1
|
Milanesi L, Gomila RM, Frontera A, Tomas S. Binding of a Co(III) Metalloporphyrin to Amines in Water: Influence of the p Ka and Aromaticity of the Ligand, and pH-Modulated Allosteric Effect. Inorg Chem 2025; 64:85-96. [PMID: 39707973 PMCID: PMC11733933 DOI: 10.1021/acs.inorgchem.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution. Our findings reveal that the ligand affinity is influenced by the pKa values of both the ligand and the porphyrin, as well as the hybridization state of the nitrogen atom, with binding to sp3-hybridized nitrogen being significantly weaker than to sp2-hybridized nitrogen. DFT calculations further suggest that the variations in binding affinities are due to differences in the electrostatic potential at the nitrogen atoms, with aromatic ligands generally exhibiting stronger Co-N coordination due to greater electrostatic attraction. Moreover, our study and the binding model we developed demonstrate that changes in pH affect the affinity for each ligand to varying degrees, sometimes resulting in an allosteric cooperative effect. This effect is linked to electronic changes introduced by the binding of the first ligand. Our model provides a predictive tool for understanding the assembly behavior of these porphyrins in aqueous buffers, with potential applications in developing more efficient catalysts and in the creation of smart materials for fields ranging from catalysis to nanomedicine and optoelectronics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Salvador Tomas
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Jin D, Uhlmann C, Schneider EK, Seifert T, Graf D, Lebedkin S, Weis P, Kappes MM, Roesky PW. Tin-Chelated Trisphosphineoxide Scorpionate Rare-Earth Porphyrinate Complexes: Synthesis and Photophysical Properties. Inorg Chem 2024. [PMID: 39680365 DOI: 10.1021/acs.inorgchem.4c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPh2O)3Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPh2O)3K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH4(thf)2]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes. Despite the low intensity, the red fluorescence is characteristic (as referred to the parent free-base TPP) and can be used together with optical absorption for analytical evaluation. Similar photophysical properties can be expected for monoporphyrinate rare-earth metal complexes of other tripodal ligands with a similar binding to the (TPP)Ln moiety.
Collapse
Affiliation(s)
- Da Jin
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Cedric Uhlmann
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe D-76131, Germany
| | - Tim Seifert
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Dominik Graf
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe D-76131, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Patrick Weis
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe D-76131, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe D-76131, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| |
Collapse
|
3
|
Saha B, Pal C, Malik H, Gopakumar TG, Rath SP. Conformational Switching of a Nano-Size Urea-Bridged Zn(II)Porphyrin Dimer by External Stimuli. Chemistry 2024; 30:e202402536. [PMID: 39250167 DOI: 10.1002/chem.202402536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
For the first time, explicit stabilization of all the three conformers, viz. (cis,cis), (cis,trans) and (trans,trans), of a 'nano-sized' highly-flexible urea-bridged Zn(II)porphyrin dimer have been achieved via careful manipulations of external stimuli such as solvent dielectrics, temperature, anionic interactions, axial ligation and surface-induced stabilization. The conformers differ widely in their structures, chemical and photophysical properties and thus have vast potential applicability. X-ray structural characterizations have been reported for the (cis,cis) and (cis,trans)-conformers. While (cis,cis) conformer stabilized exclusively in dichloromethane, more polar solvents resulted in the stabilization of (cis,trans) and (trans,trans)-conformers. Low temperature promotes the stabilization of (cis,trans)-conformer while rise in temperature facilitates flipping to the (cis,cis) one. Significantly, exclusive stabilization of the (trans,trans)-isomer has been illustrated using acetate anion which facilitates H-bonding with the two amide linkages of the urea spacer. Remarkably, HOPG surface facilitates stabilization of the energetically challenging (trans,trans)-conformer via CH⋅⋅⋅π and π⋅⋅⋅π interactions with the solid surface to the porphyrinic cores. DFT calculations demonstrate that the relative stability of the conformers can be modulated upon slight external perturbations as also observed in the experiment. Several factors contributing towards the conformational landscape for the highly flexible urea-bridged porphyrin dimers have been mapped.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chandrani Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Himani Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Nagasaka M, Tsuru S, Yamada Y. Metal-ligand delocalization of iron and cobalt porphyrin complexes in aqueous solutions probed by soft X-ray absorption spectroscopy. Phys Chem Chem Phys 2024; 26:23636-23645. [PMID: 39224033 DOI: 10.1039/d4cp02140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Metal-ligand delocalization of metal porphyrin complexes in aqueous solutions was investigated by analyzing the electronic structure of both the metal and ligand sides using soft X-ray absorption spectroscopy (XAS) at the metal L2,3-edges and nitrogen K-edge, respectively. In the N K-edge XAS spectra of the ligands, the energies of the CN π* peaks of cobalt protoporphyrin IX (CoPPIX) are higher than iron protoporphyrin IX (FePPIX). The energy difference between the two lowest peaks in the XAS spectrum of CoPPIX is also larger than that of FePPIX. Nitrogen K-edge inner-shell calculations of metalloporphyrins with different central metals indicate that the energy differences between these peaks reflect the electronic configurations and spin multiplicities of metalloporphyrins. We also investigated the hydration structure of CoPPIX in aqueous solution by analyzing the electronic structure of the ligand and revealed that CoPPIX maintains its five-coordination geometry in aqueous solution. The present study shows high performance of N K-edge XAS of ligands for studying the coordination structures of metalloporphyrins in solutions rather than the metal L2,3-edges of central metals.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| | - Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- RIKEN Center for Computational Science, RIKEN, Kobe 650-0047, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Hamza JR, Sharma JK, Karr PA, van der Est A, D’Souza F, Poddutoori PK. Intramolecular Charge Transfer and Spin-Orbit Coupled Intersystem Crossing in Hypervalent Phosphorus(V) and Antimony(V) Porphyrin Black Dyes. J Am Chem Soc 2024; 146:25403-25408. [PMID: 39248434 PMCID: PMC11421002 DOI: 10.1021/jacs.4c06674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Porphyrin dyes with strong push-pull type intramolecular charge transfer (ICT) character and broad absorption across the visible spectrum are reported. This combination of properties has been achieved by functionalizing the periphery of hypervalent and highly electron-deficient phosphorus(V) and antimony(V) centered porphyrins with electron-rich triphenylamine (TPA) groups. As a result of the large difference in electronegativity between the porphyrin ring and the peripheral groups, their absorption profiles show several strong charge transfer transitions, which in addition to the porphyrin-centered π → π* transitions, make them panchromatic black dyes with high absorption coefficients between 200 and 800 nm. Time-resolved optical and electron paramagnetic resonance (EPR) studies show that the lowest triplet state also has ICT character and is populated by spin-orbit coupled intersystem crossing.
Collapse
Affiliation(s)
- Jam Riyan Hamza
- Department
of Chemistry & Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jatan K. Sharma
- Department
of Chemistry, University of North Texas, Denton, Texas 76203-5017, United
States
| | - Paul A. Karr
- Department
of Physical Sciences and Mathematics, Wayne
State College, 1111 Main Street, Wayne, Nebraska 68787, United States
| | - Art van der Est
- Department
of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, Denton, Texas 76203-5017, United
States
| | - Prashanth K. Poddutoori
- Department
of Chemistry & Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Nazarov DI, Faraonov MA, Nations SM, Gutsev LG, Yakushev IA, Kuzmin AV, Khasanov SS, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Binuclear Coordination Assemblies of Metal Tetraphenylporphyrins (M = Mn, Fe, and In) with Anionic Thioindigo Bridges as Promising Magnetic Systems with Tunable Properties. Inorg Chem 2024. [PMID: 39288168 DOI: 10.1021/acs.inorgchem.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A series of hybrids comprising two metal (Mn, Fe, and In) tetraphenylporphyrins axially substituted with anionic bidentate trans-thioindigo ligands (TI) were obtained. Substitution of the axial chloride anion by an oxygen atom of the dye forms short M-O bonds. Crystalline binuclear assemblies (TI•-)·{[MnIITPP]0·[MnIIITPP]+}·xC6H4Cl2 (x = 2 for 1 or 1 for 2) and (TI2-){[MIIITPP]+}2·xC6H4Cl2 (M = Fe and x = 2 for 3, M = In and x = 1 for 4) were synthesized. The thioindigo (TI2-) dianion and metal (FeIII and InIII) atoms in TPPs maintain their initial charge states during the formation of 3 and 4, allowing the separation of paramagnetic FeIII or diamagnetic InIII ions by a diamagnetic TI2- bridge. Strong antiferromagnetic coupling is observed between FeIII (S = 5/2) centers in complex 3. Partial reduction of MnIII to MnII occurs upon the formation of 1 and 2, leading to assemblies containing three paramagnetic centers: MnII (S = 5/2), MnIII (S = 2), and TI•- radical anion (S = 1/2). Orthogonal arrangement of TPP and TI molecules in 1 provides strong ferromagnetic coupling. Weak antiferromagnetic coupling is realized in 2 due to the rotation of the TI bridge.
