1
|
Wang Q, Liang SM, Mao ZC, Ma XL, Wei JH, Huang RZ, Zhang Y. Design, docking optimization, and evaluation of biotin-PEG4-1,8-naphthalimide as a potent and safe antitumor agent with dual targeting of ferroptosis and DNA. RSC Med Chem 2024; 15:1640-1651. [PMID: 38784471 PMCID: PMC11110740 DOI: 10.1039/d4md00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/30/2024] [Indexed: 05/25/2024] Open
Abstract
A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives 4a-4h with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. Docking simulation optimization results indicated that biotin-PEG4-piperazine-1,8-naphthalimide 4d should be the best candidate among these designed compounds 4a-4h, and therefore, we synthesized and evaluated it as a novel antitumor agent. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and MGC-803 and U251 xenograft models identified 4d as a good candidate antitumor agent with potent efficacy and safety profiles, compared with amonafide and temozolomide. The findings of the docking simulations, fluorescence intercalator displacement (FID), western blot, comet, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transmission electron microscopy, and BODIPY-581/591-C11, FerroOrange, and dihydroethidium (DHE) fluorescent probe assays revealed that 4d could induce DNA damage, affect DNA synthesis, and cause cell cycle arrest in the S phase in MGC-803 cells. Also, it could induce lipid peroxidation and thus lead to ferroptosis in MGC-803 cells, indicating that it mainly exerted antitumor effects through dual targeting of ferroptosis and DNA. These results suggested that it was feasible to design, optimize using docking simulation, and evaluate the potency and safety of biotin-PEG-1,8-naphthalimide as a antitumor agent with dual targeting of ferroptosis and DNA, based on a multi-target drug strategy.
Collapse
Affiliation(s)
- Qi Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Si-Min Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Zhi-Chen Mao
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University Guilin 541004 China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541004 China
| |
Collapse
|
2
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
3
|
Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023; 85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 μM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Man Chen
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Yu Zhou
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Shuang-Qiang Liu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Si-Min Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Lin Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| |
Collapse
|
4
|
Sun Z, Zhang J, Zeng F, Zhang S, Chai Z, Luo J, Cao J. Differentially Expressed mRNAs and Potential Mechanisms of
Radiation-Induced TUT4 −/− Esophageal Cell Injury. Dose Response 2022; 20:15593258221136810. [PMCID: PMC9620258 DOI: 10.1177/15593258221136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced esophageal injury remains a limitation for the process of
radiotherapy for lung and esophageal cancer patients. Esophageal epithelial
cells are extremely sensitive to irradiation, nevertheless, factors involved in
the radiosensitivity of esophageal epithelial cells are still unknown. Terminal
uridyl transferase 4 (TUT4) could modify the sequence of miRNAs, which affect
their regulation on miRNA targets and function. In this study, we used
transcriptome sequencing technology to identify mRNAs that were differentially
expressed before and after radiotherapy in esophageal epithelial cells. We
further explored the mRNA expression profiles between wild-type and TUT4
knockout esophageal epithelial cells. Volcano and heatmap plots unsupervised
hierarchical clustering analysis were performed to classify the samples.
Enrichment analysis on Gene Ontology functional annotations and Kyoto
Encyclopedia of Genes and Genomes pathways was performed. We annotated
differential genes from metabolism, genetic information processing,
environmental information processing, cellular processes, and organismal systems
human diseases. The aberrantly expressed genes are significantly enriched in
irradiation-related biological processes, such as DNA replication, ferroptosis,
and cell cycle. Moreover, we explored the distribution of transcription factor
family and its target genes in differential genes. These mRNAs might serve as
therapeutic targets in TUT4-related radiation-induced esophageal injury.
Collapse
Affiliation(s)
- Zhiqiang Sun
- School of Radiation Medicine and
Protection,
Medical
College of Soochow University, Suzhou,
China,Collaborative Innovation Center of
Radiological Medicine of Jiangsu Higher Education
Institutions, Suzhou, China
| | - Jiaqi Zhang
- Department of
Radiotherapy,
The
Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical
University, Changzhou, China
| | - Fanye Zeng
- Second Department of Medical
Oncology,
The Fourth
Affiliated Hospital of Xinjiang Medical
University, Urumqi, China
| | - Shuyu Zhang
- School of Radiation Medicine and
Protection,
Medical
College of Soochow University, Suzhou,
China,Collaborative Innovation Center of
Radiological Medicine of Jiangsu Higher Education
Institutions, Suzhou, China
| | - Zhifang Chai
- School of Radiation Medicine and
Protection,
Medical
College of Soochow University, Suzhou,
China,Collaborative Innovation Center of
Radiological Medicine of Jiangsu Higher Education
Institutions, Suzhou, China
| | - Judong Luo
- Department of
Radiotherapy,
The
Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical
University, Changzhou, China,Judong Luo, Department of Radiotherapy, The
Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University,
Tianning District, Changzhou 213000, China.
