1
|
Xu XQ, Li WJ, Zhang DY, Zhu Y, Xu WT, Wang Y, Wang XQ, Wang W, Yang HB. Chiral Rotaxane-Branched Dendrimers as Relays in Artificial Light-Harvesting Systems with Boosted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202419434. [PMID: 39578231 DOI: 10.1002/anie.202419434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (glum) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.038, enabling their further applications in information storage and encryption. The proof-of concept study provides not only a feasible approach for the efficient amplification of CPL performances but also a novel platform for the construction of novel chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
2
|
He X, Cui Y, Liu G. Synthesis of Dendrimer-Like Molecules with Partial Carbon Chain via Iterative Single Unit Monomer Insertions. Macromol Rapid Commun 2024; 45:e2400158. [PMID: 38651593 DOI: 10.1002/marc.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Carbon-chain dendritic polymers hold unique properties and promising applications. However, synthesizing carbon-chain dendrimers, beyond conjugated ones, remains a challenge. Here, the use of the iterative single unit monomer insertion technique for synthesizing 2.5 generation partial-carbon-chain dendrimers (G2.5) is described, utilizing bismaleimide as the core, a maleimide-trithiocarbonate conjugate as the branching unit, and indene as the spacer unit, following a divergent growth strategy. The optimized conditions for synthesizing the maleimide-trithiocarbonate branching unit are a bismaleimide to trithiocarbonate ratio of 5:1 and a reaction time of 30 min. The structures are verified using 1H nuclear magnetic resonance, gel permeation chromatography, and matrix-assisted laser desorption/ionization-time of flight mass spectra. A four-arm star polymer is then synthesized using the G2.5 as the core. This synthesis of a partial-carbon-chain dendrimer establishes a foundational step toward creating all-carbon-chain ones and may open new application avenues in material science.
Collapse
Affiliation(s)
- Xinying He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuru Cui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
4
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
6
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
7
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
8
|
Kohn J, Bursch M, Hansen A, Grimme S. Computational study of ground-state properties of μ 2 -bridged group 14 porphyrinic sandwich complexes. J Comput Chem 2023; 44:229-239. [PMID: 35470911 DOI: 10.1002/jcc.26870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
The structural properties of μ2 -bridged porphyrinic double-decker complexes are investigated and the influence of various ligands, metals, substituents, and bridging atoms on the dominant structural motif is elucidated. A variety of quantum chemical methods including semiempirical (SQM) methods and density functional theory (DFT) is assessed for the calculation of ecliptic and staggered conformational energies. Local coupled cluster (DLPNO-CCSD(T1)) data are generated for reference. The r2 SCAN-3c composite scheme as well as the B2PLYP-D4/def2-QZVPP approach are identified as reliable methods. Energy decomposition analyses (EDA) and localized molecular orbital analyses (LMO) are used to investigate the bonding situation and the nature of the inter-ligand interaction energy underlining the crucial role of attractive London dispersion interactions. Targeted modification of the bridging atom, e.g., by replacing O2- by S2- is shown to drastically change the major structural features of the investigated complexes. Further, the influence of different substituents of varying size at the phthalocyanine ligand regarding the dominant conformation is described.
Collapse
Affiliation(s)
- Julia Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Ruthenium based terpyridine complexes as both luminescent and NLO materials. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Chen CH, Liu C, Liu B. The effect of alkoxyl groups on the photoproperties of meta-octasubstituted tetraphenyl porphyrins. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Koifman OI, Ageeva TA. Main Strategies for the Synthesis of meso-Arylporphyrins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9156840 DOI: 10.1134/s1070428022040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Arylporphyrins as most accessible tetrapyrrole macroheterocycles have always been the focus of attention from researchers concerned with practically useful properties of these compounds. The first syntheses of meso-arylporphyrins date back to about 90 years ago. Up to now, the yields of these compounds have been improved from 5 to 80%. The present review analyzes different ways and strategies for the synthesis of meso-aryl-substituted porphyrins. The most efficient methods that can be scaled up to an industrial level have been identified.