Collapse
Affiliation(s)
- Dmitry I Nazarov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
| | - Maxim A Faraonov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
| | - Sean M Nations
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Lavrenty G Gutsev
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Ilya A Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991 Russia
| | - Alexey V Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region 142432, Russia
| | - Salavat S Khasanov
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region 142432, Russia
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V Konarev
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
| |
Collapse
|
7
|
Shee NK, Kim HJ. Self-Assembled Nanostructure of Ionic Sn(IV)porphyrin Complex Based on Multivalent Interactions for Photocatalytic Degradation of Water Contaminants. Molecules 2024; 29:4200. [PMID: 39275048 PMCID: PMC11539948 DOI: 10.3390/molecules29174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
[Sn(H2PO4)2(TPyHP)](H2PO4)4∙6H2O (2), an ionic tin porphyrin complex, was synthesized from the reaction of [Sn(OH)2TPyP] (1) with a dilute aqueous solution of a polyprotic acid (H3PO4). Complex 2 was fully characterized using various spectroscopic methods, such as X-ray single-crystal crystallography, 1H NMR spectroscopy, elemental analysis, FTIR spectroscopy, UV-vis spectroscopy, emission spectroscopy, EIS mass spectrometry, PXRD, and TGA analysis. The crystal structure of 2 reveals that the intermolecular hydrogen bonds between the peripheral pyridinium groups and the axially coordinated dihydrogen phosphate ligands are the main driving force for the supramolecular assembly. Simultaneously, the overall association of these chains in 2 leads to an open framework with porous channels. The photocatalytic degradation efficiency of methyl orange dye and tetracycline antibiotic by 2 was 83% within 75 min (rate constant = 0.023 min-1) and 75% within 60 min (rate constant = 0.018 min-1), respectively. The self-assembly of 2 resulted in a nanostructure with a huge surface area, elevated thermodynamic stability, interesting surface morphology, and excellent catalytic photodegradation performance for water pollutants, making these porphyrin-based photocatalytic systems promising for wastewater treatment.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
8
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
9
|
Sanfui S, Usman M, Roychowdhury A, Pramanik S, Garribba E, Gómez García CJ, Chen PPY, Rath SP. Bridge vs Terminal Cyano-coordination in Binuclear Cobalt Porphyrin Dimers: Interplay of Electrons between Metal and Ligand and Spin-Coupling via Bridge. Inorg Chem 2024; 63:15619-15633. [PMID: 39116010 DOI: 10.1021/acs.inorgchem.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Three cyano-coordinated cobalt porphyrin dimers were synthesized and thoroughly characterized. The X-ray structure of the complexes reveals that cyanide binds in a terminal fashion in both the anti and trans isomers of ethane- and ethylene-bridged cobalt porphyrin dimers, while in the cis ethylene-bridged dimer, cyanides bind in both terminal and bridging modes. The nonconjugated ethane-bridged complex stabilizes exclusively a diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 both in the solid and in solution. In contrast, the complexes with the conjugated ethylene-bridge contain signatures of both paramagnetic ligand-centered oxidation of the type CoII(por•+)(CN)2 and diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 with the metal-centered oxidized species being the major component in the solid state as observed in XPS, while the ligand-centered oxidized species are present in a significant amount in solution. 1H NMR spectrum in solution displays two set of signals corresponding to the simultaneous presence of both the diamagnetic and paramagnetic species. EPR and magnetic investigation reveal that there is a moderate ferromagnetic coupling between the unpaired electrons of the low-spin CoII center and the porphyrin π-cation radical in CoII(por•+)(CN)2 species as well as an antiferromagnetic coupling between the two CoII(por•+) units through the ethylene and CN bridges.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arya Roychowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Subhadip Pramanik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Viale San Pietro, Università di Sassari, Sassari I-07100, Italy
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Peter P-Y Chen
- Department of Chemistry, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
10
|
Trouvé J, Delahaye V, Tomasini M, Rajeshwaran P, Roisnel T, Poater A, Gramage-Doria R. Repurposing a supramolecular iridium catalyst via secondary Zn⋯O[double bond, length as m-dash]C weak interactions between the ligand and substrate leads to ortho-selective C(sp 2)-H borylation of benzamides with unusual kinetics. Chem Sci 2024; 15:11794-11806. [PMID: 39092112 PMCID: PMC11290415 DOI: 10.1039/d4sc01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
The iridium-catalyzed C-H borylation of benzamides typically leads to meta and para selectivities using state-of-the-art iridium-based N,N-chelating bipyridine ligands. However, reaching ortho selectivity patterns requires extensive trial-and-error screening via molecular design at the ligand first coordination sphere. Herein, we demonstrate that triazolylpyridines are excellent ligands for the selective iridium-catalyzed ortho C-H borylation of tertiary benzamides and, importantly, we demonstrate the almost negligible effect of the first coordination sphere in the selectivity, which is so far unprecedented in iridium C-H bond borylations. Remarkably, the activity is dramatically enhanced by exploiting a remote Zn⋯O[double bond, length as m-dash]C weak interaction between the substrate and a rationally designed molecular-recognition site in the catalyst. Kinetic studies and DFT calculations indicate that the iridium-catalyzed C-H activation step is not rate-determining, this being unique for remotely controlled C-H functionalizations. Consequently, a previously established supramolecular iridium catalyst designed for meta-borylation of pyridines is now compatible with the ortho-borylation of benzamides, a regioselectivity switch that is counter-intuitive regarding precedents in the literature. In addition, we highlight the role of the cyclohexene additive in avoiding the formation of undesired side-products as well as accelerating the HBpin release event that precedes the catalyst regeneration step, which is highly relevant for the design of powerful and selective iridium borylating catalysts.
Collapse
Affiliation(s)
| | | | - Michele Tomasini
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | | | | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | |
Collapse
|
11
|
Bansal D, Ghahramanzadehasl H, Cardenas-Morcoso D, Desport J, Frache G, Bengasi G, Boscher ND. Directly-Fused Ni(II)Porphyrin Conjugated Polymers with Blocked meso-Positions: Impact on Electrocatalytic Properties. Chemistry 2024; 30:e202400665. [PMID: 38629260 DOI: 10.1002/chem.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 06/19/2024]
Abstract
The oxidative coupling reaction of two Ni(II) porphyrins meso-substituted with three and four phenyl groups, Ni(II) 5,10,15-(triphenyl)porphyrin (NiPh3P) and Ni(II) 5,10,15,20-(tetraphenyl)porphyrin (NiPh4P) respectively, was investigated in a oxidative chemical vapor deposition (oCVD) process. Irrespective of the number of meso-substituents, high-resolution mass spectrometry evidences the formation of oligomeric species containing up to five porphyrin units. UV-Vis-NIR and XPS analyses of the oCVD films highlighted a strong dependence of the intermolecular coupling reaction with the substrate temperature. Specifically, higher substrate temperatures yield lowering of valence band maxima and reduction of the band gap. The formation of conjugated polymeric assemblies results in increased conductivities as compared to their sublimed counterparts. Yet, electrocatalytic measurements exhibit water oxidation onset overpotentials (308 mV for pNiPh3P and 343 mV for pNiPh4P) comparatively higher than the onset overpotential measured for the oCVD film from Ni(II) 5,15-(diphenyl)porphyrin (pNiPh2P), i. e. 283 mV. Although DFT and comparative oCVD studies suggest the formation of directly fused porphyrins involving 'phenyl-mediated' and β-β linkages when reacting tetra-meso-substituted porphyrins, the present findings highlight that multiple direct fusion (β-β/meso-meso/β-β or meso-β/β-meso) is essential for Ni(II) porphyrin-based conjugated polymers to enable a dinuclear radical oxo-coupling operating mechanism for water oxidation at low overpotential and durable catalytic activity.
