1
|
Wang S, Tian ZY, Lu H. Recyclable Polythioesters and Poly(thioester-co-peptoid)s via Ring-Opening Cascade Polymerization of Amino Acid N-Carboxyanhydrides. Angew Chem Int Ed Engl 2024; 63:e202411630. [PMID: 39073287 DOI: 10.1002/anie.202411630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
Polythioesters (PTEs) are emerging sustainable polymers for their degradability and recyclability. However, low polymerizability of monomers and extensive side reactions often hampered the polymerization process. Moreover, copolymers containing both thioester and other types of functional groups in the backbone are highly desirable but rarely accomplished owing to several synthetic challenges. Here, we report the ring-opening cascade polymerization (ROCAP) of N-(2-(acetylthio)ethyl)-glycine N-carboxyanhydrides (TE-NCA) to afford recyclable PTEs and unprecedented poly(thioester-co-peptoid)s (P(TE-co-PP)s) in a controlled manner. By developing appropriated carboxylic acid-tertiary amine dual catalysts, intramolecular S-to-N acyl shift is coupled into the ROCAP process of TE-NCA to yield products with dispersity below 1.10, molecular weight (Mn) up to 84.5 kDa, and precisely controlled ratio of thioester to peptoids. Random copolymerization of sarcosine NCA (Sar-NCA) and TE-NCA gives thioester-embedded polysarcosine with facile backbone degradation while maintaining the water solubility. This work represents a paradigm shift for the ROP of NCAs, enriches the realm of cascade polymerizations, and provides a powerful synthetic approach to functional PTEs and P(TE-co-PP)s that are otherwise difficult or impossible to make.
Collapse
Affiliation(s)
- Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Chandra Joshi D, Gavhane UA, Jayakannan M. Melt Polycondensation Strategy to Access Unexplored l-Amino Acid and Sugar Copolymers. Biomacromolecules 2024. [PMID: 39433287 DOI: 10.1021/acs.biomac.4c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Biodegradable polymers from bioresources are highly in demand for the development of sustainable polymer platforms for commodity plastics and in the biomedical field. Here, an elegant one-pot synthetic strategy is developed, for the first time, to access unexplored hybrid polymers from two naturally abundant resources: carbohydrates (sugars) and l-amino acids. A bottleneck in the synthetic strategy is overcome by tailor-making d-mannitol-based six- and five-membered bicyclic acetalized diols, and their structures are confirmed by single-crystal X-ray diffraction and 2D NMR spectroscopy. l-Amino acids are converted into ester-urethane functional monomers, and they are polymerized with sugar-diols under solvent-free melt polycondensation to yield biodegradable poly(ester-urethane)s. Acid-catalyzed deprotection yielded amphiphilic polymers having exclusively alternating residues of sugar and l-amino acid in the polymer backbone. The polymer is self-assembled into 200 ± 10 nm sized nanoparticles that can encapsulate fluorescent dyes, are nontoxic to cells up to 250 μg/mL, and are readily endocytosed for lysosomal enzymatic biodegradation at the cellular level.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Zhang F, Ge C, Qiao Z, Han Y, Yin L, Ma F. Protocol for siRNA-mediated U1 snRNA knockdown using fluorinated α-helical polypeptide in vitro and in vivo. STAR Protoc 2024; 5:103238. [PMID: 39096492 PMCID: PMC11342768 DOI: 10.1016/j.xpro.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024] Open
Abstract
Here, we present a protocol for small interfering RNA (siRNA)-mediated U1 small nuclear RNA (snRNA) knockdown using fluorinated α-helical polypeptide in macrophages and mouse lungs, providing a dependable approach to silence U1 snRNA in vitro and in vivo. We describe steps for preparing P7F7/siRNA polyplexes and silencing U1 snRNA with P7F7/siRNA polyplexes in macrophages and mouse lungs. Knockdown efficiency is validated through reverse-transcription quantitative real-time PCR analysis. This protocol is applicable for studying the physiological or pathophysiological function of U1 snRNA. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Fan Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
4
|
Chen T, Liu Y, Gao Z, Gao Y, Chen H, Ye H, Luo Q, Wang K, Wu D. Template-assisted Flexible-to-rigid Transition of Peptides in Head-to-tail Self-polymerization Enables Sequence-controllable and Post-modifiable Peptide Nanofibers. Angew Chem Int Ed Engl 2024:e202415809. [PMID: 39266463 DOI: 10.1002/anie.202415809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Peptide-based nanofibers are promising materials for many essential applications and can be generalized into two categories, self-assembling peptide nanofibers (SAPNs) and poly(amino acid) nanofibers (PAANs). Non-covalent SAPNs are sequence-controllable, but poorly stable and not suitable for post-modification. While covalent PAANs are post-modifiable, however, their sequences are either monotonic or undefined. The nanofibers obtained by head-to-tail covalent coupling polymerization of sequence-known peptides, which we call series-connected peptide nanofibers (SCPNs), promise to have the advantages of both SAPNs and PAANs, but they are barely reported. The undesired backbiting effect during the head-to-tail polymerization is one of the possible challenges. Here, we present a template-assisted strategy to trigger the flexible-to-rigid transition of peptide units, which can avoid the backbiting effect and enable consecutive intermolecular polymerization of peptides to produce desired sequence-controlled covalent SCPNs. SCPNs are highly stable and can function as excellent parent materials for various post-processing to create diverse hierarchical materials independent of the peptide sequence. Moreover, SCPNs allow for the display of predetermined functional groups at regular intervals along the nanofibers by pre-modification of the initial peptide sequence. SCPNs represent a new category of peptide-based nanofibers with outstanding performances and vast potential.