Collapse
Affiliation(s)
- O. I. Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - T. A. Ageeva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
12
|
Wang L, Su X, Xie JH, Ming LJ. Specific recognitions of multivalent cyclotriphosphazene derivatives in sensing, imaging, theranostics, and biomimetic catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Vonlanthen M, Cuétara-Guadarrama F, Porcu P, Sorroza-Martínez K, González-Méndez I, Rivera E. Dendronized Porphyrins: Molecular Design and Synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
In this review, we report different methods and strategies to synthesize flexible and rigid dendronized porphyrins. We will focus on porphyrin dendrimers that have been reported in the last 10 years. Particularly, in our research group, we have designed and synthesized different series of dendronized porphyrins (free base and metallated) with pyrene units at the periphery and Fréchet-type dendritic arms. The Lindsey methodology has allowed the synthesis of meso-substituted porphyrins with various substitution patterns, such as symmetric, dissymmetric, or unsymmetric. Porphyrin dendrimers have been prepared by different synthetic methodologies; one of the most reported being the convergent method, where the dendrons are first prepared and further linked to a meso-substituted functionalized porphyrin unit, which will constitute the core of the dendrimer. Another interesting synthetic approach is the use of a reactive dendron bearing a terminal aldehyde functional group to form the final porphyrin core. In this way, a two-armed dendronized dissymmetric porphyrin core can be prepared from a dendritic precursor and a dipyrromethene derivative. This strategy is very convenient to prepare low-generation dendritic porphyrins. The divergent approach is another well-known methodology for porphyrin dendrimer synthesis, mostly used for the obtainment of high-generation dendrimers. Click chemistry reaction has been advantageous for the development of more complex porphyrin dendritic structures. This reaction presents important advantages, such as high yields and mild reaction conditions which permit the assembly of different multiporphyrin dendritic structures. In the constructs presented in this review, the emission of the porphyrin moiety has been observed, leading to potential applications in artificial photosynthesis, sensing, nanomedicine, and biological sciences.
Collapse
Affiliation(s)
- Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Pasquale Porcu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
14
|
Pedro-Hernández LD, Martínez-García M. Synthesis of Open-Resorcinarene Dendrimers with L-serine (Ibuprofen) Derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272825666211130164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A new class of dendrimers with open-resorcinarenes has been synthesized in good
yields (77-85%). The open-resorcinarenes showed a high capacity for functionalization, having
eight hydroxyl groups. The Williamson reaction with N,N-bis(2-azidoethyl)-2-bromo
acetamide did not show any steric effect, obtaining sixteen azide terminal groups, which gave
us the possibility to obtain a high molecular weight dendrimer via the azide-alkyne click reaction
with prop-2-yn-1-yl-(ibuprofen)L-serinate derivatives to obtain the triazole ring spacers
and the L-serinate(ibuprofen) derivatives as terminal groups. Also, we carried out the deprotection
reaction of the L-serinate moiety terminal groups of the dendrimer 10 in good yields
(95%). Three novel open-resorcinarene den-drimers with sixteen ibuprofen-L-serinate derivatives
and hydroxyl, tert-butyl, and carboxylic acid; therefore, with three different terminal
groups, with possible nanomedical activity are reported.
Collapse
Affiliation(s)
- Luis Daniel Pedro-Hernández
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Circuito Exterior, Coyoacan, C.P. 04510,
Mexico D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Circuito Exterior, Coyoacan, C.P. 04510,
Mexico D.F., Mexico
| |
Collapse
|
15
|
Verma PK, Sawant SD. Unravelling reaction selectivities via bio-inspired porphyrinoid tetradentate frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Fiankor C, Nyakuchena J, Khoo RSH, Zhang X, Hu Y, Yang S, Huang J, Zhang J. Symmetry-Guided Synthesis of N,N'-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer. J Am Chem Soc 2021; 143:20411-20418. [PMID: 34797665 DOI: 10.1021/jacs.1c10291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.