| | - Jianping Cao
- School of Radiation Medicine and
Protection,
Medical
College of Soochow University, Suzhou,
China,Collaborative Innovation Center of
Radiological Medicine of Jiangsu Higher Education
Institutions, Suzhou, China
| |
Collapse
|
5
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
6
|
Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS OMEGA 2022; 7:32418-32431. [PMID: 36120022 PMCID: PMC9475620 DOI: 10.1021/acsomega.2c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A Schiff base ligand of o-vanillin and 4-aminoazobenzene and its transition metal complexes of Ni(II), Co(II), Zn(II), Cu(II), Mn(II), and Zr(IV) were prepared under microwave irradiation as a green approach compared to the conventional method. The structures of new compounds have been characterized and elucidated via elemental and spectroscopic analyses. In addition, magnetic susceptibility, electron spin resonance, and electronic spectra of the synthesized complexes explained their geometrical structures. The thermal stability of Cu(II), Zn(II), and Zr(IV) complexes was studied by thermo-gravimetric analyses (TGA). Coats-Redfern and Horowitz-Metzger equations were used to calculate the thermal and dehydration decomposition activities of proposed structures kinetically. Surface morphologies of the solid compounds were imaged by scanning electron microscopy (SEM). The particle size of prepared complexes was measured by using a particle size analyzer at a diffraction angle of 10.9°. The geometry structures of the synthesized compounds were verified utilizing electronic spectra, ESR spectrum, and magnetic moment value. The newly synthesized compounds were screened for antimicrobial activity. Also, the anticancer activity of the free Schiff base ligand and its metal complexes were studied against two cell lines: human colon (HCT-116) and human liver cancer cells (HepG-2). The obtained results showed that the Cu(II) complex displayed the highest cytotoxic activity (IC50 = 18 and 22 μg/mL for HepG-2 and HCT, respectively) compared to the free Schiff base ligand.
Collapse
Affiliation(s)
- Ali M. Hassan
- Chemistry
Department, Faculty of Science, Al-Azhar
University, Nasr City 11884, Egypt
| | - Ahmed O. Said
- Senior
researcher chemist, Greater Cairo Water
Company, Cairo 11047, Egypt
| | - Bassem H. Heakal
- Research
Laboratory, Cairo Oil Refining Company, Mostorod 11757, Kaliobia, Egypt
| | - Ahmed Younis
- Department
of Green Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry
Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Mohamed F. Mady
- Department
of Green Chemistry, National Research Centre, Cairo 12622, Egypt
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| |
Collapse
|
7
|
Miao N, Cai W, Ding S, Liu Y, Chen W, Sun T. Characterization of plasma exosomal microRNAs in responding to radiotherapy of human esophageal squamous cell carcinoma. Mol Med Rep 2022; 26:287. [PMID: 35894132 PMCID: PMC9366155 DOI: 10.3892/mmr.2022.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy is one of the main treatment methods for esophageal squamous cell carcinoma (ESCC). Previous research has shown that plasma exosomal microRNAs (miRNAs) can predict therapeutic outcome. In the present study, to identify potential exosomal miRNAs that respond to radiotherapy, plasma exosomal miRNAs from ESCC patients undergoing radiotherapy were isolated and sequenced. Upregulated and downregulated miRNAs were detected from patients pre- and post-radiotherapy, and it was found that they play distinct roles in DNA damage process and endosomal mediated transport. Based on wound healing and Cell Counting Kit-8 assays in TE-1 human esophageal cancer cells, it was identified that representative miRNA miR-652 and miR-30a alter migration but not proliferation. The present findings identified differentially expressed miRNAs in responding to radiotherapy, and added a reference to explore non-invasive plasma biomarkers to evaluate therapeutic effects in ESCC.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Sijia Ding
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Yajuan Liu
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| |
Collapse
|
8
|
Wang H, Wei J, Jiang H, Zhang Y, Jiang C, Ma X. Design, Synthesis and Pharmacological Evaluation of Three Novel Dehydroabietyl Piperazine Dithiocarbamate Ruthenium (II) Polypyridyl Complexes as Potential Antitumor Agents: DNA Damage, Cell Cycle Arrest and Apoptosis Induction. Molecules 2021; 26:molecules26051453. [PMID: 33800091 PMCID: PMC7962184 DOI: 10.3390/molecules26051453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
The use of cisplatin is severely limited by its toxic side-effects, which has spurred chemists to employ different strategies in the development of new metal-based anticancer agents. Here, three novel dehydroabietyl piperazine dithiocarbamate ruthenium (II) polypyridyl complexes (6a–6c) were synthesized as antitumor agents. Compounds 6a and 6c exhibited better in vitro antiproliferative activity against seven tumor cell lines than cisplatin, they displayed no evident resistance in the cisplatin-resistant cell line A549/DPP. Importantly, 6a effectively inhibited tumor growth in the T-24 xenograft mouse model in comparison with cisplatin. Gel electrophoresis assay indicated that DNA was the potential targets of 6a and 6c, and the upregulation of p-H2AX confirmed this result. Cell cycle arrest studies demonstrated that 6a and 6c arrested the cell cycle at G1 phase, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of cyclin E. In addition, 6a and 6c caused the apoptosis of tumor cells along with the upregulation of the expression of Bax, caspase-9, cytochrome c, intracellular Ca2+ release, reactive oxygen species (ROS) generation and the downregulation of Bcl-2. These mechanistic study results suggested that 6a and 6c exerted their antitumor activity by inducing DNA damage, and consequently causing G1 stage arrest and the induction of apoptosis.