Collapse
Affiliation(s)
- Tianzi Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yue Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haijin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haonan Ye
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Qiuhao Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Sun X, Li A, Li N, Ji G, Song Z. Facile Preparation of Heteropolypeptides from Crude Mixtures of α-Amino Acid N-Carboxyanhydrides. Biomacromolecules 2024; 25:6093-6102. [PMID: 39167691 DOI: 10.1021/acs.biomac.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heteropolypeptides bearing two or more functional side chains are promising polymeric materials for various biomedical applications. However, conventional preparation of heteropolypeptides relies on the synthesis and purification of each N-carboxyanhydride (NCA) monomer in a separate manner, which substantially increases the time and cost. Herein, we report the facile preparation of heteropolypeptides with up to 86% yield within several hours, which are obtained from a mixture of crude NCA monomers. The combination of n-hexane precipitation and biphasic segregation effectively removed >90% impurities from crude NCA mixtures, allowing for the successful polymerization process. Various heteropolypeptides with monomodal distribution and narrow dispersity were efficiently prepared, whose compositions were predetermined by the feeding ratios of amino acids. We believe that this work significantly simplifies the preparation of various heteropolypeptides, boosting the downstream studies of these promising materials.
Collapse
Affiliation(s)
- Xiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ning Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wu Y, Chen K, Wang J, Chen M, Dai W, Liu R. Recent Advances and Future Developments in the Preparation of Polypeptides via N-Carboxyanhydride (NCA) Ring-Opening Polymerization. J Am Chem Soc 2024; 146:24189-24208. [PMID: 39172171 DOI: 10.1021/jacs.4c05382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Polypeptides have the same or similar backbone structures as proteins and peptides, rendering them as suitable and important biomaterials. Amino acid N-carboxyanhydrides (NCA) ring-opening polymerization has been the most efficient strategy for polypeptide preparation, with continuous advance in the design of initiators, catalysts and reaction conditions. This Perspective first summarizes the recent progress of NCA synthesis and purification. Subsequently, we focus on various initiators for NCA polymerization, catalysts for accelerating polymerization or enhancing the controllability of polymerization, and recent advances in the reaction approach of NCA polymerization. Finally, we discuss future research directions and open challenges.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhui Dai
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
8
|
Yamamoto Y, Heah WY, Tashiro K. Functional oligo- and polypeptide assemblies for photochemical, optical and electronic applications. MATERIALS HORIZONS 2024; 11:3203-3212. [PMID: 38912639 DOI: 10.1039/d4mh00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The primary and secondary structures of peptides are useful as scaffolds to sequentially arrange functional groups of molecules. In this review, we review self-assembled functional peptides, whereby peptides with appropriate amino acid sequences can assemble using functional groups on their side chains. First, we apply our design strategies for the synthesis of peptide-based materials with sequenced side chains with polar moieties, organic dyes and metal complexes. The synthetic oligopeptides thus obtained exhibit inherent photoinduced charge separation and electrochemical redox activities, as well as responses to bio-sequences. Next, catalytic and photocatalytic oxidation reduction reactions and hydrogen evolution reactions are shown by utilizing the peptides with separated functionalities on both sides of β-sheets by hybridizing with electro- and photoactive graphene oxide and metal nanoparticles. Finally, the self-assembled natural proteins that form micrometre-scale spherical geometry and fibres are utilized for optical and electronic applications. The silk fibroin forms well-defined microspheres with smooth surface morphology, leading to properties suitable for use in optical resonators, which can sense external humidity because of the hygroscopic nature of silk fibroin. Dragline silk fibres can act as optical waveguides that can perform intermediate natural polymer-based optical logic operations. These functional peptides are utilizable for various applications in catalysis, optics and electronics.
Collapse
Affiliation(s)
- Yohei Yamamoto
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Wey Yih Heah
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Kentaro Tashiro
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
9
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
11
|
Zhao Y, Zhao W, Lv Y, Jin L, Ni Y, Hadjichristidis N. Well-defined star (co)polypeptides via a fast, efficient, and metal-free strategy. Int J Biol Macromol 2024; 264:130566. [PMID: 38432269 DOI: 10.1016/j.ijbiomac.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Polypeptides, especially star polypeptides, as a unique kind of biological macromolecules have broad applications in biomedical fields such as drug release, gene delivery, tissue engineering, and regenerative medicines due to their close structural similarity to naturally occurring peptides and proteins, biocompatibility, and amino acid functionality. However, the synthesis of star polypeptide mainly relies on the conventional primary amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) and suffers from low polymerization activity and limited controllability. This study proposes a fast, efficient and metal-free strategy to access star (co)polypeptides by combining the Michael reaction between acrylates and secondary aminoalcohols with the hydrogen-bonding organocatalytic ROP of NCA. This approach enables the preparation of a library of star (co)polypeptides with predesigned molecular weights, narrow molecular weight distributions, tunable arm number, and arm compositions. Importantly, this method exhibits high activity and selectivity at room temperature, making it both practical and versatile in synthesis applications.
Collapse
Affiliation(s)
- Yi Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China.