Collapse
Affiliation(s)
- Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Yuchen Hu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Poddutoori PK, Bayard BJ, Holzer N, Seetharaman S, Zarrabi N, Weidner N, Karr PA, D'Souza F. Rational Design and Synthesis of OEP and TPP Centered Phosphorus(V) Porphyrin-Naphthalene Conjugates: Triplet Formation via Rapid Charge Recombination. Inorg Chem 2021; 60:17952-17965. [PMID: 34797977 DOI: 10.1021/acs.inorgchem.1c02531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six new "axial-bonding" type "phosphorus(V) porphyrin-naphthalene" conjugates have been prepared consisting of octaethylporphyrinatophosphorus(V) (POEP+)/tetraphenylporphyrinatophosphorus(V) (PTPP+) and naphthalene (NP). The distance between the porphyrin and NP was systematically varied using polyether bridges. The unique structural topology of the octaethylporphyrinatophosphorus(V) (POEP+) and tetraphenylporphyrinatophosphorus(V) (PTPP+) enabled construction of mono- and disubstituted phosphorus(V) porphyrin-naphthalene conjugates, respectively. The steady-state and transient spectral properties were investigated as a function of redox properties, distance, and molecular topology. Strong electronic interactions between the phosphorus(V) porphyrin and NP in directly bound conjugates were observed. The established energy diagrams predicted reductive electron transfer involving singlet excited phosphorus(V) porphyrin and NP to generate high-energy (∼1.83-2.11 eV) charge-separated states (POEP/PTPP)•-(NP)•+. Femtosecond transient absorption spectral studies revealed rapid deactivation of singlet excited phosphorus(V) porphyrin due to charge separation wherein the estimated forward rate constants were in the range of 109-1010 s-1 and were dependent on the distance between the NP and porphyrins units, as well as the redox potentials of the type of the phosphorus(V) porphyrin. Additionally, due to high exothermicity and low-lying triplet states, the charge recombination process was found to be rapid, leading to populating the triplet states of phosphorus(V) porphyrins.
Collapse
Affiliation(s)
- Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Brandon J Bayard
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Nathan Weidner
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
18
|
Photo-induced energy and electron transfer in carboxylic acid functionalized bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA)-substituted A3B zinc porphyrins. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Li WJ, Wang XQ, Zhang DY, Hu YX, Xu WT, Xu L, Wang W, Yang HB. Artificial Light-Harvesting Systems Based on AIEgen-branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021; 60:18761-18768. [PMID: 34125487 DOI: 10.1002/anie.202106035] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Aiming at the construction of novel platform for efficient light harvesting, the precise synthesis of a new family of AIEgen-branched rotaxane dendrimers was successful realized from an AIEgen-functionalized [2]rotaxane through a controllable divergent approach. In the resultant AIE macromolecules, up to twenty-one AIEgens located at the tails of each branches, thus making them the first successful example of AIEgen-branched dendrimers. Attributed to the solvent-induced switching feature of the rotaxane branches, the integrated rotaxane dendrimers displayed interesting dynamic feature upon the aggregation-induced emission (AIE) process. Moreover, novel artificial light-harvesting systems were further constructed based on these AIEgen-branched rotaxane dendrimers, which revealed impressive generation-dependent photocatalytic performances for both photooxidation reaction and aerobic cross-dehydrogenative coupling (CDC) reaction.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
21
|
Li W, Wang X, Zhang D, Hu Y, Xu W, Xu L, Wang W, Yang H. Artificial Light‐Harvesting Systems Based on AIEgen‐branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yi‐Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei‐Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
22
|
Zhang Y, Pearce S, Eloi JC, Harniman RL, Tian J, Cordoba C, Kang Y, Fukui T, Qiu H, Blackburn A, Richardson RM, Manners I. Dendritic Micelles with Controlled Branching and Sensor Applications. J Am Chem Soc 2021; 143:5805-5814. [DOI: 10.1021/jacs.1c00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jean-Charles Eloi
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Cristina Cordoba
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Huibin Qiu
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Arthur Blackburn
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Robert M. Richardson