Collapse
Affiliation(s)
- Deepak Bansal
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Hadi Ghahramanzadehasl
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Drialys Cardenas-Morcoso
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Jessica Desport
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Gilles Frache
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Giuseppe Bengasi
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Nicolas D Boscher
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 28 Avenue des Hautes-Fourneaux, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Onoe J, Noda Y, Wang Q, Harano K, Nakaya M, Nakayama T. Structures, fundamental properties, and potential applications of low-dimensional C 60 polymers and other nanocarbons: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2346068. [PMID: 38774495 PMCID: PMC11107862 DOI: 10.1080/14686996.2024.2346068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Since carbon (C) atom has a variety of chemical bonds via hybridization between s and p atomic orbitals, it is well known that there are robust carbon materials. In particular, discovery of C60 has been an epoch making to cultivate nanocarbon fields. Since then, nanocarbon materials such as nanotube and graphene have been reported. It is interesting to note that C60 is soluble and volatile unlike nanotube and graphene. This indicates that C60 film is easy to be produced on any kinds of substrates, which is advantage for device fabrication. In particular, electron-/photo-induced C60 polymerization finally results in formation of one-dimensional (1D) metallic peanut-shaped and 2D dumbbell-shaped semiconducting C60 polymers, respectively. This enables us to control the physicochemical properties of C60 films using electron-/photo-lithography techniques. In this review, we focused on the structures, fundamental properties, and potential applications of the low-dimensional C60 polymers and other nanocarbons such as C60 peapods, wavy-structured graphene, and penta-nanotubes with topological defects. We hope this review will provide new insights for producing new novel nanocarbon materials and inspire broad readers to cultivate new further research in carbon materials.
Collapse
Affiliation(s)
- Jun Onoe
- Department of Energy Science and Engineering, Nagoya University, Nagoya, Japan
| | - Yusuke Noda
- Department of Information and Communication Engineering, Okayama Prefectural University, Soja, Japan
| | - Qian Wang
- School of Materials Science and Engineering/Center for Applied Physics and Technology, Peking University, Beijing, China
| | - Koji Harano
- Center for Basic Research on Materials, and Division of International Collaborations and Public Relations, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Masato Nakaya
- Department of Energy Science and Engineering, Nagoya University, Nagoya, Japan
| | - Tomonobu Nakayama
- Center for Basic Research on Materials, and Division of International Collaborations and Public Relations, National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
13
|
Shah SJ, Singh A, Goswami D, Ishida M, Rath SP. Reversible open-closed conformational switching of nano-size metalloporphyrin dimers triggered by light and temperature. Dalton Trans 2024; 53:6758-6765. [PMID: 38533553 DOI: 10.1039/d4dt00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The current work demonstrates the reversible control of substantial molecular motion in 'nano-sized' molecules, where two structural isomers can 'open' and 'close' their cavities in response to light or heat. The isomers differ widely in their photophysical properties, including colour, polarity, two-photon absorption and π-conjugation, and can easily be separated through column chromatography and thus have wide applicability.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ajitesh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
14
|
Shee NK, Kim HJ. Recent Developments in Porphyrin-Based Metal-Organic Framework Materials for Water Remediation under Visible-Light Irradiation. Int J Mol Sci 2024; 25:4183. [PMID: 38673768 PMCID: PMC11050243 DOI: 10.3390/ijms25084183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Access to clean drinking water is a basic requirement, and eliminating pollutants from wastewater is important for saving water ecosystems. The porous structure and surface characteristics of metal-organic frameworks (MOFs) can function as a perfect scaffold for removing toxic compounds from wastewater. Porphyrins are promising building blocks for constructing MOFs. Porphyrin-based metal-organic frameworks (P-MOFs) have been fabricated using porphyrin ligands, metal clusters, or ions. These materials can harvest light from a wide region of the solar spectrum, and their framework morphology and physicochemical properties can be controlled by changing their peripheral subunits or metal ions. These porous crystalline materials have generated interest because of their distinctive characteristics, including large permanent porosity, interesting surface morphology, broad conformational diversity, high photostability, and semiconducting nature. This article discusses the recent progress and usefulness of P-MOFs. The fabrication procedures of P-MOFs are discussed, followed by the adsorptive and photocatalytic removal of contaminants from wastewater. The relationships between the geometries of P-MOFs and their light-harvesting and charge-transfer mechanisms for the photocatalytic degradation of pollutants are highlighted. Finally, some future perspectives and obstacles in the photodegradation usage of P-MOFs are discussed, along with feasible research directions to standardize efficient photocatalysts for improved photodegradation for water treatment.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
15
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
16
|
Shee NK, Kim HJ. Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives. Molecules 2024; 29:611. [PMID: 38338355 PMCID: PMC10856464 DOI: 10.3390/molecules29030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. Porphyrin-based nanostructures can be fabricated using several methods, including ionic self-assembly, metal-ligand coordination, reprecipitation, and surfactant-assisted methods. The synthetic utility of porphyrins permits the organization of porphyrin building blocks into nanostructures, which can remarkably improve their light-harvesting properties and photostability. The tunable functionalization and distinctive structures of porphyrin nanomaterials trigger the junction of the charge-transfer mechanism and facilitate the photodegradation of pollutant dyes. Finally, porphyrin nanomaterials or porphyrin/metal nanohybrids are explored to amplify their photocatalytic efficiency.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
17
|
Tang C, Li X, Hu Y, Du X, Wang S, Chen B, Wang S. Porphyrin-Based Metal-Organic Framework Materials: Design, Construction, and Application in the Field of Photocatalysis. Molecules 2024; 29:467. [PMID: 38257379 PMCID: PMC10819500 DOI: 10.3390/molecules29020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Metal-organic frameworks (MOFs) are a novel category of porous crystalline materials with an exceptionally high surface area and adjustable pore structure. They possess a designable composition and can be easily functionalized with different units. Porphyrins with conjugated tetrapyrrole macrocyclic structures can absorb light from ultraviolet to visible light regions, and their structures and properties can be facilely regulated by altering their peripheral groups or central metal ions. Porphyrin-based MOFs constructed from porphyrin ligands and metal nodes combine the unique features of porphyrins and MOFs as well as overcoming their respective limitations. This paper reviewed the design and construction, light absorption and charge transfer pathways, and strategy for improving the photocatalytic performance of porphyrin-based MOFs, and highlighted the recent progress in the field of CO2 reduction, hydrogen evolution, organic synthesis, organic pollutant removal, and nitrogen fixation. The intrinsic relationships between the structure and the property of porphyrin-based MOFs received special attention, especially the relationships between the arrangements of porphyrin ligands and metal nods and the charge transfer mechanism. We attempted to provide more valuable information for the design and construction of advanced photocatalysts in the future. Finally, the challenges and future perspectives of the porphyrin-based MOFs are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (C.T.); (X.L.); (Y.H.); (X.D.); (S.W.); (B.C.)
| |
Collapse
|
18
|
Guo Y, Li L, Huang S, Sun H, Shao Y, Li Z, Song F. Exploring Linker-Group-Guided Self-Assembly of Ultrathin 2D Supramolecular Nanosheets in Water for Synergistic Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54851-54862. [PMID: 37968254 DOI: 10.1021/acsami.3c13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Water is ubiquitous in natural systems where it builds an essential environment supporting biological supramolecular polymers to function, transport, and exchange. However, this extreme polar environment becomes a hindrance for the superhydrophobic functional π-conjugated molecules, causing significant negative impacts on regulating their aggregation pathways, structures, and properties of the subsequently assembled nanomaterials. It especially makes the self-assembly of ultrathin two-dimensional (2D) functional nanomaterials by π-conjugated molecules a grand challenge in water, although ultrathin 2D functional nanomaterials have exhibited unique and superior properties. Herein, we demonstrate the organic solvent-free self-assembly of one-molecule-thick 2D nanosheets based on exploring how side chain modifications rule the aggregation behaviors of π-conjugated macrocycles in water. Through an in-depth understanding of the roles of linking groups for side chains on affecting the aggregation behaviors of porphyrins in water, the regulation of molecular arrangement in the aggregated state (H- or J-type aggregation) was attained. Moreover, by arranging ionic porphyrins into 2D single layers through J-aggregation, the ultrathin nanosheets (thickness ≈ 2 nm) with excellent solubility and stability were self-assembled in pure water, which demonstrated both outstanding 1O2 generation and photothermal capability. The ultrathin nanosheets were further investigated as metal- and carrier-free nanodrugs for synergetic phototherapies of cancers both in vitro and in vivo, which are highly desirable by combining the advantages and avoiding the disadvantages of the single use of PDT or PTT.