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Liuping Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Yang T, Xue T, Mao J, Chen Y, Tian H, Bartolome A, Xia H, Yao X, Kumar CV, Cheng J, Lin Y. Tailoring Synthetic Polypeptide Design for Directed Fibril Superstructure Formation and Enhanced Hydrogel Properties. J Am Chem Soc 2024; 146:5823-5833. [PMID: 38174701 DOI: 10.1021/jacs.3c10762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The biological significance of self-assembled protein filament networks and their unique mechanical properties have sparked interest in the development of synthetic filament networks that mimic these attributes. Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. Utilizing glutamate (Glu) as the primary component of copolypeptides, two targeted pathways were pursued: first, achieving a fast fibrillation rate with lower interaction potential using serine (Ser) as a comonomer, facilitating the creation of homogeneous fibril networks; and second, creating more rigid networks of fibril clusters by incorporating alanine (Ala) and valine (Val) as comonomers. The selection of amino acids played a pivotal role in steering both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianan Mao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huidi Tian
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Arlene Bartolome
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
13
|
Wang S, Lu MY, Wan SK, Lyu CY, Tian ZY, Liu K, Lu H. Precision Synthesis of Polysarcosine via Controlled Ring-Opening Polymerization of N-Carboxyanhydride: Fast Kinetics, Ultrahigh Molecular Weight, and Mechanistic Insights. J Am Chem Soc 2024; 146:5678-5692. [PMID: 38359327 DOI: 10.1021/jacs.3c14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The rapid and controlled synthesis of high-molecular-weight (HMW) polysarcosine (pSar), a potential polyethylene glycol (PEG) alternative, via the ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) is rare and challenging. Here, we report the well-controlled ROP of sarcosine NCA (Sar-NCA) that is catalyzed by various carboxylic acids, which accelerate the polymerization rate up to 50 times, and enables the robust synthesis of pSar with an unprecedented ultrahigh molecular weight (UHMW) up to 586 kDa (DP ∼ 8200) and exceptionally narrow dispersity (D̵) below 1.05. Mechanistic experiments and density functional theory calculations together elucidate the role of carboxylic acid as a bifunctional catalyst that significantly facilitates proton transfer processes and avoids charge separation and suggest the ring opening of NCA, rather than decarboxylation, as the rate-determining step. UHMW pSar demonstrates improved thermal and mechanical properties over the low-molecular-weight counterparts. This work provides a simple yet highly efficient approach to UHMW pSar and generates a new fundamental understanding useful not only for the ROP of Sar-NCA but also for other NCAs.
Collapse
Affiliation(s)
- Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Yuan Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Kang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chun-Yan Lyu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
15
|
Lu Y, Liu D, Wei X, Song J, Xiao Q, Du K, Shi X, Gao H. Synthesis and Thermoreversible Gelation of Coil-Rod Copolymers with a Dendritic Polyethylene Core and Multiple Helical Poly(γ-benzyl-L-glutamate) Arms. Polymers (Basel) 2023; 15:4351. [PMID: 38006076 PMCID: PMC10675438 DOI: 10.3390/polym15224351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Coil-rod copolymers with a dendritic polyethylene (DPE) core and multiple helical poly(γ-benzyl-L-glutamate) (PBLG) arms (DPE-(PBLG)n) were prepared by palladium-catalyzed copolymerization in tandem with ring-opening polymerization (ROP). Macroinitiator (DPE-(NH2)11) was firstly prepared by the group transformation of DPE-(OH)11 generated from palladium-catalyzed copolymerization of ethylene and acrylate comonomer. Coil-helical DPE-(PBLG)11 copolymers were prepared by ROP of γ-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA). These DPE-(PBLG)11 copolymers could form thermoreversible gels in toluene solvent, and the dendritic topology of the DPE core increased the critical gelation concentrations. The self-assembled nanostructure of gels was fully characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD), and the morphology of the fibrous structure was a twisted flat ribbon through a self-assembled nanoribbon mechanism. The self-assembled fibers formed by DPE-(PBLG45)11 are more heterogeneous and ramified than previously observed fibers formed by PBLG homopolymer and block copolymers.
Collapse
Affiliation(s)
- Yuliang Lu
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Dongtao Liu
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Xinjie Wei
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Jiming Song
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Qiaogang Xiao
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Kezheng Du
- China National Offshore Oil Corporation Energy Technology & Services Limited Shenzhen Branch, Shenzhen 518067, China; (Y.L.); (D.L.); (X.W.); (J.S.); (Q.X.); (K.D.)
| | - Xinbo Shi
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-Sen University, Guangzhou 510275, China;
- Chain Walking New Material Technology (Guangzhou) Co., Ltd., Guangzhou 511457, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-Sen University, Guangzhou 510275, China;
| |
Collapse
|
16
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Wang S, Lu H. Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides with Unprotected/Reactive Side Groups. I. d-Penicillamine N-Carboxyanhydride. ACS Macro Lett 2023; 12:555-562. [PMID: 37041004 DOI: 10.1021/acsmacrolett.3c00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The ring-opening (co)polymerization (ROP) of N-carboxyanhydride (NCA) monomers bearing unprotected/reactive side groups is rare and challenging. Here, we report the ROP of a d-penicillamine NCA (Pen-NCA) monomer for the synthesis of tertiary thiol-functionalized (co)polypeptides. Through judicious selection of reaction solvents and the use of benzoic acid as an additive in the ROP, the intramolecular isomerization side reactions of Pen-NCA are suppressed, generating homo- and copolypeptides with improved yield, high molecular weight, and narrow molecular weight distributions. Successful postpolymerization modifications of the d-Pen-containing copolypeptides on the tertiary thiols are achieved with high efficiency through thiol-Michael, SN2, and nitrosylation reactions. This work provides an efficient protection-free approach to generating functional polypeptides and creates a fundamental understanding for Pen-NCA chemistry.
