [MII3LnIII3(O2)L3(PyCO2)3](OH)2(ClO4)2·8H2O (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [Ni3Ln3(H2O)3(mpko)9(O2)(NO3)3](ClO4)·3CH3OH·3CH3CN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ3-η3:η3 fashion and the oxygen atoms/oxime of co-ligands that connect each MII ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, ab initio Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the LnIII-LnIII and CuII/NiII-LnIII magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions (J) by computing the GdIII-GdIII and CuII/NiII-GdIII interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {M3Ln3} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [Co3Dy3(OH)4(OOCCMe3)6(teaH)3(H2O)3](NO3)2·H2O. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Collapse
Affiliation(s)
- Amit Gharu
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
24
|
Tubau À, Zinna F, Di Bari L, Font-Bardía M, Vicente R. Dinuclear enantiopure Ln 3+ complexes with ( S-) and ( R-) 2-phenylbutyrate ligands. Luminescence, CPL and magnetic properties. Dalton Trans 2024. [PMID: 39078094 DOI: 10.1039/d4dt01295j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The reaction of Ln(NO3)2·6H2O (Ln = Nd, Sm, Eu, Tb, Dy, Tm and Yb) with the respective enantiopure (R)-(-)-2-phenylbutyric or (S)-(+)-2-phenylbutyric acid (R/S-2-HPhBut) and 4,7-diphenyl-1,10-phenanthroline (Bphen) allows the isolation of chiral dinuclear compounds of the formula [Ln2(μ-R/S-2-PhBut)4(R/S-2PhBut)2(Bphen)2] where Ln = Nd3+ (R/S-Nd-a), Sm3+ (R/S-Sm-a), Eu3+ (R/S-Eu-a), Tb3+ (R/S-Tb-a and R/S-Tb-b), Dy3+ (R/S-Dy-a and R/S-Dy-b), Tm3+ (R/S-Tm-b) and Yb3+ (R/S-Yb-b). Single crystal X-ray diffraction was performed for compounds S-Eu-a and S-Tm-b. Powder crystal X-ray diffraction was performed for all complexes. From the crystallographic data two different structural motifs were found which are referred to as structure type a and structure type b. In structure type a, the Ln3+ atoms are bridged through four R or S-2-PhBut ligands with two different kinds of coordination modes whereas in structure type b the two Ln3+ atoms are bridged through four R or S-2-PhBut ligands showing only one kind of coordination mode. For those lanthanide ions exhibiting both structure types, Tb3+ and Dy3+, a difference in the luminescence and magnetism behavior is observed. All compounds (except R/S-Tm-b) exhibit sensitized luminescence, notably the Eu3+ and Tb3+ analogues. Circular Dichroism (CD) and Circular Polarized Luminescence (CPL) in the solid state and in 1 mM dichloromethane (DCM) solutions are reported, leading to improved chiroptical properties for the DCM solutions. The asymmetry factor (glum) in 1 mM DCM is ±0.02 (+ for R-Eu-a) for the magnetically allowed transition 5D0 → 7F1 and ±0.03 (+ for R-Tb-a and R-Tb-b) for the 5D4 → 7F5 transition. Magnetic properties of all compounds were studied and the Dy3+ compound with the structural motif b (R-Dy-b) shows Single Molecular Magnet (SMM) behavior under a 0 T magnetic field. However, R-Dy-a is a field-induced SMM.
Collapse
Affiliation(s)
- Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals and Unitat de Difracció de Raigs X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
25
|
Halder D, Jana Y, Piwowarska D, Gnutek P, Rudowicz C. Tailoring single-ion magnet properties of coordination polymer C 11H 18DyN 3O 9 (Dy-CP) using the radial effective charge model (RECM) and superposition model (SPM). Phys Chem Chem Phys 2024; 26:19947-19959. [PMID: 38993160 DOI: 10.1039/d4cp01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We investigate Dy-based coordination polymer C11H18DyN3O9 (Dy-CP) exhibiting single-ion magnet (SIM) properties, e.g., quantum tunnelling of magnetization (QTM), magnetic anisotropy, magnetic relaxation, and effective energy barrier (Ueff). To elucidate the underlying mechanisms, crystal field parameters (CFPs) for Dy3+ ions were modelled using the radial effective charge model (RECM) and superposition model (SPM), and the computational packages SIMPRE and SPECTRE. The modelled CFPs enable the prediction of the energy levels and associated wave functions, which successfully explain the field-induced Dy-CP SIM properties. The so-calculated magnetic susceptibility and isothermal magnetization match the experimental data reasonably well. The smaller energy separations of the first (Δ0-1 ∼ 31 cm-1) and the second (Δ0-2 = 74 cm-1) excited Kramers doublets suggest small Ueff = 65 cm-1 for Dy-CP. The magnetic moments of Dy3+ ions exhibit an easy-axis type magnetic anisotropy in the ground state, but change orientation in the excited states due to mixing of states from different Kramers doublets. Low-symmetry CF components play a crucial role in connecting different |±MJ〉 states within the ground multiplet, resulting in QTM and magnetic relaxation to the ground state occurring via the excited states. The RECM and SPM calculated CFP sets are standardized employing the 3DD package to enable meaningful comparison and assessing their mutual equivalence. The results demonstrate the correlation between structural and electronic features of the molecule and site symmetry and distortion of the local coordination polyhedra with SIM properties, offering insights for rational design of new SIMs. The importance of considering low-symmetry aspects in CFP modelling for accurate predictions of magnetic properties is highlighted. This study provides deeper understanding of field-induced behaviour in rare-earth-based SIMs and approaches for rationalization of experimentally measured SIMs' properties.