Collapse
Affiliation(s)
- Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lukun Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yutong Shao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
19
|
Matienko LI, Mil EM, Albantova AA, Goloshchapov AN. The Role H-Bonding and Supramolecular Structures in Homogeneous and Enzymatic Catalysis. Int J Mol Sci 2023; 24:16874. [PMID: 38069195 PMCID: PMC10707003 DOI: 10.3390/ijms242316874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The article analyzes the role of hydrogen bonds and supramolecular structures in enzyme catalysis and model systems. Hydrogen bonds play a crucial role in many enzymatic reactions. However, scientists have only recently attempted to harness the power of hydrogen bonds in homogeneous catalytic systems. One of the newest directions is associated with attempts to control the properties of catalysts by influencing the "second coordination sphere" of metal complexes. The role H-bonding, and the building of stable supramolecular nanostructures due to intermolecular H-bonds, based on catalytic active heteroligand iron (Fe) or nickel (Ni) complexes formed during hydrocarbon oxidations were assessed via the AFM (Atomic-force microscopy) method, which was proposed and applied by authors of this manuscript. Th is article also discusses the roles of hydrogen bonds and supramolecular structures in oxidation reactions catalyzed by heteroligand Ni and Fe complexes, which are not only effective homogeneous catalysts but also structural and functional models of Oxygenases.
Collapse
Affiliation(s)
- Ludmila I. Matienko
- N.M. Emanuel Institution of Biochemical Physics Russian Academy of Science, 4 Kosygin Str., 119334 Moscow, Russia; (E.M.M.); (A.A.A.); (A.N.G.)
| | | | | | | |
Collapse
|
20
|
Shah SJ, Pandit YA, Garribba E, Ishida M, Rath SP. Stable Dication Diradicals of Triply Fused Metallo Chlorin-Porphyrin Heterodimers: Impact of the Bridge on the Control of Spin Coupling to Reactivity. Chemistry 2023; 29:e202301963. [PMID: 37602834 DOI: 10.1002/chem.202301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
We report an unexpected rearrangement, controlled by the nature of the bridge, leading to the formation of novel, remarkably stable triply fused dinickel(II)/dicopper(II) chlorin-porphyrin dication diradical heterodimers in excellent yields. Here, a dipyrromethene bridge gets completely fused between two porphyrin macrocycles with two new C-C and one C-N bonds. The two macrocycles exhibit extensive π-conjugation through the bridge, which results in an antiferromagnetic coupling between the two π-cation radicals. In addition, the macrocyclic distortion also favours a rare intramolecular ferromagnetic interaction between the CuII and π-cation radical spins to form a triplet state. The structural and electronic perturbation in the unconjugated dication diradical possibly enables the bridging pyrrolic nitrogen to undergo a nucleophilic attack at the nearby β-carbon of the porphyrin π-cation radical with a computed free energy barrier of >20 kcal mol-1 which was supplied in the form of reflux condition to initiate such a rearrangement process. UV-vis, EPR and ESI-MS spectroscopies were used to monitor the rearrangement process in situ in order to identify the key reactive intermediates leading to such an unusual transformation.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
21
|
Akbar A, Khan S, Chatterjee T, Ghosh M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112796. [PMID: 37804542 DOI: 10.1016/j.jphotobiol.2023.112796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
This comprehensive review provides the current trends and recent developments of porphyrin-based photosensitizers. We discuss their evolution from first-generation to third-generation compounds, including cutting-edge nanoparticle-integrated derivatives, and explores their pivotal role in advancing photodynamic therapy (PDT) for enhanced cancer treatment. Integrating porphyrins with nanoparticles represents a promising avenue, offering improved selectivity, reduced toxicity, and heightened biocompatibility. By elucidating recent breakthroughs, innovative methodologies, and emerging applications, this review provides a panoramic snapshot of the dynamic field, addressing challenges and charting prospects. With a focus on harnessing reactive oxygen species (ROS) through light activation, PDT serves as a minimally invasive therapeutic approach. This article offers a valuable resource for researchers, clinicians, and PDT enthusiasts, highlighting the potential of porphyrin photosensitizers to improve the future of cancer therapy.
Collapse
Affiliation(s)
- Alibasha Akbar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mihir Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
22
|
Wang Z, Zhu W, Li J, Shao Y, Li X, Shi H, Zhao J, Zhou Z, Wang Y, Yan X. Superlow Power Consumption Memristor Based on Borphyrin-Deoxyribonucleic Acid Composite Films as Artificial Synapse for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49390-49401. [PMID: 37815786 DOI: 10.1021/acsami.3c09300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Memristor synapses based on green and pollution-free organic materials are expected to facilitate biorealistic neuromorphic computing and to be an important step toward the next generation of green electronics. Metalloporphyrin is an organic compound that widely exists in nature with good biocompatibility and stable chemical properties, and has already been used to fabricate memristors. However, the application of metalloporphyrin-based memristors as synaptic devices still faces challenges, such as realizing a high switching ratio, low power consumption, and bidirectional conductance modulation. We developed a memristor that improves the resistive switching (RS) characteristics of Zn(II)meso-tetra(4-carboxyphenyl) porphine (ZnTCPP) by combining it with deoxyribonucleic acid (DNA) in a composite film. The as-fabricated ZnTCPP-DNA-based device showed excellent RS memory characteristics with a sufficiently high switching ratio of up to ∼104, super low power consumption of ∼39.56 nW, good cycling stability, and data retention capability. Moreover, bidirectional conductance modulation of the ZnTCPP-DNA-based device can be controlled by modulating the amplitudes, durations, and intervals of positive and negative pulses. The ZnTCPP-DNA-based device was used to successfully simulate a series of synaptic functions including long-term potentiation, long-term depression, spike time-dependent plasticity, paired-pulse facilitation, excitatory postsynaptic current, and human learning behavior, which demonstrates its potential applicability to neuromorphic devices. A two-layer artificial neural network was used to demonstrate the digit recognition ability of the ZnTCPP-DNA-based device, which reached 97.22% after 100 training iterations. These results create a new avenue for the research and development of green electronics and have major implications for green low-power neuromorphic computing in the future.
Collapse
Affiliation(s)
- Zhongrong Wang
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Wenbo Zhu
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Jiahang Li
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Yiduo Shao
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Xiaohan Li
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Haowan Shi
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Jianhui Zhao
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Zhenyu Zhou
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Xiaobing Yan
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| |
Collapse
|
23
|
Poddutoori PK. Advances and opportunities in Group 15 porphyrin chemistry. Dalton Trans 2023; 52:14287-14296. [PMID: 37791453 DOI: 10.1039/d3dt02583g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The chemistry of Group 15 porphyrins has been established relatively well among the main-group porphyrins. Thus far phosphorus(III), phosphorus(V), arsenic(III), arsenic(V), antimony(III), antimony(V), and bismuth(III) porphyrins have been reported. Their unique axial-bonding ability, rich redox, and optical properties offer an advantage over other main-group or transition metal porphyrins. They could be excellent candidates for a variety of applications such as solar energy harvesting, molecular electronics, molecular catalysis, and biomedical applications. Despite these unique properties, the Group 15 porphyrins are not exploited at their fullest capacity. Recently, there has been some interest, where the richness of Group 15 porphyrin chemistry was explored for some of the above applications. In this context, this article summarizes recent advances in Group 15 porphyrin chemistry and attempts to unravel the tremendous opportunities of these remarkable porphyrins.
Collapse
Affiliation(s)
- Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, USA.
| |
Collapse
|
24
|
Niiuchi A, Tojo T, Kondo T, Yuasa M. Permeation behavior of porphyrin derivatives with different functional group positions across cancer cell membranes. Bioorg Med Chem Lett 2023; 94:129463. [PMID: 37647999 DOI: 10.1016/j.bmcl.2023.129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Porphyrin, which shows selective accumulation in cancer cells, has attracted attention as a drug carrier. The influences of the functional porphyrin positions (β- and meso-positions) on porphyrin accumulation must be understood. In this work, we focused on the investigation of the phenyl functional group whose β-position influences cancer cell accumulation through direct membrane permeation and endocytosis. The endocytic pathway, in particular, is influenced by both clathrin-dependent and caveolae-dependent endocytosis.