Collapse
Affiliation(s)
- Haoran Wang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
| | - Jianhua Wei
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
- Correspondence: (J.W.); (C.J.); (X.M.)
| | - Hong Jiang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
| | - Ye Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
- Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Xinyi Road 15, Guilin 541001, China
| | - Caina Jiang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
- Correspondence: (J.W.); (C.J.); (X.M.)
| | - Xianli Ma
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; (H.W.); (H.J.); (Y.Z.)
- Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Xinyi Road 15, Guilin 541001, China
- Correspondence: (J.W.); (C.J.); (X.M.)
| |
Collapse
|
9
|
Liang GB, Wei JH, Jiang H, Huang RZ, Qin JT, Wang HL, Wang HS, Zhang Y. Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. Eur J Med Chem 2021; 210:112951. [PMID: 33109400 DOI: 10.1016/j.ejmech.2020.112951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Four series of new 3-nitro naphthalimides derivatives, 4(4a‒4f), 5(5a‒5i), 6(6a‒6e) and 7 (7a‒7j), were designed and synthesized as antitumor agents. Methyl thiazolyl tetrazolium (MTT) screening assay results revealed that some compounds displayed effective in vitro antiproliferative activity on SMMC-7721, T24, SKOV-3, A549 and MGC-803 cancer cell lines in comparison with 5-fluorouracil (5-FU), mitonafide and amonafide. Nude mouse xenotransplantation model assay results indicated that compounds 6b and 7b exhibited good in vivo antiproliferative activity in MGC-803 xenografts in comparison with amonafide and cisplatin, suggesting that compounds 6b and 7b could be good candidates for antitumor agents. Gel electrophoresis assay indicated that DNA and Topo I were the potential targets of compounds 6b and 7b, and comet assay confirmed that compounds 6b and 7b could induce DNA damage, while the further study showed that the 6b- and 7b-induced DNA damage was accompanied by the upregulation of p-ATM, P-Chk2, Cdc25A and p-H2AX. Cell cycle arrest studies demonstrated that compounds 6b and 7b arrested the cell cycle at the S phase, accompanied by the upregulation of the expression levels of the antioncogene p21 and the down-regulation of the expression levels of cyclin E. Apoptosis assays indicated that compounds 6b and 7b caused the apoptosis of tumor cells along with the upregulation of the expression of Bax, caspase-3, caspase-9 and PARP and the downregulation of Bcl-2. These mechanistic studies suggested that compounds 6b and 7b exerted their antitumor activity by targeting to DNA, thereby inducing DNA damage and Topo I inhibition, and consequently causing S stage arrest and the induction of apoptosis.