Collapse
Affiliation(s)
- Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
18
|
Jain S, John A, George CE, Johnson RP. Tyrosine-Derived Polymers as Potential Biomaterials: Synthesis Strategies, Properties, and Applications. Biomacromolecules 2023; 24:531-565. [PMID: 36702743 DOI: 10.1021/acs.biomac.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide-based polymers are evolving as promising materials for various biomedical applications. Among peptide-based polymers, polytyrosine (PTyr)-based and l-tyrosine (Tyr)-derived polymers are unique, due to their excellent biocompatibility, degradability, and functional as well as engineering properties. To date, different polymerization techniques (ring-opening polymerization, enzymatic polymerization, condensation polymerization, solution-interfacial polymerization, and electropolymerization) have been used to synthesize various PTyr-based and Tyr-derived polymers. Even though the synthesis starts from Tyr, different synthesis routes yield different polymers (polypeptides, polyarylates, polyurethanes, polycarbonates, polyiminocarbonate, and polyphosphates) with unique functional characteristics, and these polymers have been successfully used for various biomedical applications in the past decades. This Review comprehensively describes the synthesis approaches, classification, and properties of various PTyr-based and Tyr-derived polymers employed in drug delivery, tissue engineering, and biosensing applications.
Collapse
Affiliation(s)
- Supriya Jain
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Alona John
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Christina Elizhabeth George
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
19
|
Xu Q, Li X, Yang J, Zhang Y, Deng X, Li G, Yuan Q. Naphthyl-Poly(S-((2-carboxyethyl)thio)-l-cysteine) Peptide Amphiphiles with Different Degrees of Polymerization: Synthesis, Self-Assembly, pH/Reduction-Triggered Drug Release, and Cytotoxicity. Mol Pharm 2023; 20:1256-1268. [PMID: 36648435 DOI: 10.1021/acs.molpharmaceut.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four peptide amphiphiles (PA1-4) with different degrees of polymerization (DP = 40, 15, 10, and 6) were synthesized by Fuchs-Farthing and ring-opening polymerization followed by post-polymerization modification, as fully characterized by 1H NMR, FT-IR, gel permeation chromatography, and circular dichroism (CD) spectroscopy. It was found that PAs could self-assemble to form regular spherical micelles in low-concentration (about 1 mg/mL) aqueous solution, which had different contents of secondary structures and mainly adopted random coil conformations. The water solubility of PAs increases with the increase of DP, the polypeptide chain stretches randomly in water, the β-sheets decrease, and the random coil conformations dominate. When the pH of PA solution decreases or increases, intramolecular hydrogen bonds break, and molecular chains stretch, leading to a decrease of α-helix, turn conformations, and an increase of β-sheets. Meanwhile, the particle size of micelles increases. At around 0.4 mg/mL, the hemolysis ability of PA2 is negligible at pH 7.4 and 6.5 and about 33% at pH 5.5. Cisplatin (CDDP) was linked to micelles by coordination bonds to explore their potential as drug carriers, exhibiting controlled pH and reduction in dual drug release effects. MTT assay showed that the HeLa cell viability was 78% when cultured in the 13.5 μg/mL PA2 blank micelles for 2 days, while the cell viability was 60% in the CDDP-loaded micelles. Furthermore, a high concentration of PA2 (about 100 mg/mL) could self-assemble into a fibrous hydrogel at pH 5.5, which self-healed 2 h after incision and self-degraded 71% within 14 days. The CDDP-loaded fiber hydrogel exhibited a sustained release effect similar to the CDDP-loaded micelles. The cytotoxicity of CDDP-loaded fibers at 48 h was detected to be the same as that of the same amount of CDDP, and the cell viability was 7%. Therefore, we provide a new strategy for the synthesis of amphiphilic peptides with potential applications in nano-drug carriers and cancer therapy.
Collapse
Affiliation(s)
- Qinming Xu
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Xing Li
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Jingang Yang
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Yan Zhang
- School of Chemical Science and Engineering, Yunnan University, Kunming650091, PR China
| | - Xiaocui Deng
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Gang Li
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Qingmei Yuan
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| |
Collapse
|
20
|
Wang F, Li C, Wang H, Yu L, Zhang F, Linhardt RJ. Amphiphilic O(Phe-r-Glu) oligopeptides randomly polymerized via papain exhibiting a pH-insensitive emulsification property. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Barratt CM, Haraniya TK, Iwamasa SJ, Yun JJ, Desyatkin VG, Wilcox KG, Morozova SA, Rodionov VO. Synthesis and conformational studies of hyperbranched-core star polymers with poly(γ–benzyl-L-glutamate) arms. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Lv W, Wang Y, Li M, Wang X, Tao Y. Precision Synthesis of Polypeptides via Living Anionic Ring-Opening Polymerization of N-Carboxyanhydrides by Tri-thiourea Catalysts. J Am Chem Soc 2022; 144:23622-23632. [PMID: 36533423 DOI: 10.1021/jacs.2c10950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chemistry of α-amino acid N-carboxyanhydrides (NCAs) has a history of over 100 years, but precise and efficient ring-opening polymerization methods for NCAs remain highly needed to facilitate the studies of polypeptides─that is, mimics of natural proteins─in various disciplines. Moreover, the universally accepted NCA polymerization mechanisms are largely limited to the "amine" and the "activated monomer" mechanisms, and the anionic ring-opening polymerization of NCAs has so far not been invoked. Herein, we show an unprecedented anion-binding catalytic system combining tripodal tri-thiourea with sodium thiophenolate that enables the fast and selective anionic ring-opening polymerization of NCAs. This method leads to the precision construction of various polypeptides with living polymerization behavior and is evidenced by narrow molecular weight distributions (Mw/Mn < 1.2), chain extension experiments, and minimal "activated monomer" pathway. Calculations and experimental results elucidate a living anionic polymerization mechanism, and high selectivities for monomer propagation relative to other deleterious side reactions, such as the "activated monomer" pathway, are attributed to the enhanced stabilization of the propagating carbamate anion, which is enforced by an intramolecular hydrogen bond within the tri-thiourea structure.