Collapse
Affiliation(s)
- Ayano Niiuchi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshifumi Tojo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
25
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
26
|
Lee CJ, Shee NK, Kim HJ. Fabrication and properties of Sn(iv) porphyrin-linked porous organic polymer for environmental applications. RSC Adv 2023; 13:24077-24085. [PMID: 37577097 PMCID: PMC10415751 DOI: 10.1039/d3ra04117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
A robust porous organic polymer cross-linked by Sn(iv) porphyrin (SnPOP) was fabricated by reacting trans-dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(iv) (SnP) with fluorinated polyimide (FPI) via sol-gel formation, followed by supercritical CO2 drying. The structural and porous properties of SnPOP were characterized using FT-IR, UV-vis, and fluorescence spectroscopies, along with field-emission scanning electron microscopy and gas sorption experiments. The reaction between the SnP's oxophilic Sn(iv) center and FPI's carboxylic acid moiety resulted in a controllable cross-linked porous texture. This material features the desirable physical properties of porphyrin and exhibits mesoporous structures with a relatively high surface area. SnPOP is thermally stable at temperatures up to 600 °C and highly resistant to boiling water, strong acids, and bases, owing to its assembly via formation of covalent bonds instead of typically weaker hydrogen bonds. The modified chemical and morphological structures of SnPOP showed an impressive CO2 uptake capacity of 58.48 mg g-1 at 273 K, with a preference for CO2 over N2. SnPOP showed significant efficiency in removing pollutant dyes, such as methylene blue and methyl orange, from dye-contaminated water. Additionally, SnPOP was a photocatalyst for fabricating silver nanoparticles of regular shape and size. All these properties make SnPOP a potential candidate for environmental applications like pollutant removal, gas storage, and separation.
Collapse
Affiliation(s)
- Chang-Ju Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Nirmal Kumar Shee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| |
Collapse
|
27
|
Edo-Osagie A, Serillon D, Ruani F, Barril X, Gourlaouen C, Armaroli N, Ventura B, Jacquot de Rouville HP, Heitz V. Multi-Responsive Eight-State Bis(acridinium-Zn(II) porphyrin) Receptor. J Am Chem Soc 2023; 145:10691-10699. [PMID: 37154483 DOI: 10.1021/jacs.3c01089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.
Collapse
Affiliation(s)
- Amy Edo-Osagie
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Dylan Serillon
- Departament de Farmacia i Tecnología Farmaceutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Federica Ruani
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Xavier Barril
- Departament de Farmacia i Tecnología Farmaceutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Henri-Pierre Jacquot de Rouville
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
28
|
Li M, Dong S, Cao S, Cui Q, Chen Q, Ning J, Li L. A rapid aroma quantification method: Colorimetric sensor-coupled multidimensional spectroscopy applied to black tea aroma. Talanta 2023; 263:124622. [PMID: 37267888 DOI: 10.1016/j.talanta.2023.124622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
Aroma affects the quality of black tea, and the rapid evaluation of aroma quality is the key to realize the intelligent processing of black tea. A simple colorimetric sensor array coupled with a hyperspectral system was proposed for the rapid quantitative detection of key volatile organic compounds (VOCs) in black tea. Feature variables were screened based on competitive adaptive reweighted sampling (CARS). Furthermore, the performance of the models for VOCs quantitative prediction was compared. For the quantitative prediction of linalool, benzeneacetaldehyde, hexanal, methyl salicylate, and geraniol, the CARS-least-squares support vector machine model's correlation coefficients were 0.89, 0.95, 0.88, 0.80, and 0.78, respectively. The interaction mechanism of array dyes with VOCs was based on density flooding theory. The optimized highest occupied molecular orbital levels, lowest unoccupied molecular orbital energy levels, dipole moments, and intermolecular distances were determined to be strongly correlated with interactions between array dyes and VOCs.
Collapse
Affiliation(s)
- Menghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China
| | - Shuai Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China
| | - Shuci Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China
| | - Qingqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education,Anhui Provincial Laboratory, Hefei, 230036, Anhui, China.
| |
Collapse
|
29
|
Basova TV, Belykh DV, Vashurin AS, Klyamer DD, Koifman OI, Krasnov PO, Lomova TN, Loukhina IV, Motorina EV, Pakhomov GL, Polyakov MS, Semeikin AS, Stuzhin PA, Sukhikh AS, Travkin VV. Tetrapyrrole Macroheterocyclic Compounds. Structure–Property Relationships. J STRUCT CHEM+ 2023; 64:766-852. [DOI: 10.1134/s0022476623050037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 01/06/2025]
|
30
|
Li X, Tang C, Zhang L, Song M, Zhang Y, Wang S. Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics (Basel) 2023; 8:biomimetics8020171. [PMID: 37092423 PMCID: PMC10123739 DOI: 10.3390/biomimetics8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Photosynthesis occurs in high plants, and certain organisms show brilliant technology in converting solar light to chemical energy and producing carbohydrates from carbon dioxide (CO2). Mimicking the mechanism of natural photosynthesis is receiving wide-ranging attention for the development of novel materials capable of photo-to-electric, photo-to-chemical, and photocatalytic transformations. Porphyrin, possessing a similar highly conjugated core ring structure to chlorophyll and flexible physical and chemical properties, has become one of the most investigated photosensitizers. Chemical modification and self-assembly of molecules as well as constructing porphyrin-based metal (covalent) organic frameworks are often used to improve its solar light utilization and electron transfer rate. Especially porphyrin-based covalent organic frameworks (COFs) in which porphyrin molecules are connected by covalent bonds combine the structural advantages of organic frameworks with light-capturing properties of porphyrins and exhibit great potential in light-responsive materials. Porphyrin-based COFs are expected to have high solar light utilization, fast charge separation/transfer performance, excellent structural stability, and novel steric selectivity by special molecular design. In this paper, we reviewed the research progress of porphyrin-based COFs in the design, synthesis, properties, and applications. We focused on the intrinsic relationship between the structure and properties, especially the photoelectric conversion properties and charge transfer mechanism of porphyrin-based COFs, and tried to provide more valuable information for the design of advanced photosensitizers. The applications of porphyrin-based COFs in photocatalysis and phototherapy were emphasized based on their special structure design and light-to-electric (or light-to-heat) conversion control.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chuanyin Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Mingyang Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yujie Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
31
|
Liu X, Zhan W, Gao G, Jiang Q, Zhang X, Zhang H, Sun X, Han W, Wu FG, Liang G. Apoptosis-Amplified Assembly of Porphyrin Nanofiber Enhances Photodynamic Therapy of Oral Tumor. J Am Chem Soc 2023; 145:7918-7930. [PMID: 36987560 DOI: 10.1021/jacs.2c13189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral cancer, having high recurrence and metastasis features. In addition to surgery, photodynamic therapy (PDT) is considered as another effective approach for OSCC treatment. The water solubility of currently available PDT photosensitizers (PSs) is poor, lowering their singlet oxygen (1O2) yield and consequent PDT efficiency. Strategies of PS assembly have been reported to increase 1O2 yield, but it is still possible to further enhance PDT efficiency. In this work, we utilized apoptosis to amplify the assembly of porphyrin nanofibers for enhanced PDT of OSCC. A water-soluble porphyrin derivative, Ac-Asp-Glu-Val-Asp-Asp-TPP (Ac-DEVDD-TPP), was designed for this purpose. Upon caspase-3 (Casp3, an activated enzyme during apoptosis) cleavage and laser irradiation, Ac-DEVDD-TPP was converted to D-TPP, which spontaneously self-assembled into porphyrin nanofibers, accompanied by 1.4-fold and 2.1-fold 1O2 generations in vitro and in cells, respectively. The as-formed porphyrin nanofiber induced efficient cell apoptosis and pyroptosis. In vivo experiments demonstrated that, compared with the scrambled control compound Ac-DEDVD-TPP, Ac-DEVDD-TPP led to 6.2-fold and 1.3-fold expressions of Casp3 in subcutaneous and orthotopic oral tumor models, respectively, and significantly suppressed the tumors. We envision that our strategy of apoptosis-amplified porphyrin assembly might be applied for OSCC treatment in the clinic in the near future.
Collapse
|
32
|
MTHPP monoacetic ester: unexpected formation, zinc metalation, thermal and photophysical properties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn the current investigation we report an unexpected methyl esterification occurred during the coupling reaction of mTHPP monoacetic acid 2 with 3-amino-1,2,4-triazole in the presence of HBTU/DIPEA. The mechanism of this unexpected methyl esterification was studied, and the structure of the formed methyl ester 5 was confirmed by the means of 1H, 13C NMR in addition to (MALDI-TOF and ESI-HRMS) spectrometry. The formation of 5 during the coupling reaction was also chemically supported by an alternative synthetic method involving a direct monosubstitution reaction of mTHPP 1 with methyl bromoacetate. We also investigated the metalation of 5 with zinc and studied the thermal properties along with differential scanning calorimetry (DSC) of the zinc porphyrin 6. The photophysical properties of porphyrin methyl ester 5 and its zinc complex 6 were also investigated.