Collapse
Affiliation(s)
- Gui-Bin Liang
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, China
| | - Jian-Hua Wei
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Hong Jiang
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Ri-Zhen Huang
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, China
| | - Jing-Ting Qin
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hui-Ling Wang
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, China
| | - Ye Zhang
- School of Pharmacy, Guilin Medical University, Guilin, 541004, China; Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Guilin, 541001, China; College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
10
|
Tsypysheva IP, Koval’skaya AV, Petrova PR, Lobov AN, Erastov AS, Zileeva ZR, Vakhitov VА, Vakhitova YV. Synthesis of conjugates of (−)-cytisine derivatives with ferrocene-1-carbaldehyde and their cytotoxicity against HEK293, Jurkat, A549, MCF-7 and SH-SY5Y cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 2019; 110:2493-2506. [PMID: 31215139 PMCID: PMC6676267 DOI: 10.1111/cas.14102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fengnan Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Lijia Pan
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wenjie Lv
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| |
Collapse
|
13
|
Chauhan J, Dasgupta M, Luthra T, Awasthi A, Tripathy S, Banerjee A, Paul S, Nag D, Chakrabarti S, Chakrabarti G, Sen S. Design, synthesis and biological evaluation of a novel library of antimitotic C2-aroyl/arylimino tryptamine derivatives that are also potent inhibitors of indoleamine-2, 3-dioxygenase (IDO). Eur J Pharm Sci 2018; 124:249-265. [DOI: 10.1016/j.ejps.2018.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023]
|
14
|
Zhou Q, Wu H, You C, Gao Z, Sun K, Wang M, Chen F, Sun B. 1,3-dimethyl-6-nitroacridine derivatives induce apoptosis in human breast cancer cells by targeting DNA. Drug Dev Ind Pharm 2018; 45:212-221. [PMID: 30256663 DOI: 10.1080/03639045.2018.1529185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acridine derivatives can interact with the double-stranded DNA, which is regarded as the biological target of the anticancer drugs in cancer treatment. We designed and synthesized a new series of 1,3-dimethyl-6-nitroacridine derivatives as potential DNA-targeted anticancer agents. These compounds could partially intercalate into the calf thymus DNA, differing from the parent acridine. The results showed that the substitutions of the acridine ring had great effect on DNA binding affinity. The binding constants determined by UV-vis spectroscopy were found to be 105 M-1 grade. Anticancer activity of these compounds was screened using MTT assay. Most compounds inhibited 50% cancer cell growth at concentration below 30 μM, the results were consistent with the DNA binding ability. Compounds 1 and 6 were found to have more effective cytotoxicity, especially in human breast cancer cell lines. To investigate the action mechanism, we studied cell apoptosis, morphological changes, and cell cycle distribution in MCF-7 and MDA-MB-231 cells. Compounds 1 and 6 caused MCF-7 and MDA-MB-231 cells death due to apoptosis, and induced cell apoptosis in a dose-dependent manner. They also had significant effect on cell cycle progression and arrested cell cycle at G2/M phase. The results demonstrated that compounds 1 and 6 are promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Qian Zhou
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Hongshuai Wu
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Chaoqun You
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Zhiguo Gao
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Kai Sun
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Mingxin Wang
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Fanghui Chen
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Baiwang Sun
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| |
Collapse
|
15
|
Zhou Q, You C, Zheng C, Gu Y, Gu H, Zhang R, Wu H, Sun B. 3-Nitroacridine derivatives arrest cell cycle at G0/G1 phase and induce apoptosis in human breast cancer cells may act as DNA-target anticancer agents. Life Sci 2018; 206:1-9. [PMID: 29738780 DOI: 10.1016/j.lfs.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
Abstract
DNA is considered to be one of the most promising targets for anticancer agents. Acridine analogues have anticancer activity based on DNA binding and topoisomerases inhibition. However, due to the side effects, resistance and low bioavailability, a few have entered into clinical usage and the mechanisms of action are not fully understood. Novel acridine derivatives are needed for effective cancer therapy. A series of novel 3-nitroacridine-based derivatives were synthesized, their DNA binding and anticancer activities were evaluated. The chemical modifications at position 9 of the 3-nitroacridine were crucial for DNA affinity, thus optimizing anticancer activity. UV-Vis and circular dichroism (CD) spectroscopy indicated interaction of compounds with DNA, and the binding modes were intercalation and groove binding. MTT assay and clonogenic assay showed that compounds 1, 2 and 3 had obvious cell growth inhibition effect. They induced cell apoptosis in human breast cancer cells in a dose-dependent manner, and exhibited anticancer effect via DNA damage as well as cell cycle arrest at G0/G1 phage. Using confocal fluorescent microscope, the apoptotic features were observed. The results suggested that compounds 1-3 with high DNA binding affinity and good inhibitory effect of cancer cell proliferation can be developed as prime candidates for further chemical optimization.