Collapse
Affiliation(s)
- Dinabandhu Halder
- Department of Physics, University of Kalyani, Kalyani-741235, Nadia, WB, India.
| | - Yatramohan Jana
- Department of Physics, University of Kalyani, Kalyani-741235, Nadia, WB, India.
| | - Danuta Piwowarska
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Paweł Gnutek
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Czesław Rudowicz
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| |
Collapse
|
26
|
Moorthy S, Tarannum I, Kumari K, Singh SK. A highly anisotropic family of hexagonal bipyramidal Dy(III) unsaturated 18-crown-6 complexes exceeding the blockade barrier over 2700 K: a computational exploration. Dalton Trans 2024; 53:12073-12079. [PMID: 38787652 DOI: 10.1039/d4dt00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In the present work, we have explored a series of unsaturated hexa-18-crown-6 (U18C6) ligands towards designing highly anisotropic Dy(III) based single-ion magnets (SIMs) with the general formula [Dy(U18C6)X2]+ (where U18C6 = [C12H12O6] (1), [C12H12S6] (2), [C12H12Se6] (3), [C12H12O4S2] (4), [C12H12O4Se2] (5) and X = F, Cl, Br, I, OtBu and OSiPh3). By analysing the electronic structure, bonding and magnetic properties, we find that the U18C6 ligands prefer stabilising the highly symmetric eight-coordinated hexagonal bipyramidal geometry (HBPY-8), which is the source of the near-Ising type anisotropy in all the [Dy(U18C6)X2]+ complexes. Moreover, the ability of sulfur/selenium substituted U18C6 ligands to stabilize the highly anisotropic HBPY-8 geometry makes them more promising towards engineering the equatorial ligand field compared to substituted saturated 18C6 ligands where the exodentate arrangement of the S lone pairs results in low symmetry. Magnetic relaxation analysis predicts a record barrier height over 2700 K for [Dy(C12H12O6)F2]+ and [Dy(C12H12S6)X2]+ (where X = F, OtBu and OSiPh3) complexes, nearly 23% higher than those of the top performing Dy(III) based SIMs in the literature.
Collapse
Affiliation(s)
- Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
27
|
Liu CM, Hao X, Li XL. Assembly of Homochiral Magneto-Optical Dy 6 Triangular Clusters by Fixing Carbon Dioxide in the Air. Molecules 2024; 29:3402. [PMID: 39064980 PMCID: PMC11279596 DOI: 10.3390/molecules29143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A new hydrazone Schiff base bridging ligand (H2LSchiff (E)-N'-((1-hydroxynaphthalen-2-yl)methylene)pyrazine-2-carbohydrazide) and L/D-proline were used to construct a pair of homochiral Dy6 cluster complexes, [Dy6(CO3)(L-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (L-1, L-HPro = L-proline; DMA = N,N-dimethylacetamide) and [Dy6(CO3)(D-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (D-1, D-HPro = D-proline), which show a novel triangular Dy6 topology. Notably, the fixation of CO2 in the air formed a carbonato central bridge, playing a key role in assembling L-1/D-1. Magnetic measurements revealed that L-1/D-1 displays intramolecular ferromagnetic coupling and magnetic relaxation behaviours. Furthermore, L-1/D-1 shows a distinct magneto-optical Faraday effect and has a second harmonic generation (SHG) response (1.0 × KDP) at room temperature. The results show that the immobilization of CO2 provides a novel pathway for homochiral multifunctional 4f cluster complexes.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| |
Collapse
|
28
|
Zhu Z, Paul S, Zhao C, Wu J, Ying X, Ungur L, Wernsdorfer W, Meyer F, Tang J. Record Quantum Tunneling Time in an Air-Stable Exchange-Bias Dysprosium Macrocycle. J Am Chem Soc 2024; 146:18899-18904. [PMID: 38975975 DOI: 10.1021/jacs.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In recent years, dysprosium macrocycle single-molecule magnets (SMMs) have received increasing attention due to their excellent air/thermal stability, strong magnetic anisotropy, and rigid molecular skeleton. However, they usually display fast zero-field quantum tunneling of the magnetization (QTM) rate, severely hindering their data storage applications. Herein, we report the design, synthesis, and characterization of an air-stable monodecker didysprosium macrocycle integrating strong single-ion anisotropy, near-perfect local crystal field (CF) symmetry, and efficient exchange bias. These indispensable features enable clear-cut elucidation of the crucial role of very weak antiferromagnetic coupling on magnetization dynamics, creating a prominent SMM with a large effective energy barrier (Ueff) of 670 cm-1, open hysteresis loops at zero field up to 14.9 K, and a record relaxation time of QTM (τQTM), 24281 s, for all known nonradical-bridged lanthanide SMMs.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
29
|