Graphical Abstract
Collapse
|
33
|
Liu Q, Gao J, Zhang Y, Liu X, Zhang X, Lin Q, Zeng W, Zhou Z. A trans-ortho asymmetrically di-strapped metalloporphyrin integrating three key structural features of ligand in heme. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
34
|
Shukaev AV, Ermakova EV, Fang Y, Kadish KM, Nefedov SE, Tafeenko VA, Michalak J, Bessmertnykh-Lemeune A. Synthesis and Self-Assembly of β-Octa[(4-Diethoxyphosphoryl)phenyl]porphyrins. Inorg Chem 2023; 62:3431-3444. [PMID: 36752761 DOI: 10.1021/acs.inorgchem.2c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The β-substituted porphyrinoids commonly used to form functional assembled systems in nature yet are still scarcely used in material chemistry probably due to the laborious synthesis of these compounds. In this work, β-octa[(4-diethoxyphosphoryl)phenyl]porphyrin (2HOPPP) and its metal (Zn(II), Cd(II), Cu(II), and Ni(II)) complexes were prepared in good yields. These highly soluble chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence), electrochemical, and spectroelectrochemical methods. Attachment of the electron-deficient residue (ArP(O)(OEt)2) to the porphyrin macrocycle leads to easier reductions and harder oxidations of the macrocycle for all complexes studied as compared to corresponding meso-tetra[4-(diethoxyphosphoryl)phenyl]porphyrin derivatives reported previously. We demonstrated that the strong electron-deficient character of the MOPPP porphyrins results principally from the increase in the number of electron-withdrawing groups at the periphery of the tetrapyrrolic macrocycle. Electron-deficient porphyrins are highly required in supramolecular and material chemistry in part due to their ability to form supramolecular assemblies via the coordination of axial ligands to the central metal atom. According to single-crystal X-ray data, ZnOPPP forms in the crystalline phase dimers in which each of the two tetrapyrrolic macrocycles is connected through an unusual combination of hydrogen bonding of two phosphoryl groups and the water molecules axially coordinated to the zinc atom of the partner molecule. The involvement of water molecules in porphyrin binding allows for an increase of distance between two porphyrin mean N4 planes, up to 4.478 Å. The offset of phosphoryl groups attached to the macrocycle through a 1,4-phenylene spacer withdraws the whole porphyrin macrocycle of one molecule from spatial overlap with the macrocycle of a partner molecule and increases the Zn-Zn distance up to 10.372 Å. This still unknown type of porphyrin dimers allows one to get deeper insights into the organization of naturally occurring tetrapyrrolic macrocycles. ZnOPPP also forms a labile dimeric complex in 5.3 × 10-7-5.8 × 10-5 M chloroform solutions. In contrast, other complexes prepared in this work exist as monomeric species under these experimental conditions. The self-association constant of ZnOPPP has been determined by electronic absorption spectroscopy.
Collapse
Affiliation(s)
- Anton V Shukaev
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Sergey E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Victor A Tafeenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France.,Laboratoire de Chimie, UMR 5182, CNRS, ENS de Lyon, 46 allée d'Italie, Lyon 69364, France
| |
Collapse
|
35
|
Shee NK, Kim HJ. Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye. Int J Mol Sci 2022; 23:13702. [PMID: 36430177 PMCID: PMC9696627 DOI: 10.3390/ijms232213702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
36
|
Sharma JK, Bayard BJ, Zosel N, Ali SS, Holzer N, Nesterov VN, Karr PA, D'Souza F, Poddutoori PK. Hypervalent Phosphorus(V) Porphyrins with meso-Methoxyphenyl Substituents: Significance of the Number and Position of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorg Chem 2022; 61:16573-16585. [PMID: 36223643 DOI: 10.1021/acs.inorgchem.2c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the photophysical and redox properties as a function of meso-aryl units, a series of hypervalent phosphorus(V) porphyrins, PP(OMe)2·PF6, PMP(OMe)2·PF6, PDMP(OMe)2·PF6, P345TMP(OMe)2·PF6, and P246TMP(OMe)2·PF6, with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), 3,4,5-trimethoxyphenyl (345TMP), and 2,4,6-trimethoxyphenyl (246TMP) units, respectively, have been synthesized. The P(+5) in the cavity makes the porphyrin ring electron-poor, whereas the methoxy groups make the meso-phenyl rings electron-rich. The presence of electron-rich and electron-poor portions within the porphyrin molecule promoted an intramolecular charge transfer (ICT). Also, the study suggests that the ICT depends on the number and position of the methoxy groups. The ICT is more prominent in m-methoxy-substituted phosphorus(V) porphyrins (PDMP(OMe)2.PF6, P345TMP(OMe)2·PF6) and almost no ICT was found in no-methoxy, o-methoxy, and/or p-methoxy phosphorus(V) porphyrins (PP(OMe)2·PF6, PMP(OMe)2·PF6, P246TMP(OMe)2·PF6). Transient absorption studies indicate that the ICT takes place on the picosecond time scale. The most striking results come from P246TMP(OMe)2·PF6, where each phenyl ring carries three methoxy units, like the P345TMP(OMe)2·PF6, but it failed to induce the ICT process. Electrochemical studies and time-dependent density functional theory (TD-DFT) calculations were used to support the experimental results. This study extensively explores why and how slight variations in meso-aryl substitutions lead to intricate changes in the photophysical and redox properties of phosphorus(V) porphyrins.
Collapse
Affiliation(s)
- Jatan K Sharma
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Brandon J Bayard
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Nick Zosel
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Syeda S Ali
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Noah Holzer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Prashanth K Poddutoori
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
37
|
Patil VB, Ilager D, Tuwar SM, Mondal K, Shetti NP. Nanostructured ZnO-Based Electrochemical Sensor with Anionic Surfactant for the Electroanalysis of Trimethoprim. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100521. [PMID: 36290489 PMCID: PMC9598839 DOI: 10.3390/bioengineering9100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
In this research, detection of trimethoprim (TMP) was carried out using a nanostructured zinc oxide nanoparticle-modified carbon paste electrode (ZnO/CPE) with an anionic surfactant and sodium dodecyl sulphate (SDS) with the help of voltametric techniques. The electrochemical nature of TMP was studied in 0.2 M pH 3.0 phosphate-buffer solution (PBS). The developed electrode displayed the highest peak current compared to nascent CPE. Effects of variation in different parameters, such as pH, immersion time, scan rate, and concentration, were investigated. The electrode process of TMP was irreversible and diffusion controlled with two electrons transferred. The effective concentration range (8.0 × 10-7 M-1.0 × 10-5 M) of TMP was obtained by varying the concentration with a lower limit of detection obtained to be 2.58 × 10-8 M. In addition, this approach was effectively employed in the detection of TMP in pharmaceutical dosages and samples of urine with the excellent recovery data, suggesting the potency of the developed electrode in clinical and pharmaceutical sample analysis.
Collapse
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Davalasab Ilager
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, Karnataka, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| |
Collapse
|
38
|
Shahraki S. Schiff base compounds as artificial metalloenzymes. Colloids Surf B Biointerfaces 2022; 218:112727. [PMID: 35921691 DOI: 10.1016/j.colsurfb.2022.112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
Much research has been done on traditional homogeneous metal catalysts and enzymatic catalysts, but recently a new class of hybrid catalysts called synthetic (artificial) metalloenzymes has been considered by researchers. Metalloenzymes as hybrid catalysts (host-guest systems) have been shown that combine the properties of a homogeneous and also enzymatic catalyst. The hybrid catalyst will have added value such as enantioselectivity or chemo-selectivity. This review focuses on Schiff base complexes that either act as homogeneous artificial enzymes or contribute to the structure of a host in the preparation of hybrid metalloenzymes. Because this approach can virtually be applied to any bio- or synthetic host or guest coordination complex, the details of hybrid catalysts seem important for advance in catalysis.