Collapse
Affiliation(s)
- Qian Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Chaoqun You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Cong Zheng
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Yawen Gu
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Hongchao Gu
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Rui Zhang
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China.
| |
Collapse
|
16
|
Li J, Tian M, Tian Z, Zhang S, Yan C, Shao C, Liu Z. Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features. Inorg Chem 2018; 57:1705-1716. [DOI: 10.1021/acs.inorgchem.7b01959] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Meng Tian
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chao Yan
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Changfang Shao
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
17
|
Qin QP, Zou BQ, Tan MX, Wang SL, Liu YC, Liang H. Tryptanthrin derivative copper(ii) complexes with high antitumor activity by inhibiting telomerase activity, and inducing mitochondria-mediated apoptosis and S-phase arrest in BEL-7402. NEW J CHEM 2018. [DOI: 10.1039/c8nj03005g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Try-Cu exhibited its antitumor activity mainly via inhibiting telomerase by interaction with the c-myc promoter and disrupting mitochondrial functions.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road
- Yulin 537000
- P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road
- Guilin 541004
| | - Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road
- Guilin 541004
- P. R. China
- Department of Chemistry, Guilin Normal College, 21 Xinyi Road
- Gulin 541001
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road
- Yulin 537000
- P. R. China
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road
- Yulin 537000
- P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road
- Guilin 541004
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road
- Guilin 541004
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road
- Guilin 541004
- P. R. China
| |
Collapse
|
18
|
Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur J Med Chem 2017; 138:1135-1146. [DOI: 10.1016/j.ejmech.2017.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 11/18/2022]
|
19
|
Ortiz-Martinez M, Gonzalez de Mejia E, García-Lara S, Aguilar O, Lopez-Castillo LM, Otero-Pappatheodorou JT. Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
20
|
Oxoaporphine Metal Complexes (Co II, Ni II, Zn II) with High Antitumor Activity by Inducing Mitochondria-Mediated Apoptosis and S-phase Arrest in HepG2. Sci Rep 2017; 7:46056. [PMID: 28436418 PMCID: PMC5402304 DOI: 10.1038/srep46056] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin.
Collapse
|
21
|
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, Chen G, Cheng G, Zhou Q, Wang W, Zhou X, Luo J, Zhang S. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:7. [PMID: 26754670 PMCID: PMC4710038 DOI: 10.1186/s13046-016-0285-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lung cancer has long been the most dangerous malignant tumor among males in both well developed and poorly developed countries. Radiotherapy plays a critical role in the curative management of inoperable non-small cell lung cancer (NSCLC) and is also used as a post-surgical treatment in lung cancer patients. Radioresistance is an important factor that limits the efficacy of radiotherapy for NSCLC patients. Increasing evidence suggests that microRNAs (miRNAs) possess diverse cellular regulatory roles in radiation responses. METHODS In this study, we used miRNA microarray technology to identify serum miRNAs that were differentially expressed before and after radiotherapy in lung cancer patients. We further examined the biological function of miR-208a on cell viability, apoptotic death and cell cycle distribution in human lung cancer cells and explored the probable mechanism. RESULTS Nine miRNAs, including miR-29b-3p, miR-200a-3p, and miR-126-3p were significantly down-regulated, whereas miR-208a was the only miRNA that was up-regulated in the serum of the patients after radiation treatment (P < 0.05). The expression of miR-208a could be induced by X-ray irradiation in lung cancer cells. Forced expression of miR-208a promoted cell proliferation and induced radioresistance via targeting p21 with a corresponding activation of the AKT/mTOR pathway in lung cancer cells, whereas down-regulation of miR-208a resulted in the opposite effects. In addition, down-regulation of miR-208a increased the percentage of cells undergoing apoptosis and inhibited the G1 phase arrest in NSCLC cells. Moreover, miR-208a from the serum exosome fraction of lung cancer patients could shuttle to A549 cells in a time-dependent manner, which was likely to contribute to the subsequent biological effects. CONCLUSIONS The present study provides evidence that miR-208a can affect the proliferation and radiosensitivity of human lung cancer cells by targeting p21 and can be transported by exosomes. Thus, miR-208a may serve as a potential therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Yiting Tang
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Yayun Cui
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, 213001, China.
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| | - Zhuqing Jiao
- Department School of Information Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, China.
| | - Yan He
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, 221002, China.
| | - Guangxia Cheng
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, 221002, China.
| | - Qunyan Zhou
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Judong Luo
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
A novelly synthesized phenanthroline derivative is a promising DNA-damaging anticancer agent inhibiting G1/S checkpoint transition and inducing cell apoptosis in cancer cells. Cancer Chemother Pharmacol 2015; 77:169-80. [PMID: 26590990 DOI: 10.1007/s00280-015-2894-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE The study mainly aimed to determine the biological function of a novelly synthesized phenanthroimidazole derivative, named L233, and to explore its potential mechanisms. METHODS Cell survival was examined using the MTT assays, and the DNA-damaging role of L233 was explored using the comet assay. Moreover, the western blotting assays and immunofluorescence assays were used to detect DNA damage biomarkers. Afterward, the flow cytometry was used to assess the effects of L233 on cell cycle distribution. As for the detection of cell apoptosis upon L233 treatment, the Hoechst 33342 staining, flow cytometry, and western blotting assays were all put into practice. RESULTS We find that L233 inhibits tumor cell growth more efficiently and safely than cisplatin. Moreover, it is a DNA-damaging agent, interrupting the cell cycle G1/S checkpoint transition and inducing cell apoptosis by not only activating ATM/CHK1 signaling pathway, but also targeting CHK1 to reduce the expression of RAP80 and PARP-1 to compromise the DNA damage repair in tumor cells. CONCLUSIONS In summary, L233 is a promising anticancer drug for the development of novel chemotherapies in the future.