Kobayashi K, Suzuki M, Sato T, Horii Y, Yoshida T, Breedlove BK, Yamashita M, Katoh K. Spin dynamics phenomena of a cerium(III) double-decker complex induced by intramolecular electron transfer. Dalton Trans 2024; 53:11664-11677. [PMID: 38651377 DOI: 10.1039/d4dt00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Switchable spin dynamic properties in single-molecule magnets (SMMs) via an applied stimulus have applications in single-molecule devices. Many SMMs containing heavy lanthanoid ions with strong uniaxial magnetic anisotropy have been reported to exhibit SMM characteristics in the absence of an external magnetic field. On the other hand, SMMs containing light lanthanoid cerium(III) (Ce3+) ions exhibit field-induced slow magnetic relaxation. We investigated the chemical conversion of a diamagnetic Ce4+ ion (4f0) to a paramagnetic Ce3+ ion (4f1) in Ce-phthalocyaninato double-decker complexes (TBA+[Ce(obPc)2]- (1) and TBA+[Ce(Pc)2]- (2)) which exhibit field-induced SMM behaviour due to a 4f1 system. The phthalocyaninato ligands with electron-donating substituents (obPc2- = 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato) in 1 have a significant effect on the valence state of the Ce ion, which is reflected in its magnetic properties due to the mixed valence state of the Ce ion. Given that Ce double-decker complexes with π-conjugated ligands undergo intramolecular electron transfer (IET) to the Ce ion mixed valence state, characterised by a mixture of 4f0 and 4f1 configurations, we examined the dynamic disorder inherent in IET influencing magnetic relaxation.
Collapse
Affiliation(s)
- Kana Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Michiyuki Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya Higashimachi, Nara 630-8506, Japan
| | - Takefumi Yoshida
- Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakae-Dani, Wakayama, 640-8510, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1, Keyakidai, Sakaddo, Saitama 350-0295, Japan.
| |
Collapse
|
30
|
Wang YF, Wang YX, Yang QQ, Yin B. Auxiliary Rather Than Dominant. The Role of Direct Dy-S Coordination in Single-Molecule Magnet Unveiled via ab initio Study. J Phys Chem A 2024; 128:5285-5297. [PMID: 38950340 DOI: 10.1021/acs.jpca.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The role of Dy-S coordination in a single-molecule magnet (SMM) is investigated via an ab initio study in a group of mononuclear structures. The SMM performance of this group is well interpreted via a concise criterion consisting of long quantum tunneling of magnetization (QTM) time τQTM and high effective barrier for magnetic reversal Ueff. The best SMMs in the selected group, i.e., 1Dy (CCDC refcode: PUKFAF) and 2Dy (CCDC refcode: NIKSEJ), are just those holding the longest τQTM and the highest Ueff simultaneously. Further analysis based on the crystal field model and ab initio magneto-structural exploration indicates that the influence of Dy-S coordination on the SMM performance of 1Dy is weaker than that of axial Dy-O coordination. Thus, Dy-S coordination is more likely to play an auxiliary role rather than a dominant one. However, if placed at the suitable equatorial position, Dy-S coordination could provide important support for good SMM performance. Consequently, starting from 1Dy, we built two new structures where Dy-S coordination only exists at the equatorial position and two axial positions are occupied by strong Dy-O/Dy-F coordination. Compared to 1Dy and 2Dy, these new ones are predicted to have significantly longer τQTM and higher Ueff, as well as a nearly doubled blocking temperature TB. Thus, they are probable candidates of SMM having clearly improved performance.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| |
Collapse
|
31
|
Vitova T, Ramanantoanina H, Schacherl B, Münzfeld L, Hauser A, Ekanayake RSK, Reitz CY, Prüßmann T, Neill TS, Göttlicher J, Steininger R, Saveleva VA, Haverkort MW, Roesky PW. Photon-Modulated Bond Covalency of [Sm(II)(η 9-C 9H 9) 2]. J Am Chem Soc 2024. [PMID: 38968342 DOI: 10.1021/jacs.3c13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lanthanides are widely assumed not to form covalent bonds due to the localized nature of their 4f valence electrons. This work demonstrates that the ionic bond of Sm(II) with cyclononatetraenyl (η9-C9H9-) in [Sm(η9-C9H9)2] can be modulated and becomes more covalent by photon-induced transfer of Sm 4f electrons to Sm 5d orbitals. This photon-induced change in bonding properties facilitates a subsequent reconfiguration of [Sm(η9-C9H9)2]. As a result, Sm-C bond length contraction is detected and the local Sm coordination environment exhibits more extensive disorder. Both Sm 4f and 5d electrons have increased participation in covalent Sm-ligand interactions. The Sm L3-edge valence band resonant inelastic X-ray scattering (VB-RIXS), high-resolution X-ray absorption near-edge structure (HR-XANES), and quantum chemical computations showcase a spectroscopic methodology for in-depth studies of bond covalency of lanthanide atoms.