Collapse
Affiliation(s)
- Wenxiu Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
23
|
Badreldin M, Le Scouarnec R, Lecommandoux S, Harrisson S, Bonduelle C. Memory Effect in Thermoresponsive Proline-based Polymers. Angew Chem Int Ed Engl 2022; 61:e202209530. [PMID: 36107726 PMCID: PMC9828171 DOI: 10.1002/anie.202209530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/12/2023]
Abstract
We report that synthetic polymers consisting of L-proline monomer units exhibit temperature-driven aggregation in water with unprecedented hysteresis. This protein-like behavior is robust and governed by the chirality of the proline units. It paves the way to new processes, driven by either temperature or ionic strength changes, such as a simple "with memory" thermometer.
Collapse
Affiliation(s)
- Mostafa Badreldin
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| | | | | | - Simon Harrisson
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| | - Colin Bonduelle
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| |
Collapse
|
24
|
Sugimoto T, Kuwahara T, Liang F, Wang H, Tsuda A. Photo-On-Demand Synthesis of α-Amino Acid N-Carboxyanhydrides with Chloroform. ACS OMEGA 2022; 7:39250-39257. [PMID: 36340075 PMCID: PMC9631898 DOI: 10.1021/acsomega.2c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Amino acid N-carboxyanhydrides (NCAs) are conventionally synthesized from α-amino acids and phosgene. The present study reports in situ photo-on-demand phosgenation reactions of amino acids with CHCl3 for synthesizing NCAs. A series of NCAs were obtained on a gram scale upon photo-irradiation of a mixture solution of CHCl3 and CH3CN containing an amino acid at 60-70 °C under O2 bubbling. This method presents a safe and convenient reaction controlled by light without special apparatuses and reagents.
Collapse
|
25
|
Varghese M, Grinstaff MW. Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chem Soc Rev 2022; 51:8258-8275. [PMID: 36047318 PMCID: PMC9856205 DOI: 10.1039/d1cs00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Upitak K, Thomas CM. One-Pot Catalysis: A Privileged Approach for Sustainable Polymers? Acc Chem Res 2022; 55:2168-2179. [PMID: 35881825 DOI: 10.1021/acs.accounts.2c00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Almost all aspects of daily life involve polymers in some form or the other. However, polymer production is largely based on finite feedstocks. These limitations combined with environmental concerns force us to rethink the strategies for the synthesis of these materials. As an abundant and renewable resource, biomass is composed of a very diverse range of molecules that deserve to be valorized. The development of new methods for transforming biomass into resources suitable for polymer production remains a crucial hurdle on the road to a more sustainable chemical economy. The main challenge is to design efficient and selective transformations of abundant and inexpensive raw materials into innovative polymers. For the chemical industry to meet these challenges, process intensification must play an important role in developing cleaner and more energy-efficient technologies while aiming for safer and more sustainable processes. Catalysis is an important tool to support more sustainable plastics production by being ideally efficient, practical, and versatile. In this regard, the creation of sustainable polymers through one-pot catalysis represents an exciting frontier in materials science.In this Account, we describe some of the published advances for achieving one-pot synthesis of biobased monomers and the resulting (co)polymers. These studies demonstrate that one-pot reactions can produce sustainable materials for a wide range of applications. We show that these new multistep "one-pot" approaches are very promising from an academic and industrial point of view. These synthetic schemes have indeed allowed us to investigate the formation of new polyesters, polypeptides, and poly(meth)acrylates by different polymerization mechanisms. We discuss their efficiency by highlighting their ability to perform multiple (quantitative) synthetic transformations and bond formation steps while bypassing multiple purification procedures at the same time. While enabling the development of novel polymeric structures, we demonstrate that these one-pot procedures can also contribute to reducing the environmental footprint.In light of the growing concerns for sustainable development, these procedures may therefore allow, in the near future, one to prepare sustainable polymeric materials with advanced properties through extremely simplified routes from renewable feedstocks. Among these materials, block and alternating copolymers are unique structures that can exhibit a wide range of properties. While their multistep synthesis remains a demanding process, the one-pot synthesis of these polymers is much more scalable and can create multiblock or alternating copolymers with a wide range of potential sequences. These approaches then give access to materials whose structure and functionality can be designed to suit the need.