- H H Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
23
|
Balzani V, Ceroni P, Credi A, Venturi M. Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
25
|
Wang H, Yang Y, Yuan B, Ni XL, Xu JF, Zhang X. Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2269-2276. [PMID: 33411497 DOI: 10.1021/acsami.0c18725] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porphyrins are widely applied for imaging, diagnosis, and treatment of diseases because of their excellent photophysical properties. However, porphyrins easily tend to aggregate driven by hydrophobic interaction and π-π stacking in an aqueous medium, which causes fluorescence quenching of the porphyrins as well as limitation of cell uptake and intracellular accumulation. Herein, cucurbit[10]uril (CB[10]) was used to fully encapsulate cationic porphyrin (CPor) in the large cavity with strong binding affinity in aqueous solutions, and the CPor aggregates were efficient disassembled, companying remarkable enhancing its fluorescence intensity. The CB[10]-based host-guest complex provided excellent protection to CPor, resulting in less susceptibility to oxidation and imparting higher photostability to CPor for cell imaging. In addition, by complexation with CB[10], it was found that the fluorescence signals and photostability of CPor were also effectively improved in cells with different reactive oxygen species levels. It is highly anticipated that the large macrocyclic host cavity-triggered large-guest encapsulation strategy in this work will provide a convenient and efficient method for designing supramolecular porphyrin dyes, thus broadening the diagnosis and imaging application in cells and microorganisms.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guizhou University, Guiyang 550025, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
García-Álvarez F, Martínez-García M. Dendrimer Porphyrins: Applications in Nanomedicine. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201026203527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a fascinating field of multidisciplinary study focused on developing
techniques that fight various diseases using nanoparticles. Among the various nanoparticles
used in nanomedicine, dendrimers have received increasing interest in recent years because
of the versatility that their structural characteristics give them. Specifically, dendrimer
porphyrins are compounds that incorporate macro heterocyclic-aromatic units within the dendritic
architecture and exhibit interesting photodynamic properties that are used to combat
various diseases using non-invasive methods. In the past 17 years, few studies of the application
of dendrimer porphyrins in nanomedicine have been published. This review focuses on
presenting recent studies of dendrimer porphyrins with possible applications in the field of
nanomedicine.
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| |
Collapse
|
27
|
Koo J, Kim I, Kim Y, Cho D, Hwang IC, Mukhopadhyay RD, Song H, Ko YH, Dhamija A, Lee H, Hwang W, Kim S, Baik MH, Kim K. Gigantic Porphyrinic Cages. Chem 2020. [DOI: 10.1016/j.chempr.2020.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Xiao T, Wu H, Sun G, Diao K, Wei X, Li ZY, Sun XQ, Wang L. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem Commun (Camb) 2020; 56:12021-12024. [PMID: 32901631 DOI: 10.1039/d0cc05077f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aid of CTAB amphiphile, water-phase artificial light-harvesting systems were fabricated as nanoparticles by the self-assembly of two low-molecular-weight organic molecules: a UPy-functionalized TPE derivative 1 with both supramolecular polymerization and AIE capabilities as a donor and a fluorescent chromophore NiR as an acceptor. Owing to the flexibility of supramolecular self-assembly, tunable emissions including white-light emission could be easily realized with high energy transfer efficiency and the antenna effect.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Teng KX, Niu LY, Kang YF, Yang QZ. Rational design of a "dual lock-and-key" supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chem Sci 2020; 11:9703-9711. [PMID: 34094236 PMCID: PMC8162035 DOI: 10.1039/d0sc01122c] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photosensitizing agents are essential for precise and efficient photodynamic therapy (PDT). However, most of the conventional photosensitizers still suffer from limitations such as aggregation-caused quenching (ACQ) in physiological environments and toxic side-effects on normal tissues during treatment, leading to reduced therapeutic efficacy. Thus, integrating excellent photophysical properties