Collapse
Affiliation(s)
- T Vitova
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - H Ramanantoanina
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - B Schacherl
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - L Münzfeld
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - A Hauser
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - R S K Ekanayake
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - C Y Reitz
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - T Prüßmann
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - T S Neill
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - J Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - R Steininger
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| | - V A Saveleva
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - M W Haverkort
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
| | - P W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
| |
Collapse
|
32
|
Kalita P, Kumari K, Kumar P, Kumar V, Singh SK, Rogez G, Chandrasekhar V. Eight-coordinate mono- and dinuclear Dy(III) complexes containing a rigid equatorial plane and an anisobidentate carboxylate ligand in the axial position: synthesis, structure and magnetism. Dalton Trans 2024; 53:10521-10535. [PMID: 38842042 DOI: 10.1039/d4dt00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A rigid pentadentate chelating ligand (H2L) has been utilized to synthesize a series of octacoordinate mononuclear complexes, [Dy(L)(Ph3PO)(OOCR)] (where R = C6H5 (1), C(CH3)3 (2), CF3 (3)) and a dinuclear complex, [Dy2(L)2(Ph3PO)2{(OOC)2C6H4}] (4) based on the highly anisotropic Dy(III) ion. All the complexes were structurally characterized by single-crystal X-ray diffraction studies. The complexes were formed by the coordination action of the dianionic pentadentate ligand [L]2-, one phosphine oxide, and carboxylate ligands. DC and AC magnetic measurements were performed on 1-4. Complexes 1-4 show SMM behaviour, under zero DC field for 1 and 4, and under 500 Oe and 1000 Oe DC fields for 2 and 3 respectively, with thermally activated, Raman, and Raman and quantum tunnelling dominant relaxation mechanisms for 1 and 2, 3 and 4, respectively.
Collapse
Affiliation(s)
- Pankaj Kalita
- Department of Chemistry, Nowgong Girls' College, Nagaon, Assam-782 002, India.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502 285, India.
| | - Pawan Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 107, India.
| | - Vierandra Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 107, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502 285, India.
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS/Université de Strasbourg, UMR 7504, 67000 Strasbourg, France.
| | | |
Collapse
|
33
|
Wang J, Zhang H, Wang M, Zhang W. A Series of Endohedral Metallo-BN Fullerene Superatomic Structures. ACS OMEGA 2024; 9:27748-27753. [PMID: 38947823 PMCID: PMC11209902 DOI: 10.1021/acsomega.4c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Superatoms are crucial in the assembly of functional and optoelectronic materials. This study investigates the endohedral metallo-boron nitride [boron nitride (BN)] fullerenes U@B12N12, Cm@B12N12, and U@B16N16 in theory. Our findings confirm that U@B12N12, Cm@B12N12, and U@B16N16 are superatoms and their electronic configurations are 1P61S21D101F142P62S22D102F123P6, 1P61S21D101F141G161H162S22P62D102F12, and 1P61S21D101F142P62S22D102F14, respectively. Notably, the orbital energy levels in these superatoms exhibit a flipping phenomenon, deviating from those of previous superatom studies. Further, the orbital composition analyses reveal that superatomic orbitals 1S, 1P, 1D, and 1F mainly originate from BN cages, whereas the 2S, 2P, 2D, 2F, and 3P superatomic orbitals arise from hybridizations between BN cage orbitals and the 7s, 7p, 6d, and 5f orbitals of actinide atoms. And the energy gap of endohedral metallo-BN fullerene superatoms is reduced by introducing actinide atoms. Additionally, the analyses of ionization potentials and electron affinities show that U@B12N12, Cm@B12N12, and U@B16N16 have lower ionization potentials and higher electron affinities, suggesting decreased stability compared to that of pure BN cages. This instability may be linked to the observed flipping of the superatomic orbital energy levels. These insights introduce new members to the superatom family and offer new building blocks for the design of nanoscale materials with tailored properties.