Collapse
Affiliation(s)
- Kanokon Upitak
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
27
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
28
|
Utroša P, Gradišar Š, Onder OC, Žagar E, Pahovnik D. Synthetic Polypeptide–Polyester PolyHIPEs Prepared by Thiol–Ene Photopolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Špela Gradišar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Schirra DS, Götz P, Lehmann M, Thiele CM. Atropisomerism in a polyglutamate-based thermoresponsive alignment medium. Chem Commun (Camb) 2022; 58:7511-7514. [PMID: 35708488 DOI: 10.1039/d2cc01982e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure elucidation via residual dipolar couplings (RDCs) relies on alignment media. We report on lyotropic liquid crystals (LLCs) of poly-γ-p-biphenyl(2'-methoxy-2-methyl)methyl-L-glutamate (PBPM3LG). Temperature dependent atropisomerism within the biphenyl group enables the acquisition of multiple RDC-datasets within one sample.
Collapse
Affiliation(s)
- Dominic S Schirra
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Research and Laboratory Center M3, Technical University of Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany.
| | - Philipp Götz
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Research and Laboratory Center M3, Technical University of Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany.
| | - Matthias Lehmann
- Institute for Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Research and Laboratory Center M3, Technical University of Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany.
| |
Collapse
|
30
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
31
|
Nisal R, Jayakannan M. Tertiary-Butylbenzene Functionalization as a Strategy for β-Sheet Polypeptides. Biomacromolecules 2022; 23:2667-2684. [DOI: 10.1021/acs.biomac.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Nisal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
32
|
Zhang Y, Song W, Lu Y, Xu Y, Wang C, Yu DG, Kim I. Recent Advances in Poly(α- L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022; 12:636. [PMID: 35625562 PMCID: PMC9138577 DOI: 10.3390/biom12050636] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(α-L-glutamic acid) (PGA) is a class of synthetic polypeptides composed of the monomeric unit α-L-glutamic acid. Owing to their biocompatibility, biodegradability, and non-immunogenicity, PGA-based nanomaterials have been elaborately designed for drug delivery systems. Relevant studies including the latest research results on PGA-based nanomaterials for drug delivery have been discussed in this work. The following related topics are summarized as: (1) a brief description of the synthetic strategies of PGAs; (2) an elaborated presentation of the evolving applications of PGA in the areas of drug delivery, including the rational design, precise fabrication, and biological evaluation; (3) a profound discussion on the further development of PGA-based nanomaterials in drug delivery. In summary, the unique structures and superior properties enables PGA-based nanomaterials to represent as an enormous potential in biomaterials-related drug delivery areas.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Wenliang Song
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Changping Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
33
|
Olivera-Ardid S, Bello-Gil D, Tuzikov A, Araujo RN, Ferrero-Alves Y, García Figueroa BE, Labrador-Horrillo M, García-Pérez AL, Bovin N, Mañez R. Poly-L-Lysine-Based αGal-Glycoconjugates for Treating Anti-αGal IgE-Mediated Diseases. Front Immunol 2022; 13:873019. [PMID: 35432370 PMCID: PMC9009260 DOI: 10.3389/fimmu.2022.873019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Anti-αGal IgE antibodies mediate a spreading allergic condition known as αGal-syndrome (AGS). People exposed to hard tick bites are sensitized to αGal, producing elevated levels of anti-αGal IgE, which are responsible for AGS. This work presents an immunotherapy based on polymeric αGal-glycoconjugates for potentially treating allergic disorders by selectively inhibiting anti-αGal IgE antibodies. We synthesized a set of αGal-glycoconjugates, based on poly-L-lysine of different degrees of polymerization (DP1000, DP600, and DP100), to specifically inhibit in vitro the anti-αGal IgE antibodies in the serum of αGal-sensitized patients (n=13). Moreover, an animal model for αGal sensitization in GalT-KO mice was developed by intradermal administration of hard tick' salivary gland extract, mimicking the sensitization mechanism postulated in humans. The in vitro exposure to all polymeric glycoconjugates (5-10-20-50-100 µg/mL) mainly inhibited anti-αGal IgE and IgM isotypes, with a lower inhibition effect on the IgA and IgG, respectively. We demonstrated a differential anti-αGal isotype inhibition as a function of the length of the poly-L-lysine and the number of αGal residues exposed in the glycoconjugates. These results defined a minimum of 27 αGal residues to inhibit most of the induced anti-αGal IgE in vitro. Furthermore, the αGal-glycoconjugate DP1000-RA0118 (10 mg/kg sc.) showed a high capacity to remove the anti-αGal IgE antibodies (≥75% on average) induced in GalT-KO mice, together with similar inhibition for circulating anti-αGal IgG and IgM. Our study suggests the potential clinical use of poly-L-lysine-based αGal-glycoconjugates for treating allergic disorders mediated by anti-αGal IgE antibodies.