and accurate carcinoma selectivity in a photosensitizer system remains highly desired. Herein, a “dual lock-and-key” supramolecular photosensitizer BIBCl–PAE NPs for specific and enhanced cancer therapy is reported. BIBCl–PAE NPs are constructed by encapsulating a rationally designed glutathione (GSH)-activatable photosensitizer BIBCl in a pH-responsive diblock copolymer. In normal tissues, BIBCl is “locked” in the hydrophobic core of the polymeric micelles due to ACQ. Under the “dual key” activation of low pH and high levels of GSH in a tumor microenvironment, the disassembly of micelles facilitates the reaction of BIBCl with GSH to release water-soluble BIBSG with ideal biocompatibility, enabling the highly efficient PDT. Moreover, benefiting from the Förster resonance energy transfer effect of BIBSG, improved light harvesting ability and 1O2 production are achieved. In vitro and vivo experiments have demonstrated that BIBCl–PAE NPs are effective in targeting and inhibiting carcinoma. BIBCl–PAE NPs show superior anticancer efficiency relative to non-activatable controls. The “dual lock-and-key” supramolecular photosensitizers enable specific and enhanced photodynamic therapy (PDT).![]()
Collapse
Affiliation(s)
- Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yan-Fei Kang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
30
|
Habila M, Alhenaki B, El‐Marghany A, Sheikh M, Ghfar A, ALOthman Z, Soylak M. Metal organic frameworks enhanced dispersive solid phase microextraction of malathion before detection by UHPLC‐MS/MS. J Sep Sci 2020; 43:3103-3109. [DOI: 10.1002/jssc.202000033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Mohamed Habila
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
| | - Bushra Alhenaki
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
- Chemistry DepartmentScience and Art College in BuraydahQassim University Al‐Qassim Kingdom of Saudi Arabia
| | - Adel El‐Marghany
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
| | - Mohamed Sheikh
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
| | - Ayman Ghfar
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
| | - Zeid ALOthman
- Chemistry DepartmentCollege of ScienceKing Saud University Riyadh Kingdom of Saudi Arabia
| | - Mustafa Soylak
- Science FacultyDepartment of ChemistryErciyes University Kayseri Turkey
| |
Collapse
|
31
|
Gillani SS, Munawar MA, Khan KM, Chaudhary JA. Synthesis, characterization and applications of poly-aliphatic amine dendrimers and dendrons. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [PMCID: PMC7298932 DOI: 10.1007/s13738-020-01973-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the current era, the dendrimers have vast potential applications in the area of electronics, healthcare, pharmaceuticals, biotechnology, engineering products, photonics, drug delivery, catalysis, electronic devices, nanotechnologies and environmental issues. This review recaps the synthesis, characterization and applications of poly-aliphatic amine dendrimers.
Collapse
|
32
|
Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Younis SA, Lim DK, Kim KH, Deep A. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Adv Colloid Interface Sci 2020; 277:102108. [PMID: 32028075 DOI: 10.1016/j.cis.2020.102108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the coordination of the porphyrin ligand and its derivatives however remains a challenge for engineering new tunable Porph-MOF frameworks by self-assembly methods. The key challenges exist in the following respects: (i) collapse of the large open pores of Porph-MOFs during synthesis, (ii) deactivation of unsaturated metal-sites (UMCs) by axial coordination, and (iii) the tendency of both coordinated moieties (at peripheral meso- and beta-carbon sites) and the N4-pyridine core to coordinate with metal cations. In this respect, this review covers the advances in the design of Porph-MOFs relative to their counterpart covalent organic frameworks (Porph-COFs). The potential utility of custom-designed porphyrin/metalloporphyrins ligands is highlighted. Synthesis strategies of Porph-MOFs are also illustrated with modular design of hybrid guest@host composites (either Porph@MOFs or guest@Porph-MOFs) with exceptional topologies and stability. This review summarizes the synergistic benefits of coordinated porphyrin ligands and functional guest molecules in Porph-MOF composites for enhanced catalytic performance in various redox applications. This review shed lights on the engineering of new tunable hetero-metals open active sites within (metallo)porphyrin-MOFs as out-of-the-box platforms for enhanced catalytic processes in chemical and biological media.