Collapse
|
23
|
Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol 2015; 8:16. [PMID: 25886184 PMCID: PMC4345016 DOI: 10.1186/s13045-015-0113-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023] Open
Abstract
Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090, Wien, Austria. .,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Wien, Austria.
| | - Katharina Blatt
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Sabine Cerny-Reiterer
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Irina Sadovnik
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Radiation Therapy, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria.
| | - Brigitte Marian
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Institute for Cancer Research, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Thomas W Grunt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Christoph C Zielinski
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| |
Collapse
|
24
|
Wei JH, Chen ZF, Qin JL, Liu YC, Li ZQ, Khan TM, Wang M, Jiang YH, Shen WY, Liang H. Water-soluble oxoglaucine-Y(iii), Dy(iii) complexes: in vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis. Dalton Trans 2015; 44:11408-19. [DOI: 10.1039/c5dt00926j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes exhibited considerable in vitro and in vivo anticancer activity, and higher safety than ciplatin.
Collapse
|
25
|
Zheng Y, Zhou Q, Lei W, Hou Y, Li K, Chen Y, Zhang B, Wang X. DNA photocleavage in anaerobic conditions by a Ru(ii) complex: a new mechanism. Chem Commun (Camb) 2015; 51:428-30. [DOI: 10.1039/c4cc06552b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photoinduced homolytic cleavage of the Ru–O bond of a novel Ru(ii) complex leads to formation of ligand-based reactive radicals capable of breaking DNA in an oxygen-dependent manner and Ru fragments capable of binding DNA covalently.
Collapse
Affiliation(s)
- Yue Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Wanhua Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Ke Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yongjie Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Baowen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
26
|
Li LJ, Fu B, Qiao Y, Wang C, Huang YY, Liu CC, Tian C, Du JL. Synthesis, characterization and cytotoxicity studies of platinum(II) complexes with reduced amino acid ester Schiff-bases as ligands. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Molecular dynamics simulation on the conformational transition of the mad2 protein from the open to the closed state. Int J Mol Sci 2014; 15:5553-69. [PMID: 24690997 PMCID: PMC4013581 DOI: 10.3390/ijms15045553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/21/2014] [Accepted: 03/21/2014] [Indexed: 01/26/2023] Open
Abstract
The Mad2 protein, with two distinct conformations of open- and closed-states, is a key player in the spindle checkpoint. The closed Mad2 state is more active than the open one. We carried out conventional and targeted molecular dynamics simulations for the two stable Mad2 states and their conformational transition to address the dynamical transition mechanism from the open to the closed state. The intermediate structure in the transition process shows exposure of the β6 strand and an increase of space around the binding sites of β6 strand due to the unfolding of the β7/8 sheet and movement of the β6/4/5 sheet close to the αC helix. Therefore, Mad2 binding to the Cdc20 protein in the spindle checkpoint is made possible. The interconversion between these two states might facilitate the functional activity of the Mad2 protein. Motion correlation analysis revealed the allosteric network between the β1 strand and β7/8 sheet via communication of the β5-αC loop and the β6/4/5 sheet in this transition process.
Collapse
|
28
|
Flis S, Gnyszka A, Flis K. DNA methyltransferase inhibitors improve the effect of chemotherapeutic agents in SW48 and HT-29 colorectal cancer cells. PLoS One 2014; 9:e92305. [PMID: 24676085 PMCID: PMC3967992 DOI: 10.1371/journal.pone.0092305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/20/2014] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an epigenetic phenomenon known to play an important role in the development and progression of human cancer. Enzyme responsible for this process is DNA methyltransferase 1 (DNMT1) that maintains an altered methylation pattern by copying it from parent to daughter DNA strands after replication. Aberrant methylation of the promoter regions of genes critical for normal cellular functions is potentially reversible. Therefore, inactivation of DNMT1 seems to be a valuable target for the development of cancer therapies. Currently, the most popular DNMT inhibitors (DNMTi) are cytidine analogues like 5-azacytidine, 5-aza-2′-deoxycytidine (decitabine) and pyrimidin-2-one ribonucleoside (zebularine). In colorectal cancer, epigenetic modifications play an essential role at each step of carcinogenesis. Therefore, we have addressed the hypothesis that DNA methyltransferase inhibitors may potentiate inhibitory effects of classical chemotherapeutic agents, such as oxaliplatin and 5-fluorouracil (5-FU), commonly used in colorectal cancer therapy. Here, our report shows that DNMTi can have positive interactions with standard chemotherapeutics in colorectal cancer treatment. Using pharmacological models for the drug-drug interaction analysis, we have revealed that the combination of decitabine with 5-FU or oxaliplatin shows the most attractive interaction (synergism), whereas the effect of zebularine in combinations with chemotherapeutics is moderate and may be depended on genetic/epigenetic background of a cell line or secondary drug used in combination. Our results suggest that DNMTi administered in combination with standard chemotherapeutics might improve the treatment of patients with colorectal cancers.