Collapse
|
39
|
Sn(IV) Porphyrin-Based Ionic Self-Assembled Nanostructures and Their Application in Visible Light Photo-Degradation of Malachite Green. Catalysts 2022. [DOI: 10.3390/catal12070799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of porphyrin-based ionic complexes were prepared through the reaction of two porphyrin precursors, 5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrin H2TPhPyP (1) and trans-dihydroxo [5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrinato]tin(IV) Sn(OH)2TPhPyP (2), with various acids (HCl, HNO3, CF3COOH, H2SO4, H2CO3, and H3PO4). The complexes were characterized via elemental analysis, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet (UV)-visible spectroscopy, fluorescence spectroscopy, and field-emission scanning electron microscopy (FE-SEM). Each compound exhibited different results for UV-visible, fluorescence, FT-IR, and FE-SEM studies depending on the counter anions. The complexes possessed different self-assembled nanostructures based on electronic interactions between the cations of compounds 1 and 2 with different counter anions. These aggregated species are stabilized by electrostatic forces and the π-π stacking interactions between the two porphyrin rings, in which the counter anions play an important bridging role. The counter anions also play an important role in controlling the morphology and photocatalytic properties of the as-developed materials. The complexes were then used for the photocatalytic degradation of the malachite green (MG) dye in aqueous media under visible light irradiation for up to 70 min. A morphology-dependent photocatalytic degradation of the MG dye was observed for all the ionic complexes, with efficiencies ranging from 50% to 95%.
Collapse
|
40
|
Romanenko NR, Kuzmin AV, Mikhailenko MV, Faraonov MA, Khasanov SS, Yudanova EI, Shestakov AF, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Trinuclear coordination assemblies of low-spin dicyano manganese(II) ( S = 1/2) and iron(II) ( S = 0) phthalocyanines with manganese(II) acetylacetonate, tris(cyclopentadienyl)gadolinium(III) and neodymium(III). Dalton Trans 2022; 51:9770-9779. [PMID: 35704389 DOI: 10.1039/d2dt01052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of MnIIPc, FeIIPc or FeIIPcCl16 with KCN in the presence of cryptand[2.2.2] yielded dicyano-complexes {cryptand(K+)}2{MII(CN)2(macrocycle2-)}2-·XC6H4Cl2 (M = Mn and Fe, X = 1 and 2) that were used for the preparation of trinuclear assemblies of the general formula {cryptand(K+)}2{MII(CN)2Pc·(ML)2}2-·nC6H4Cl2 (MII = MnII and FeII; n = 1, 4 and 5). These assemblies were formed via coordination of two manganese(II) acetylacetonate (ML = MnII(acac)2, S = 5/2), tris(cyclopentadienyl)gadolinium (ML = Cp3GdIII, S = 7/2) or tris(cyclopentadienyl)neodymium (ML = Cp3NdIII, S = 3/2) units to the nitrogen atoms of bidentate cyano ligands. The N(CN)-Mn{MnII(acac)2} bond is 2.129(3) Å long but the bonds are elongated to 2.43-2.49 Å for tris(cyclopentadienyl)lanthanides. {Cryptand(K+)}2{MnII(CN)2Pc·(MnII(acac)2)2}2-·5C6H4Cl2 (2) contains three Mn(II) ions in different spin states (S = 5/2 and 1/2). Strong antiferromagnetic coupling of spins observed between them with the exchange interaction (J) of -17.6 cm-1 enables the formation of a high S = 9/2 spin state for {MnII(CN)2Pc·(MnII(acac)2)2}2- dianions at 2 K. The estimated exchange interaction between MnII (S = 1/2) and GdIII (S = 7/2) spins in {MnII(CN)2Pc·(Cp3GdIII)2}2- is only -1.1 cm-1, and in contrast to 2, nearly independent GdIII and MnII centers are formed. As a result, no transition to the high-spin state is observed in {MnII(CN)2Pc·(Cp3GdIII)2}2-. The {MnII(CN)2Pc·(Cp3NdIII)2}2- and{FeII(CN)2Pc·(Cp3NdIII)2}2- dianions with Cp3NdIII show a decrease of χMT values in the whole studied temperature range (300-1.9 K). A similar behaviour was found previously for pristine Cp3NdIII and Cp3NdIII·L complexes (L = alkylisocyanide ligand).
Collapse
Affiliation(s)
- Nikita R Romanenko
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| | - Alexey V Kuzmin
- Institute of Solid State Physics, RAS, Chernogolovka, Moscow region, 142432 Russia
| | - Maxim V Mikhailenko
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| | - Maxim A Faraonov
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| | - Salavat S Khasanov
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Evgeniya I Yudanova
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| | - Alexander F Shestakov
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.,Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.,Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V Konarev
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region, 142432 Russia.
| |
Collapse
|
41
|
Rohal RK, Shanu M, Acharyya JN, Vijaya Prakash G, Sankar M. Synthesis and the spectral, electrochemical, and nonlinear optical properties of β-dicyanovinyl-appended 'push-pull' porphyrins. Dalton Trans 2022; 51:9049-9061. [PMID: 35642589 DOI: 10.1039/d2dt01016j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of "push-pull" porphyrins, MTPP(MN)(TPA)2 (M = 2H, CuII, NiII, and ZnII), having triphenylamine (TPA) and dicyanovinyl (DCN) groups at antipodal positions were synthesized and characterised by UV-Vis, fluorescence and NMR spectroscopic techniques, MALDI-TOF mass spectrometry, cyclic voltammetry, DFT, and elemental analysis, which were then further utilized for third-order nonlinear optical measurements under mild conditions using femtosecond laser pulses. Remarkably, MTPP(MN)(TPA)2 (M = 2H, CuII, NiII, and ZnII) exhibited 21-48 nm and 38-80 nm bathochromic shifts in B and Qx(0,0) bands as compared to the corresponding MTPPs (M = 2H, CuII, NiII, and ZnII); the results are consistent with the effect of enhanced resonance due to TPA and -I effect of DCN moieties. In cyclic voltammetry, the push-pull porphyrins exhibited a cathodic shift (0.13-0.51 V) in their first oxidation potential as compared to the precursor owing to the presence of electron-donating TPA groups. The third-order nonlinear optical responses were recorded using a single-beam femtosecond Z-scan technique to retrieve information about the nonlinear absorption and nonlinear refraction of the samples. The two-photon absorption coefficients (β) are in the range of 0.87 × 10-13 to 4.28 × 10-13 m W-1 and the nonlinear refractive index (n2) in the range of 1.21 × 10-19 to 7.36 × 10-19 m2 W-1. The ultrafast absorption dynamics of the ground-state bleaching (GSB) and photo-induced absorption (PIA) are monitored by femtosecond broadband transient absorption studies. The strong nonlinearity of these push-pull porphyrins makes them potential candidates for nonlinear optical and photonic device applications.
Collapse
Affiliation(s)
- Renu K Rohal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Mohd Shanu
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Jitendra Nath Acharyya
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - G Vijaya Prakash
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
42
|
Koifman OI, Ageeva TA. Main Strategies for the Synthesis of meso-Arylporphyrins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9156840 DOI: 10.1134/s1070428022040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Arylporphyrins as most accessible tetrapyrrole macroheterocycles have always been the focus of attention from researchers concerned with practically useful properties of these compounds. The first syntheses of meso-arylporphyrins date back to about 90 years ago. Up to now, the yields of these compounds have been improved from 5 to 80%. The present review analyzes different ways and strategies for the synthesis of meso-aryl-substituted porphyrins. The most efficient methods that can be scaled up to an industrial level have been identified.
Collapse
Affiliation(s)
- O. I. Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - T. A. Ageeva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
43
|
Ludmila M, Irina Z, Elena M, Anastasia A, Alexander G. The Dual Function of PhOH Included in the Coordination Sphere of the Nickel Complexes in the Processes of Oxidation with Dioxygen. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113502. [PMID: 35684440 PMCID: PMC9182165 DOI: 10.3390/molecules27113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
The role of ligands in the regulation of the catalytic activity of Ni-complexes (Ni(acac)2) in green process-selective ethylbenzene oxidation with O2 into α-phenyl ethyl hydroperoxide is considered in this article. The dual function of phenol (PhOH) included in the coordination sphere of the nickel complex as an antioxidant or catalyst depends on the ligand environment of the metal. The role of intermolecular H-bonds and supramolecular structures (AFM method) in the mechanisms of selective catalysis by nickel complexes in chemical and biological oxidation reactions is analyzed.