Collapse
Affiliation(s)
- Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt; Liquid Chromatography and Water Unit, EPRI-Central Laboratories, Nasr City, 11727 Cairo, Egypt
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University,145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
34
|
Wang H, Zhang Y, Chen Y, Pan H, Ren X, Chen Z. Living Supramolecular Polymerization of an Aza-BODIPY Dye Controlled by a Hydrogen-Bond-Accepting Triazole Unit Introduced by Click Chemistry. Angew Chem Int Ed Engl 2020; 59:5185-5192. [PMID: 31943687 DOI: 10.1002/anie.201914966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/09/2020] [Indexed: 01/13/2023]
Abstract
An aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was synthesized by a click reaction and characterized. 1 H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H-bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect of the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. Biphasic aggregation pathways of dye 1, leads to the formation of off-pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H-aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature-modulated successive cooling-heating cycles.
Collapse
Affiliation(s)
- Houchen Wang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yongjie Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yuanfang Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
35
|
Living Supramolecular Polymerization of an Aza‐BODIPY Dye Controlled by a Hydrogen‐Bond‐Accepting Triazole Unit Introduced by Click Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Structure, Properties, and Reactivity of Porphyrins on Surfaces and Nanostructures with Periodic DFT Calculations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porphyrins are fascinating molecules with applications spanning various scientific fields. In this review we present the use of periodic density functional theory (PDFT) calculations to study the structure, electronic properties, and reactivity of porphyrins on ordered two dimensional surfaces and in the formation of nanostructures. The focus of the review is to describe the application of PDFT calculations for bridging the gaps in experimental studies on porphyrin nanostructures and self-assembly on 2D surfaces. A survey of different DFT functionals used to study the porphyrin-based system as well as their advantages and disadvantages in studying these systems is presented.
Collapse
|
38
|
Li JJ, Zhang HY, Dai XY, Liu ZX, Liu Y. A highly efficient light-harvesting system with sequential energy transfer based on a multicharged supramolecular assembly. Chem Commun (Camb) 2020; 56:5949-5952. [DOI: 10.1039/d0cc01292k] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly efficient light-harvesting system with two-step sequential energy transfer was designed by the nonconvalent interaction of pillar[5]arene with pyridinium modified tetraphenylethene, sulforhodamine 101 and sulfonated aluminum phthalocyanine.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Heng-Yi Zhang
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xian-Yin Dai
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhi-Xue Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
39
|
Costa JIT, Farinha ASF, Paz FAA, Tomé AC. A Convenient Synthesis of Pentaporphyrins and Supramolecular Complexes with a Fulleropyrrolidine. Molecules 2019; 24:E3177. [PMID: 31480572 PMCID: PMC6749455 DOI: 10.3390/molecules24173177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 11/16/2022] Open
Abstract
A simple and straightforward synthesis of diporphyrins and pentaporphyrins is reported here. The supramolecular interactions of the new porphyrin derivatives with C60 and PyC60 (a pyridyl [60]fulleropyrrolidine) were evaluated by absorption and fluorescence titrations in toluene. While no measurable modifications of the absorption and fluorescence spectra were observed upon addition of C60 to the porphyrin derivatives, the addition of PyC60 to the corresponding mono-Zn(II) porphyrins resulted in the formation of Zn(porphyrin)-PyC60 coordination complexes and the binding constants were calculated. Results show that the four free-base porphyrin units in pentaporphyrin 6 have a significant contribution in the stabilization of the 6-PyC60 complex. The crystal and molecular features of the pentaporphyrin Zn5 were unveiled using single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Joana I T Costa
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia S F Farinha
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences (BESE), Thuwal, Saudi Arabia
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Li DY, Li SW, Xie YL, Hua X, Long YT, Wang A, Liu PN. On-surface synthesis of planar dendrimers via divergent cross-coupling reaction. Nat Commun 2019; 10:2414. [PMID: 31160575 PMCID: PMC6546735 DOI: 10.1038/s41467-019-10407-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/02/2019] [Indexed: 11/09/2022] Open
Abstract