Collapse
Affiliation(s)
- Sylwia Flis
- Department of Pharmacology, National Medicines Institute, Warsaw, Poland
- * E-mail:
| | - Agnieszka Gnyszka
- Department of Pharmacology, National Medicines Institute, Warsaw, Poland
| | - Krzysztof Flis
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Vystorop IV, Konovalova NP, Nelyubina YV, Chernyak AV, Sashenkova TE, Klimanova EN, Utienyshev AN, Fedorov BS, Shilov GV, Kostyanovsky RG. Cyclic hydroxamic acids derived from α-amino acids 2. Regioselective synthesis, crystal structure, and antitumor activity of spiropiperidine-imidazolidine hydroxamic acids based on glycine and dl-alanine. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0176-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells. Biometals 2013; 27:155-72. [DOI: 10.1007/s10534-013-9696-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/14/2013] [Indexed: 01/24/2023]
|
31
|
Steroidal esters of the aromatic nitrogen mustard 2-[4-N,N-bis(2-chloroethyl)amino-phenyl]butanoic acid (2-PHE-BU). Anticancer Drugs 2013. [DOI: 10.1097/cad.0b013e328357f687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Li LJ, Wang C, Qiao Y, Yang XY, Hua XX, Du JL. Platinum(II) complexes of reduced amino acid ester Schiff bases: synthesis, characterization, and antitumor activity. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0973-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Li LJ, Wang C, Tian C, Yang XY, Hua XX, Du JL. Water-soluble platinum(II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0593-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
García-Ramos JC, Toledano-Magaña Y, Talavera-Contreras LG, Flores-Álamo M, Ramírez-Delgado V, Morales-León E, Ortiz-Frade L, Gutiérrez AG, Vázquez-Aguirre A, Mejía C, Carrero JC, Laclette JP, Moreno-Esparza R, Ruiz-Azuara L. Potential cytotoxic and amoebicide activity of first row transition metal compounds with 2,9-bis-(2′,5′-diazahexanyl)-1,1-phenanthroline (L1). Dalton Trans 2012; 41:10164-74. [DOI: 10.1039/c2dt30224a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Gupta M, Gupta S, Dureja H, Madan AK. Superaugmented Eccentric Distance Sum Connectivity Indices: Novel Highly Discriminating Topological Descriptors for QSAR/QSPR. Chem Biol Drug Des 2011; 79:38-52. [DOI: 10.1111/j.1747-0285.2011.01264.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Vystorop IV, Konovalova NP, Sashenkova TE, Berseneva EN, Chernyak AV, Fedorov BS, Kostyanovsky RG. 1-Hydroxy-8-methyl-1,4,8-triazaspiro[4.5]decan-2-one and its (±)-3-methyl homologue: regioselective synthesis and in vivo evaluation as adjuvants in leukemia chemotherapy. MENDELEEV COMMUNICATIONS 2011. [DOI: 10.1016/j.mencom.2011.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Scaife L, Hodgkinson VC, Drew PJ, Lind MJ, Cawkwell L. Differential proteomics in the search for biomarkers of radiotherapy resistance. Expert Rev Proteomics 2011; 8:535-52. [PMID: 21819306 DOI: 10.1586/epr.11.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The individualization of radiotherapy treatment would be beneficial for cancer patients; however, there are no predictive biomarkers of radiotherapy resistance in routine clinical use. This article describes the body of work in this field where comparative proteomics methods have been used for the discovery of putative biomarkers associated with radiotherapy resistance. A large number of differentially expressed proteins have been reported, mostly from the study of novel radiotherapy-resistant cell lines. Here, we have assessed these putative biomarkers through the discovery, confirmation and validation phases of the biomarker pipeline, and inform the reader on the current status of proteomics-based findings. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Lucy Scaife
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | | | |
Collapse
|
38
|