Collapse
|
44
|
Sánchez-Resa D, Daidone I, Djemili R, Adrouche S, Durot S, Heitz V, Zanetti-Polzi L, Ventura B. Photophysical and Computational Insights into Ag(I) Complexation of Porphyrinic Covalent Cages Equipped with Triazoles-Incorporating Linkers. J Phys Chem B 2022; 126:3450-3459. [PMID: 35483006 PMCID: PMC9109141 DOI: 10.1021/acs.jpcb.2c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
The photophysical
characterization of four supramolecular complexes
based on covalent cages 2H-S-2H, 2H-L-2H, Zn-S-2H, and Zn-L-2H, consisting in either
two free-base porphyrins or one Zn(II) porphyrin and one free-base
porphyrin connected by four flexible linkers of different lengths
incorporating triazole binding sites, and their Ag(I) complexation
are reported. The complexation processes have been followed by means
of absorption and emission spectroscopies, and a comprehensive computational
study explains the behavior of the free-base porphyrin-containing
cages. Absorption and emission features have been interpreted on the
bases of conformational changes, metalation processes, and modification
of energy transfer efficiencies occurring in the different cases.
In all cages, except 2H-L-2H, the coordination of four
Ag(I) ions to the lateral triazole groups of the linkers leads to
the enlargement of their cavity. Only for 2H-L-2H is
a different behavior observed, where the process of silver metalation
of the porphyrins’ core prevails.
Collapse
Affiliation(s)
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio (Coppito 1), 67010 L'Aquila, Italy
| | - Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Sonia Adrouche
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | | | | |
Collapse
|
45
|
Orfanos E, Ladomenou K, Angaridis P, Coutsolelos AG. Shape dependent photocatalytic H 2 evolution of a zinc porphyrin. Dalton Trans 2022; 51:8009-8014. [PMID: 35546062 DOI: 10.1039/d2dt00556e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen is regarded as a promising molecular fuel in order to produce clean energy, thus it is of great importance to produce and store H2 in order to replace fossil fuels and to resolve the global energy and environmental problems. One strategy to produce hydrogen is the photocatalytic splitting of water. In this study different supramolecular architectures of a Zn(II) porphyrin, showing "flower", octahedral and "manta ray" shaped structures, were obtained using the "good-bad" solvent self-assembly protocol. More specifically, the bad solvent (methanol) was retained and the good solvent was alerted obtaining diverse assemblies. The different structures were studied by scanning electron microscopy, PXRD, UV-Vis and IR spectroscopies. The prepared structures were capable of proton reduction and production of molecular H2 in the presence of 5% w/w Pt-nanoparticles as catalysts and ascorbic acid as a sacrificial electron donor. Moreover, depending on the structure of the chromophore that is formed the amount of H2 produced varies. The maximum H2 production was obtained with the octahedral structures (185.5 μmol g-1 h-1).
Collapse
Affiliation(s)
- Emmanouil Orfanos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece.
| | - Kalliopi Ladomenou
- International Hellenic University, Department of Chemistry, Laboratory of Inorganic Chemistry, Agios Loucas, 65404, Kavala Campus, Greece
| | - Panagiotis Angaridis
- Aristotle University of Thessaloniki, Department of General and Inorganic Chemistry, Faculty of Chemistry, GR-54124 Thessaloniki, Greece
| | - Athanassios G Coutsolelos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece. .,Institute of Electronic Structure and Laser (IESL) Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, GR 70013 Heraklion, Crete, Greece
| |
Collapse
|
46
|
Porphyrins and Phthalocyanines on Solid-State Mesoporous Matrices as Catalysts in Oxidation Reactions. MATERIALS 2022; 15:ma15072532. [PMID: 35407864 PMCID: PMC8999812 DOI: 10.3390/ma15072532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022]
Abstract
The review presents recent examples of heterogenic catalysts based on porphyrins and phthalocyanines loaded on mesoporous materials, such as MCM-41, SBA-15, MCM-48, SBA-16 or Al-MCM-41. Heterogenic approach to catalysis eases recovery, reuse and prevent macrocycle aggregation. In this application, mesoporous silica is a promising candidate for anchoring macrocycle and obtaining a new catalyst. Introduction of porphyrin or phthalocyanine into the mesoporous material may be performed through adsorption of the macrocycle, or by its in situ formation—by reaction of substrates introduced to the pores of the catalytic material. Catalytic reactions studied are oxidation processes, focused on alkane, alkene or arene as substrates. The products obtained are usually epoxides, alcohols, ketones, aldehydes or acids. The greatest interest lies in oxidation of cyclohexane and cyclohexene, as a source of adypic acid and derivatives. Some of the reactions may be viewed as biomimetic processes, resembling processes that occur in vivo and are catalyzed by cytochrome P450 enzyme family.
Collapse
|
47
|
Pandit YA, Shah SJ, Usman M, Sarkar S, Garribba E, Rath SP. Long-Range Intramolecular Spin Coupling through a Redox-Active Bridge upon Stepwise Oxidations: Control and Effect of Metal Ions. Inorg Chem 2022; 61:5270-5282. [PMID: 35323011 DOI: 10.1021/acs.inorgchem.1c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinickel(II) and dicopper(II) porphyrin dimers have been constructed in which two metalloporphyrin units are widely separated by a long unconjugated dipyrrole bridge. Two macrocycles are aligned somewhat orthogonally to each other, while oxidation of the bridge generates a fully π-conjugated butterfly-like structure, which, in turn, upon stepwise oxidations by stronger oxidants result in the formation of the corresponding one- and two-electron-oxidized species exhibiting unusual long-range charge/radical delocalization to produce intense absorptions in the near-infrared (NIR) region and electron paramagnetic resonance (EPR) signals of a triplet state due to interaction between the unpaired spins on the Cu(II) ions. Although the two metal centers have a large physical separation through the bridge (more than 16 Å), they share electrons efficiently between them, behaving as a single unit rather than two independent centers. Detailed UV-vis-NIR, electrospray ionization mass spectrometry, IR, variable-temperature magnetic study, and EPR spectroscopic investigations along with X-ray structure determination of unconjugated, conjugated, and one electron-oxidized complexes have been exploited to demonstrate the long-range electronic communication through the bridge. The experimental observations are also supported by density functional theory (DFT) and time-dependent DFT calculations. The present study highlights the crucial roles played by a redox-active bridge and metal in controlling the long-range electronic communication.
Collapse
Affiliation(s)
- Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
48
|
Shee N, Kim HJ. Three Isomeric Zn(II)-Sn(IV)-Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS OMEGA 2022; 7:9775-9784. [PMID: 35350320 PMCID: PMC8945165 DOI: 10.1021/acsomega.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Three isomeric Zn(II)-Sn(IV)-Zn(II) porphyrin-based triads (T2, T3, and T4) were synthesized by the reaction of common Zn(II) porphyrins (ZnL) with different Sn(IV) porphyrins (SnP n ). The Sn(IV) porphyrin precursors differ with respect to the position of the pyridyl-N atoms. All compounds were characterized by 1H NMR, UV-vis, fluorescence spectroscopy, electrospray ionization-mass spectrometry, and field-emission scanning electron microscopy measurements. In these structures, the intramolecular cooperative metal-ligand coordination of the 3-pyridyl nitrogen in SnP 3 with axial ZnL and the π-π interactions between the adjacent porphyrin triad are the determining factors affecting the nanostructures of T3. Owing to the geometrical constraints of the SnP 2 center, this type of interaction is not possible for T2. Therefore, only the π-π interactions affect the self-assembly process. In the case of SnP 4 , intermolecular coordinative interactions and then π-π interactions are responsible for the nanostructure of T4. The morphology-dependent photocatalytic degradation of methyl orange (MO) dye in aqueous solution under visible light irradiation was observed for these photocatalysts, and the degradation ratio of MO varied from 76 to 94% within 100 min. Nanorod-shaped T3 exhibited higher performance compared to nanosphere T2 and nanoflake T4.
Collapse
Affiliation(s)
- Nirmal
Kumar Shee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
49
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Toluene sensing characteristics of tin oxide-based gas sensor deposited with various amounts of metalloporphyrin. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn this study, the sensing characteristics of tin oxide-based gas sensors deposit with different amounts of metalloporphyrin, which is a functionalization substance, are evaluated. The mass of metalloporphyrin deposited is 3, 10, 20, 30, and 40 mg for 5 different sensors prepared. The deposition of 3 mg of metalloporphyrin result in an island form of functionalization instead of a thin film; meanwhile, thin films with thicknesses of 25, 35, 74, and 92 nm are formed for the other four cases. As the deposition amount of metalloporphyrin increase, the performance of the sensor deteriorate. The samples are prepared by subdividing the amount of metalloporphyrin source to determine the optimized deposition amount. A sample is prepared with deposition amounts ranging between 1 to 10 mg. The sensors deposit with 3–5 mg metalloporphyrin has excellent response, response, and recovery time characteristics.
Collapse
|