Collapse
Affiliation(s)
- Jia Wang
- College of Information Technology, Jilin Normal University, Siping 136000, China
| | - Huanming Zhang
- College of Information Technology, Jilin Normal University, Siping 136000, China
| | - Meiqi Wang
- College of Information Technology, Jilin Normal University, Siping 136000, China
| | - Wanyi Zhang
- College of Information Technology, Jilin Normal University, Siping 136000, China
| |
Collapse
|
34
|
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024; 20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Song H, Jin C, Wang X, Xie J, Ma Y, Tang J, Li L. Tuning spin dynamics of binuclear Dy complexes using different nitroxide biradical derivatives. Dalton Trans 2024; 53:10007-10017. [PMID: 38814577 DOI: 10.1039/d3dt04360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
By employing nitronyl/imino nitroxide biradicals, three Ln-Zn complexes, namely, [Ln2Zn2(hfac)10(ImPhPyobis)2] (LnIII = Gd 1, Dy 2; hfac = hexafluoroacetylacetonate; ImPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) and [Dy2Zn2(hfac)10(NITPhPyobis)2] 3 (NITPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), have been successfully prepared. The three complexes possess {Ln2O2} cores bridged by the oxygen atoms of the 4-oxypyridinium rings of the biradical ligands and one of the imino/nitronyl nitroxide groups of the biradical is coordinated to a ZnII ion, then producing a centrosymmetric tetranuclear six-spin structure. The studies of spin dynamics indicate that complexes 2 and 3 exhibit distinct magnetic relaxation behaviors at zero dc field: complex 2 presents single relaxation with an effective energy barrier (Ueff) of 69.8 K, while complex 3 exhibits double relaxation processes with Ueff values for the fast and slow relaxation being 15.8 K and 50.9 K, respectively. The observed different magnetic relaxation behaviors for the two Dy complexes could be mainly ascribed to the influence of the distinct nitroxide biradical derivatives.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaotong Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
36
|
Bolivar-Pineda LM, Mendoza-Domínguez CU, Rudolf P, Basiuk EV, Basiuk VA. Solvothermal Synthesis of Rare Earth Bisphthalocyanines. Molecules 2024; 29:2690. [PMID: 38893564 PMCID: PMC11173967 DOI: 10.3390/molecules29112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Rare earth bisphthalocyanines (MPc2) are of particular interest because of their behavior as single-molecular magnets, which makes them suitable for applications in molecular spintronics, high-density data storage and quantum computation. Nevertheless, MPc2 are not commercially available, and the synthesis routes are mainly focused on obtaining substituted phthalocyanines. Two preparation routes depend on the precursor: synthesis from phthalonitrile (PN) and the metalation of free or dilithium phthalocyanine (H2Pc and Li2Pc). In both options, byproducts such as free-base phthalocyanine and in the first route additional PN oligomers are generated, which influence the MPc2 yield. There are three preparation methods for these routes: heating, microwave radiation and reflux. In this research, solvothermal synthesis was applied as a new approach to prepare yttrium, lanthanum, gadolinium and terbium unsubstituted bisphthalocyanines using Li2Pc and the rare earth(III) acetylacetonates. Purification by sublimation gave high product yields compared to those reported, namely 68% for YPc2, 43% for LaPc2, 63% for GdPc2 and 62% for TbPc2, without any detectable presence of H2Pc. Characterization by infrared, Raman, ultraviolet-visible and X-ray photoelectron spectroscopy as well as elemental analysis revealed the main featuresof the four bisphthalocyanines, indicating the success of the synthesis of the complexes.
Collapse
Affiliation(s)
- Lina M. Bolivar-Pineda
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos U. Mendoza-Domínguez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elena V. Basiuk
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico;
| | - Vladimir A. Basiuk
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
| |
Collapse
|
37
|
Tubau À, Gómez-Coca S, Speed S, Font-Bardía M, Vicente R. New series of mononuclear β-diketonate cerium(III) field induced single-molecule magnets. Dalton Trans 2024; 53:9387-9405. [PMID: 38757803 DOI: 10.1039/d4dt00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Five new β-diketonate Ce3+ mononuclear complexes, [Ce(Btfa)3(H2O)2] (1), [Ce(Btfa)3(phen)] (2), [Ce(Btfa)3(bipy)] (3), [Ce(Btfa)3(terpy)] (4) and [Ce(Btfa)3(bathophen)(DMF)] (5), where Btfa- = 4,4,4-trifluoro-1-phenyl-1,3-butanedionate, phen = 1,10-phenanthroline, bipy = 2,2'-bipyridyl, terpy = 2,2':6',2''-terpyridine and bathophen = 4,7-diphenyl-1,10-phenanthroline, have been synthesized and structurally characterized through X-ray diffraction of single crystals. The central Ce3+ atom displays a coordination number of 8 for 1, 2 and 3 and of 9 for 4 and 5. Under a 0 T external magnetic field, none of the given compounds exhibits single molecule magnet (SMM) behaviour. However, a small magnetic field, between 0.02 and 0.1 T, is enough for all the compounds to exhibit slow relaxation of the magnetization. A comprehensive magnetic analysis, with experimental magnetic data and ab initio calculations, was undertaken for all the complexes, and the study highlights the significance of the different spin relaxation mechanisms that must be considered for a Ce3+ lanthanide ion.