Wang L, Sun L, Huang J, Jiang M. Cyclin-dependent kinase inhibitor 3 (CDKN3) novel cell cycle computational network between human non-malignancy associated hepatitis/cirrhosis and hepatocellular carcinoma (HCC) transformation. Cell Prolif 2011; 44:291-9. [PMID: 21535270 DOI: 10.1111/j.1365-2184.2011.00752.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The relationship of cyclin-dependent kinase inhibitor 3 (CDKN3) with tumours has previously been presented in a number of publications. However, the molecular network and interpretation of CDKN3 through the cell cycle between non-malignancy associated hepatitis/cirrhosis and hepatocellular carcinoma (HCC) have remained to be elucidated. Here, we have constructed and analysed significant high expression gene CDKN3 activated and inhibited cell cycle networks from 25 HCC versus 25 non-malignancy associated hepatitis/cirrhosis patients (viral infection HCV or HBV) in GEO Dataset GSE10140-10141, by combination of a gene regulatory network inference method based on linear programming, and decomposition procedure using CapitalBio MAS 3.0 software, based on integration of public databases including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, and others. Comparing the same and differently activated and inhibited CDKN3 networks with GO analysis, between non-malignancy associated hepatitis/cirrhosis and HCC, our results suggest a CDKN3 cell cycle network (i) with stronger DNA replication and with weaker ubiquitin-dependent protein catabolism as common characteristics in both non-malignancy associated hepatitis/cirrhosis and HCC; (ii) with more cell division and weaker mitotic G2 checkpoint in non-malignancy associated hepatitis/cirrhosis; (iii) with stronger cell cycle and weaker cytokinesis, as a result forming multinucleate cells in HCC. Thus, it is useful to identify CDKN3 cell cycle networks for comprehension of molecular mechanism between non-malignancy associated hepatitis/cirrhosis and HCC transformation.
Collapse
Affiliation(s)
- L Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China.
| | | | | | | |
Collapse
|
39
|
Du J, Sun H, Xi L, Li J, Yang Y, Liu H, Yao X. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. J Comput Chem 2011; 32:2800-9. [PMID: 21717478 DOI: 10.1002/jcc.21859] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 12/14/2022]
Abstract
Developing chemicals that inhibit checkpoint kinase 1 (Chk1) is a promising adjuvant therapeutic to improve the efficacy and selectivity of DNA-targeting agents. Reliable prediction of binding-free energy and binding affinity of Chk1 inhibitors can provide a guide for rational drug design. In this study, multiple docking strategies and Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA) calculation were applied to predict the binding mode and free energy for a series of benzoisoquinolinones as Chk1 inhibitors. Reliable docking results were obtained using induced-fit docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed superior performance on both ligand binding pose and docking score accuracy to the rigid-receptor docking. Then, the Prime/MM-GBSA method based on the docking complex was used to predict the binding-free energy. The combined use of QM/MM docking and Prime/MM-GBSA method could give a high correlation between the predicted binding-free energy and experimentally determined pIC(50) . The molecular docking combined with Prime/MM-GBSA simulation can not only be used to rapidly and accurately predict the binding-free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk1.
Collapse
Affiliation(s)
- Juan Du
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Magkoufopoulou C, Claessen S, Jennen D, Kleinjans J, van Delft J. Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis 2011; 26:593-604. [DOI: 10.1093/mutage/ger021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
41
|
Efimov VA, Fedyunin SV. Cross-linked nucleic acids: isolation, structure, and biological role. BIOCHEMISTRY (MOSCOW) 2011; 75:1606-27. [DOI: 10.1134/s0006297910130079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Yang SH, Van HTM, Le TN, Khadka DB, Cho SH, Lee KT, Lee ES, Lee YB, Ahn CH, Cho WJ. Development of 3-aryl-1-isoquinolinamines as potent antitumor agents based on CoMFA. Eur J Med Chem 2010; 45:5493-7. [DOI: 10.1016/j.ejmech.2010.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/03/2010] [Accepted: 08/17/2010] [Indexed: 11/26/2022]
|
43
|
Du J, Xi L, Lei B, Lu J, Li J, Liu H, Yao X. Structure-based quantitative structure-activity relationship studies of checkpoint kinase 1 inhibitors. J Comput Chem 2010; 31:2783-93. [DOI: 10.1002/jcc.21571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Tian M, Ihmels H, Brötz E. DNA cleavage by the Cu(ii) complex of the DNA-intercalating 9-bis(pyridin-2-ylmethyl)aminobenzo[b]quinolizinium. Dalton Trans 2010; 39:8195-202. [DOI: 10.1039/c0dt00238k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|