Collapse
Affiliation(s)
- Sara Olivera-Ardid
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Daniel Bello-Gil
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Alexander Tuzikov
- Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ricardo N. Araujo
- Laboratório de Artrópodes Hematófagos, Departamento de Parasitologia, ICB/UFMG, Belo Horizonte, Brazil
| | - Yara Ferrero-Alves
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Blanca Esther García Figueroa
- MEGA: Asthma Inception and Progression Mechanisms, Complejo Hospitalario de Navarra (CHN), Pamplona, Spain
- Instituto de investigación sanitaria de Navarra (IdiSNA), Pamplona, Spain
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Moisés Labrador-Horrillo
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Immunomediated Diseases and Innovative Therapies, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana L. García-Pérez
- Departamento de Sanidad Animal, Instituto Vasco de Investigación de Desarrollo Agrario (NEIKER), Derio, Spain
| | - Nicolai Bovin
- Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Rafael Mañez
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
- Hospital Universitari de Bellvitge, Servicio de Medicina Intensiva, Hospitalet de Llobregat, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Grupo Inmunidad Innata y Patología del Paciente Crítico, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
34
|
Wu B, Hanay SB, Kimmins SD, Cryan SA, Hermida Merino D, Heise A. Ion-Triggered Hydrogels Self-Assembled from Statistical Copolypeptides. ACS Macro Lett 2022; 11:323-328. [PMID: 35575374 PMCID: PMC8928472 DOI: 10.1021/acsmacrolett.1c00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Statistical copolypeptides comprising lysine and tyrosine with unprecedented ion-induced gelation behavior are reported. Copolypeptides are obtained by one-step N-carboxyanhydride (NCA) ring-opening polymerization. The gelation mechanism is studied by in situ SAXS analyses, in addition to optical spectroscopy and transmission electron microscopy (TEM). It is found that the gelation of these statistically polymerized polypeptides is due to the formation of stable intermolecular β-sheet secondary structures induced by the presence of salt ions as well as the aggregation of an α-helix between the copolypeptides. This behavior is unique to the statistical lysine/tyrosine copolypeptides and was not observed in any other amino acid combination or arrangement. Furthermore, the diffusion and mechanical properties of these hydrogels can be tuned through tailoring the polypeptide chain length and ion strength.
Collapse
Affiliation(s)
- Bing Wu
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble 38043 Cedex 9, France
| | - Saltuk B Hanay
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Placilla 2950, Valparaíso, Chile
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| | - Daniel Hermida Merino
- Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble 38043 Cedex 9, France
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| |
Collapse
|
35
|
Zhang C, Lu H. Helical Nonfouling Polypeptides for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2688-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Bak IG, Chae CG, Lee JS. Synthetic Control of Helical Polyisocyanates by Living Anionic Polymerization toward Peptide Mimicry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- In Gyu Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chang-Geun Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
37
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Crosslinked Polypeptide Films via RAFT-Mediated Continuous Assembly of Polymers. Angew Chem Int Ed Engl 2022; 61:e202112842. [PMID: 34861079 PMCID: PMC9305155 DOI: 10.1002/anie.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Polypeptide coatings are a cornerstone in the field of surface modification due to their widespread biological potential. As their properties are dictated by their structural features, subsequent control thereof using unique fabrication strategies is important. Herein, we report a facile method of precisely creating densely crosslinked polypeptide films with unusually high random coil content through continuous assembly polymerization via reversible addition-fragmentation chain transfer (CAP-RAFT). CAP-RAFT was fundamentally investigated using methacrylated poly-l-lysine (PLLMA) and methacrylated poly-l-glutamic acid (PLGMA). Careful technique refinement resulted in films up to 36.1±1.1 nm thick which could be increased to 94.9±8.2 nm after using this strategy multiple times. PLLMA and PLGMA films were found to have 30-50 % random coil conformations. Degradation by enzymes present during wound healing reveals potential for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nicholas J. Chan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Sarah Lentz
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Paul A. Gurr
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Shereen Tan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| |
Collapse
|
38
|
Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
40
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Vernetzte Polypeptide durch RAFT‐vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas J. Chan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Sarah Lentz
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Paul A. Gurr
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Shereen Tan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| |
Collapse
|
41
|
Judge N, Pavlovic D, Moldenhauer E, Clarke P, Brannigan R, Heise A. Influence of the block copolypeptide surfactant structure on the size of polypeptide nanoparticles obtained by mini emulsion polymerisation. Polym Chem 2022. [DOI: 10.1039/d2py00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypetide nanoparticles obtained by miniemulsion polymerisation of amino acid N-carboxyanhydrides (NCA) are a novel class of tuneable bio-derived functional nano materials for potential applications in nutraceutics, agriculture, and medicine. This...
Collapse
|
42
|
Zou J, Zhou M, Ji Z, Xiao X, Wu Y, Cui R, Deng S, Liu R. Controlled copolymerization of α-NCAs and α-NNTAs for preparing peptide/peptoid hybrid polymers with adjustable proteolysis. Polym Chem 2022. [DOI: 10.1039/d1py01413g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The living and controlled copolymerization of α-NCAs and α-NNTAs enables the facile synthesis of peptide/peptoid hybrid polymers with an alternating-like distribution of residues and adjustable proteolysis by varying the proportion of peptoid residues.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Rowley JV, Wall PA, Yu H, Howard MJ, Baker DL, Kulak A, Green DC, Thornton PD. Triggered and monitored drug release from bifunctional hybrid nanocomposites. Polym Chem 2022. [DOI: 10.1039/d1py01227d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-coated carbon dot-containing calcium carbonate nanoparticles are reported as unique nanocomposites capable of encapsulating a chemotherapeutic drug and displaying afterglow behaviour.