Dendrimers are homostructural and highly branched macromolecules with unique dendritic effects and extensive use in multidisciplinary fields. Although thousands of dendrimers have been synthesized in solution, the on-surface synthetic protocol for planar dendrimers has never been explored, limiting the elucidation of the mechanism of dendritic effects at the single-molecule level. Herein, we describe an on-surface synthetic approach to planar dendrimers, in which exogenous palladium is used as a catalyst to address the divergent cross-coupling of aryl bromides with isocyanides. This reaction enables one aryl bromide to react with two isocyanides in sequential steps to generate the divergently grown product composed of a core and two branches with high selectivity and reactivity. Then, a dendron with four branches and dendrimers with eight or twelve branches in the outermost shell are synthesized on Au(111). This work opens the door for the on-surface synthesis of various planar dendrimers and relevant macromolecular systems. Although many strategies exist to synthesize dendrimers in solution, the synthesis of planar dendrimers on a surface has proven challenging. Here, the authors produce planar dendrimers through a divergent on-surface cross-coupling reaction between one aryl bromide and two isocyanides, which enables the growth of branches from a single reactive site.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shi-Wen Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Li Xie
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin Hua
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - An Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
42
|
Wong A, Santos AM, Fava EL, Fatibello-Filho O, Sotomayor MDPT. Voltammetric determination of 17β-estradiol in different matrices using a screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019; 80:521-534. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/08/2022]
Abstract
Developments in fluorescence imaging, brought popularity to near infrared (NIR) imaging with far-red and NIR fluorophores applied for biosensing and bioimaging in living systems. Noninvasive NIR imaging gained popularity with the use of effective NIR dyes to obtain macroscopic fluorescence images. Several attributes of NIR dyes make them desirable agents, including high specificity, high sensitivity, minimized background interference, and the ability to easily conjugate with drug delivery systems. However, NIR dyes have some drawbacks and limitations, such as low solubility, low stability, and degradation. To overcome these issues, NIR dyes can be encapsulated in appropriate nanocarriers to achieve effective diagnosis, imaging, and therapy monitoring during surgery. Moreover, the vast majority of NIR dyes have photosensitizer features that can effectuate cancer treatment referred to as photodynamic therapy (PDT). In the near future, by combining NIR dyes with appropriate nanocarriers such as liposomes, polymeric micelles, polymeric nanoparticles, dendrimers, quantum dots, carbon nanotubes, or ceramic/silica based nanoparticles, the limitations of NIR dyes can be minimized or even effectively eliminated to form potential effective agents for imaging, therapy, and therapy monitoring of several diseases, particularly cancer.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Elif Tugce Sarcan
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Asuman Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| |
Collapse
|
44
|
Shao S, Rajendiran V, Lovell JF. Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions. Coord Chem Rev 2019; 379:99-120. [PMID: 30559508 PMCID: PMC6294123 DOI: 10.1016/j.ccr.2017.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metalloporphyrins serve key roles in natural biological processes and also have demonstrated utility for biomedical applications. They can be encapsulated or grafted in conventional nanoparticles or can self-assemble themselves at the nanoscale. A wide range of metals can be stably chelated either before or after porphyrin nanoparticle formation, without the necessity of any additional chelator chemistry. The addition of metals can substantially alter a range of behaviors such as modulating phototherapeutic efficacy; conferring responsiveness to biological stimuli; or providing contrast for magnetic resonance, positron emission or surface enhanced Raman imaging. Chelated metals can also provide a convenient handle for bioconjugation with other molecules via axial coordination. This review provides an overview of some recent biomedical, nanoparticulate approaches involving gain-of-function metalloporphyrins and related molecules.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Venugopal Rajendiran
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
45
|
Geminal Cross Coupling (GCC) Reaction for AIE Materials. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2207-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Rojas-Montoya SM, Vonlanthen M, Porcu P, Flores-Rojas G, Ruiu A, Morales-Morales D, Rivera E. Synthesis and photophysical properties of novel pyrene–metalloporphyrin dendritic systems. Dalton Trans 2019; 48:10435-10447. [DOI: 10.1039/c9dt00855a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Energy transfer studies were performed on a series of new pyrene–metalloporphyrin (Zn, Cu, Mg and Mn) dendritic constructs.