Collapse
Affiliation(s)
- Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristal lografia i Dipòsits Minerals and Unitat de Difracció de R-X. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
38
|
Pointillart F, Le Guennic B, Cador O. Pressure-Induced Structural, Optical and Magnetic Modifications in Lanthanide Single-Molecule Magnets. Chemistry 2024; 30:e202400610. [PMID: 38511968 DOI: 10.1002/chem.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
Lanthanide Single-Molecule Magnets are fascinating objects that break magnetic performance records with observable magnetic bistability at the boiling temperature of liquid nitrogen, paving the way for potential applications in high-density data storage. The switching of lanthanide SMM has been successfully achieved using several external stimuli such as redox reaction, pH titration, light irradiation or solvation/desolvation thanks to the high sensitivity of the magnetic anisotropy to any structural change in the lanthanide surrounding. Nevertheless, the use of applied high pressure as an external stimulus is largely underused, especially considering that it can be combined with high pressure X-ray diffraction to establish a complementary structure-property relationship. This Concept article summarizes the few relevant examples of investigations of lanthanide SMMs under applied high pressure, provides conclusions on the effect of such stimulus on molecular structures and magnetic anisotropy, and finally draws perspective on the future development of magnetic measurements under applied pressure.
Collapse
Affiliation(s)
- Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| |
Collapse
|
39
|
Schwarz N, Krätschmer F, Suryadevara N, Schlittenhardt S, Ruben M, Roesky PW. Synthesis, Structural Characterization, and Magnetic Properties of Lanthanide Arsolyl Sandwich Complexes. Inorg Chem 2024; 63:9520-9526. [PMID: 38241036 DOI: 10.1021/acs.inorgchem.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
A series of trivalent lanthanide sandwich complexes [(η5-C4R4As)Ln(η8-C8H8)] using three different arsolyl ligands are reported. The complexes were obtained via salt elimination reactions between potassium arsolyl salts and lanthanide precursors [LnI(COT)(THF)2] (Ln = Sm, Dy, Er; COT = η8-C8H8). The resulting compounds exhibit classical sandwich complex structures with one notable exception. Characterization was conducted in both the solid state using single-crystal X-ray diffraction and in solution for the Sm compounds using NMR spectroscopy. Furthermore, the magnetic properties of an Er complex were investigated, revealing distinctive single-molecule-magnet behavior characterized by an energy barrier of Ueff = 323.3 K. Theoretical calculations were employed to support and interpret the experimental findings, with a comparative analysis performed against previously reported complexes.
Collapse
Affiliation(s)
- Noah Schwarz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Nithin Suryadevara
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Science Quantique, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
40
|
Delano F, Deshapriya S, Demir S. Guanidinate Yttrium Complexes Containing Bipyridyl and Bis(benzimidazolyl) Radicals. Inorg Chem 2024; 63:9659-9669. [PMID: 38569134 PMCID: PMC11134503 DOI: 10.1021/acs.inorgchem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Ancillary ligand scaffolds that sufficiently stabilize a metal ion to allow its coordination to an open-shell ligand are scarce, yet their development is essential for next-generation spin-based materials with topical applications in quantum information science. To this end, a synthetic challenge must be met: devising molecules that enable the binding of a redox-active ligand through facile displacement and clean removal of a weakly coordinating anion. Here, we probe the accessibility of unprecedented radical-containing rare-earth guanidinate complexes by combining our recently discovered yttrium tetraphenylborate complex [{(Me3Si)2NC(NiPr)2}2Y][(μ-η6-Ph)(BPh3)] with the redox-active ligands 2,2'-bipyridine (bpy) and 2,2'-bis(benzimidazole) (Bbim), respectively, under reductive conditions. Our endeavor resulted in the first evidence of guanidinate complexes that contain radicals, namely, a mononuclear bipyridyl radical complex, {(Me3Si)2NC(NiPr)2}2Y(bpy•) (1), and a dinuclear bis(benzimidazolyl) radical-bridged complex, [K(crypt-222)][{(Me3Si)2NC(NiPr)2}2Y]2(μ-Bbim•) (2'). The latter was achieved by an in situ reduction of [{(Me3Si)2NC(NiPr)2}2Y]2(μ-Bbim) (2), which was isolated from a salt metathesis reaction. 1 and 2 were characterized by X-ray crystallography and IR and UV-vis spectroscopy. Variable-temperature electron paramagnetic resonance spectroscopy was applied to gain insight into the distribution of unpaired spin density on 1 and 2'. Density functional theory calculations were conducted on 1 and 2' to elucidate further their electronic structures. The redox activity of 1 and 2' was also probed by electrochemical methods.
Collapse
Affiliation(s)
| | | | - Selvan Demir
- Department of Chemistry, Michigan
State University (MSU), 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
41
|
Ma YZ, Yu L, Zhou Q, Fu W. Dinuclear ytterbium(III) benzamidinate complexes with bridging S 32-, Se 22- and Te 22- ligands: synthesis, structure and magnetic properties. Dalton Trans 2024; 53:8118-8123. [PMID: 38690725 DOI: 10.1039/d4dt00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Treatment of Yb(II) complex [L2Yb(THF)2] (L = PhC(NSiMe3)2) with elemental sulfur, selenium or tellurium resulted in the isolation of a series of dinuclear Yb(III) complexes featuring side-on bound S32- (1), Se22- (2) or Te22- (3) moieties, respectively. Magnetic study on these complexes revealed that 3 is a rare lanthanide telluride single-molecule magnet (SMM).