Collapse
Affiliation(s)
- Jason V. Rowley
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Patrick A. Wall
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Huayang Yu
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark J. Howard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel L. Baker
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander Kulak
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C. Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
44
|
|
45
|
Chen J, Yang J, Ding J. Rational construction of polycystine-based nanoparticles for biomedical applications. J Mater Chem B 2022; 10:7173-7182. [PMID: 35662309 DOI: 10.1039/d2tb00581f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypeptide-based nanoparticles are one of the promising excipients of nanomedicines due to their excellent biosafety and flexible modification. Among all the types of polypeptide nanoparticles, polycystine (PCys2)-based ones draw increasing...
Collapse
Affiliation(s)
- Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, P. R. China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
46
|
Li K, Li Z, Shen Y, Fu X, Chen C, Li Z. Organobase 1,1,3,3-tetramethyl guanidine catalyzed rapid ring-opening polymerization of α-amino acid N-carboxyanhydrides adaptive to amine, alcohol and carboxyl acid initiators. Polym Chem 2022. [DOI: 10.1039/d1py01508g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For amine, hydroxyl and carboxyl terminated initiators, the organobase 1,1,3,3-tetramethylguanidine (TMG) catalyzes the rapid polymerization to afford polypeptides with controllable molecular weights and dispersities.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zheng Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
47
|
Yang T, Benson K, Fu H, Xue T, Song Z, Duan H, Xia H, Kalluri A, He J, Cheng J, Kumar CV, Lin Y. Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules 2021; 23:196-209. [PMID: 34964619 DOI: 10.1021/acs.biomac.1c01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(l-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis-Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge-charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kyle Benson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ankarao Kalluri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
48
|
|
49
|
Dong L, Chen H, Liu T, Zhu J, Yu M, Yuan Q. Poly(l-cysteine) Peptide Amphiphile Derivatives Containing Disulfide Bonds: Synthesis, Self-Assembly-Induced β-Sheet Nanostructures, pH/Reduction Dual Response, and Drug Release. Biomacromolecules 2021; 22:5374-5381. [PMID: 34846860 DOI: 10.1021/acs.biomac.1c01324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three disulfide bond-containing peptide amphiphiles (PA1-3) with different lengths of alkyl tails (PA1 for C6, PA2 for C12, and PA3 for C18) were synthesized by ring-opening polymerization of α-amino acid N-carboxyanhydride followed by post-polymerization modification. The peptide segments were composed of 3-mercaptopropionic acid-modified poly(l-cysteine) [P(Cys-SS-CH2CH2COOH)]. We characterized the chemical structure and molecular parameters by 1H NMR, 13C NMR, gel permeation chromatography, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. It is found that alkyl-P(Cys-SS-CH2CH2COOH) mainly presents a β-sheet conformation at the solid state. However, the PAs present predominant random coils at pH 7.4 in aqueous solutions. The β-sheet conformation increased dramatically when the concentration of the PA exceeded its critical micelle concentration (ca. 0.3 mg/mL for PA3), indicating the formation of self-assembly-induced β-sheet nanostructures. Elongation of the alkyl chain length or a decrease of the pH of the PA solution can promote the formation of the β-sheet conformation. The three PAs can self-assemble into spherical micelles or nanofibrous hydrogels, which can be utilized as nanocarriers for systemic drug delivery or implants for localized drug delivery, respectively. Cisplatin (CDDP) was loaded as a model medicine to examine the drug delivery potential of PA3. We found that the CDDP-loaded PA3 micelles are stable at pH 7.4, have a spherical morphology with a hydrodynamic diameter of ca. 52 nm, and accomplish pH/reduction dual-responsive release of CDDP. In addition, alkyl-P(Cys-SS-CH2CH2COOH) can self-assemble into nanofibrous hydrogels at pH 5.0-6.0 or upon the addition of certain metal ions and show excellent dynamic reversibility. Moreover, the CDDP-loaded PA3 hydrogel exhibits a sustained release profile and a nearly linear release over 48 h. In vitro cytotoxicity of PA3 also indicates its nontoxicity. Thus, our findings suggest that alkyl-P(Cys-SS-CH2CH2COOH) has great potential for both systemic and localized delivery of therapeutics.
Collapse
Affiliation(s)
- Liang Dong
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, P. R. China
| | - Hui Chen
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, P. R. China
| | - Ting Liu
- School of Life Science, Yunnan University, Kunming 650091, P. R. China
| | - Junming Zhu
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, P. R. China
| | - Min Yu
- School of Life Science, Yunnan University, Kunming 650091, P. R. China
| | - Qingmei Yuan
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
50
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021; 60:26063-26071. [PMID: 34569145 DOI: 10.1002/anie.202103540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/23/2021] [Indexed: 01/16/2023]
Abstract
We design the tetraalkylammonium carboxylate-initiated superfast polymerization on α-amino acid N-carboxyanhydrides (NCA) for efficient synthesis of polypeptides. Carboxylates, as a new class of initiator for NCA polymerization, can initiate the superfast NCA polymerization without the need of extra catalysts and the polymerization can be operated in open vessels at ambient condition without the use of glove box. Tetraalkylammonium carboxylate-initiated polymerization on NCA easily affords block copolymers with at least 15 blocks. Moreover, this method avoids tedious purification steps and enables direct polymerization on crude NCAs in aqueous environments to prepare polypeptides and one-pot synthesis of polypeptide nanoparticles. These advantages and the mild polymerization condition of tetraalkylammonium carboxylate-initiated NCA polymerization imply its great potential in functional exploration and application of polypeptides.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacheng Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|