Collapse
Affiliation(s)
- Ying-Zhao Ma
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Lian Yu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
42
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Gabarró-Riera G, Sañudo EC. Challenges for exploiting nanomagnet properties on surfaces. Commun Chem 2024; 7:99. [PMID: 38693350 PMCID: PMC11063158 DOI: 10.1038/s42004-024-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Molecular complexes with single-molecule magnet (SMM) or qubit properties, commonly called molecular nanomagnets, are great candidates for information storage or quantum information processing technologies. However, the implementation of molecular nanomagnets in devices for the above-mentioned applications requires controlled surface deposition and addressing the nanomagnets' properties on the surface. This Perspectives paper gives a brief overview of molecular properties on a surface relevant for magnetic molecules and how they are affected when the molecules interact with a surface; then, we focus on systems of increasing complexity, where the relevant SMMs and qubit properties have been observed for the molecules deposited on surfaces; finally, future perspectives, including possible ways of overcoming the problems encountered so far are discussed.
Collapse
Affiliation(s)
- Guillem Gabarró-Riera
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - E Carolina Sañudo
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
44
|
Borah A, Dey S, Siddiqui K, Gupta SK, Rajaraman G, Murugavel R. Magnetic anisotropy in octahedral Dy(III) and Yb(III) complexes. Dalton Trans 2024; 53:7263-7267. [PMID: 38618749 DOI: 10.1039/d3dt04352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
New organophosphate complexes [Ln(dippH)3(dippH2)3]·(H2O)6, (Ln = Dy, Yb and Y; dippH2 = 2,6-diisopropylphenyl phosphate), displaying octahedral coordination geometry around the metal ion, exhibit unusual slow relaxation of magnetisation, which is investigated through experimental studies and ab initio CASSCF calculations.
Collapse
Affiliation(s)
- Aditya Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Department of Chemistry, Jengraimukh College, Majuli, Assam, 785105, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Kehkasha Siddiqui
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Sandeep K Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
45
|
Barrios LA, Capó N, Boulehjour H, Reta D, Tejedor I, Roubeau O, Aromí G. Modulated spin dynamics of [Co 2] coordination helicates via differential strand composition. Dalton Trans 2024; 53:7611-7618. [PMID: 38618945 DOI: 10.1039/d4dt00629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Coordination supramolecular chemistry provides a versatile entry into materials with functionalities of technological relevance at the nanoscale. Here, we describe how two different bis-pyrazolylpyridine ligands (L1 and L2) assemble with Co(II) ions into dinuclear triple-stranded helicates, in turn, encapsulating different anionic guests. These constructs are described as (Cl@[Co2(L1)3])3+, (SiF6@[Co2(L1)(L2)3])2+ and (ClO4@[Co2(L2)3])3+, as established by single-crystal X-ray diffraction. Extensive magnetic and calorimetric measurements, numerical treatments and theoretical calculations reveal that the individual Co(II) centers of these supramolecular entities exhibit field-induced slow relaxation of magnetization, dominated by direct and Raman mechanisms. While the small variations in the spin dynamics are not easily correlated with the evident structural differences among the three species, the specific heat measurements suggest two vibronic pathways of magnetic relaxation: one that would be associated with the host lattice and another linked with the guest.
Collapse
Affiliation(s)
- Leoní A Barrios
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Nuria Capó
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Hanae Boulehjour
- Donostia International Physics Center (DIPC), Donostia, 20018, Spain
| | - Daniel Reta
- Faculty of Chemistry, The University of the Basque Country UPV/EHU, Donostia, 20018, Spain
- Donostia International Physics Center (DIPC), Donostia, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Inés Tejedor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
46
|
Kyoya Y, Takahashi K, Kosaka W, Huang RK, Xue C, Wu JB, Miyasaka H, Nakamura T. Unlocking single molecule magnetism: a supramolecular strategy for isolating neutral Mn III salen-type dimer in crystalline environments. Dalton Trans 2024; 53:7517-7521. [PMID: 38597208 DOI: 10.1039/d4dt00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In [Mn(5-MeOsalen)(Cl)]2(dibenzo[24]crown-8), dibenzo[24]crown-8 formed a supramolecule via multi-point interactions with the [Mn(5-MeOsalen)(Cl)] dimer. The dimer was magnetically isolated with ST = 4 and weak interdimer magnetic interactions. The crystal exhibited single-molecule magnet behaviour with an anisotropic barrier of 26(1) K, which is the highest among the Mn-salen series reported to date.
Collapse
Affiliation(s)
- Yuri Kyoya
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
| | - Kiyonori Takahashi
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| | - Wataru Kosaka
- Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rui-Kang Huang
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| | - Chen Xue
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| | - Jia-Bing Wu
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takayoshi Nakamura
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ward, Sapporo, 060-0810, Japan.
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| |
Collapse
|
47
|
Shukla P, Tarannum I, Roy S, Rajput A, Lama P, Singh SK, Kłak J, Lee J, Das S. Effect of diamagnetic Zn(II) ions on the SMM properties of a series of trinuclear ZnDy 2 and tetranuclear Zn 2Dy 2 (Ln III = Dy, Tb, Gd) complexes: combined experimental and theoretical studies. Dalton Trans 2024; 53:7053-7066. [PMID: 38564260 DOI: 10.1039/d4dt00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To study the effect of diamagnetic ions on magnetic interactions, utilizing a compartmental ligand (Z)-2-(hydroxymethyl)-4-methyl-6-((quinolin-8-ylimino)methyl)phenol (LH2), two different series of ZnII-LnIII complexes, namely the trinuclear series of [DyZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH (1), [TbZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·5MeOH·H2O (2), and [GdZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH·CHCl3 (3) and the tetranuclear series of [Dy2Zn2(LH)4(NO3)4(μ2OAc)]·NO3·MeOH·H2O (4), [Tb2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (5), and [Gd2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (6), were synthesized. Trinuclear ZnII-LnIII complexes 1-3 consist of one LnIII ion sandwiched between two peripheral ZnII ions forming a bent type ZnII-DyIII-ZnII array with an angle of 110.64°. Tetranuclear ZnII-LnIII complexes 4-6 are basically a combination of two dinuclear moieties of [LnZn(LH)2(NO3)2]+ connected by one bidentate bridging acetate ion in μ2-OAc coordination mode. The detailed magnetic analysis reveals that complexes 1 and 4 are single molecule magnets having energy barriers of 34.98 K and 46.71 K with relaxation times (τ0) of 5.05 × 10-4 s and 5.24 × 10-4 s, respectively. Ab initio calculations were employed to analyze the magnetic anisotropy and magnetic exchange interaction between the ZnII and LnIII centers with the aim of gaining better insights into the magnetic dynamics of complexes 1-6.
Collapse
Affiliation(s)
- Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Soumalya Roy
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Amit Rajput
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad 121006, Haryana, India
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Nanocatalysis Area, LSP Division, Haridwar Road, Mokhampur, Dehradun 248005, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50-383, Poland.
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
| |
Collapse
|
48
|
Ouellette ET, Brackbill IJ, Kynman AE, Christodoulou S, Maron L, Bergman RG, Arnold J. Triple Inverse Sandwich versus End-On Diazenido: Bonding Motifs across a Series of Rhenium-Lanthanide and -Actinide Complexes. Inorg Chem 2024; 63:7177-7188. [PMID: 38598523 DOI: 10.1021/acs.inorgchem.3c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
While synthesizing a series of rhenium-lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(μ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(μ-η1:η1-N2)Re(η5-Cp)(BDI)][(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium-rhenium complex (η8-COT)Er[(μ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium-rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(μ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium-rare earth triple inverse sandwich complex Y[(μ-η5:η5-Cp)Re(BDI)]3 (6-Y).
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amy E Kynman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stella Christodoulou
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Thammakan S, Yoshinari N, Tsuchikawa M, Rujiwatra A, Konno T. Postsynthetic Installation of Lanthanide Cubane Clusters in a 3D Hydrogen-Bonded Framework of Ir III4Zn II4 Multicarboxylates. Inorg Chem 2024; 63:6239-6247. [PMID: 38520341 DOI: 10.1021/acs.inorgchem.3c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Immersing single crystals of (Δ)4-K6[Ir4Zn4O(l-cysteinate)12]·nH2O (K6[1Ir]·nH2O) bearing 12 free carboxylate groups, which was newly prepared from Δ-H3[Ir(l-cysteinate)3], ZnBr2, ZnO, and KOH, in an aqueous solution of lanthanide(III) acetate produced Ln2[1Ir]·nH2O (2Ln; Ln = LaIII, CeIII, PrIII, and NdIII) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][1Ir]·nH2O (3Ln; Ln = SmIII, EuIII, GdIII, TbIII, DyIII, ErIII, HoIII, TmIII, YbIII, and LuIII) in a single-crystal-to-single-crystal transformation manner. X-ray crystallography showed that the KI ions in K6[1Ir]·nH2O are completely exchanged by the LnIII ions in 2Ln and 3Ln, retaining the 3D hydrogen-bonded framework that consists of the IrIII4ZnII4 complex anions of [1Ir]6-. While 2Ln contained the LnIII ions as isolated aqua species, the LnIII ions in 3Ln existed as cationic cubane clusters of [Ln4(OH)4(OAc)3(H2O)7]5+; these were linked by [1Ir]6- anions through carboxylate groups in a 3D polymeric structure. 3Ln showed magnetic and photoluminescence properties that are characteristically observed for discrete LnIII species in the solid state.
Collapse
Affiliation(s)
- Supaphorn Thammakan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Marie Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
50
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|