Collapse
Affiliation(s)
- Sandra M. Rojas-Montoya
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - Pasquale Porcu
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - Gabriel Flores-Rojas
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - David Morales-Morales
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Circuito Exterior Ciudad Universitaria
- Ciudad de México
- Mexico
| |
Collapse
|
47
|
Garza-López RA, Chen L, Kozak JJ. Markovian model for photoinduced charge separation in dendritic molecules. Chem Phys Lett 2019. [DOI: 10.1016/j.cpletx.2019.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Militello MP, Hernández Ramírez RE, Lijanova IV, Previtali CM, Bertolotti SG, Arbeloa EM. PAMAM dendrimers with a porphyrin core as highly selective binders of Li + in an alkaline mixture. A spectroscopic study. NEW J CHEM 2019. [DOI: 10.1039/c9nj04088a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The selectivity of porphyrin-PAMAM dendrimers toward lithium in an alkaline mixture at the submicromolar levels is promising for sensing applications.
Collapse
Affiliation(s)
- M. Paula Militello
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Río Cuarto
| | | | - Irina V. Lijanova
- Instituto Politécnico Nacional
- CIITEC
- Cerrada Cecati S/N
- Colonia Santa Catarina
- Azcapotzalco
| | - Carlos M. Previtali
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Río Cuarto
| | - Sonia G. Bertolotti
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Río Cuarto
| | - Ernesto M. Arbeloa
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Río Cuarto
| |
Collapse
|
49
|
Abstract
In order to fabricate efficient molecular photonic devices, it has been a long-held aspiration for chemists to understand and mimic natural light-harvesting complexes where a rapid and efficient transfer of excitation energy between chlorophyll pigments is observed. Synthetic porphyrins are attractive building blocks in this regard because of their rigid and planar geometry, high thermal and electronic stability, high molar extinction, small and tunable band gap, and tweakable optical as well as redox behavior. Owing to these fascinating properties, various types of porphyrin-based architectures have been reported utilizing both covalent and noncovalent approaches. However, it still remains a challenge to construct chemically robust, well-defined three-dimensional porphyrin cages which can be easily synthesized and yet suitable for useful applications both in solution as well as in solid state. Working on this idea, we recently synthesized box-shaped organic cages, which we called porphyrin boxes, by making use of dynamic covalent chemistry of imine condensation reaction between 4-connecting, square-shaped, tetraformylporphyrin and 3-connecting, triangular-shaped, triamine molecules. Various presynthetic, as well as postsynthetic modifications, can be carried out on porphyrin boxes including a variation of the alkyl chain length in their 3-connecting subunit, chemical functionalization, and metalation of the porphyrin core. This can remarkably tune their inherent properties, e.g., solubility, window size, volume, and polarity of the internal void. The porphyrin boxes can therefore be considered as a significant addition to the family of multiporphyrin-based architectures, and because of their chemical stability and shape persistency, the applications of porphyrin boxes expand beyond the photophysical properties of an artificial light-harvesting complex. Consequently, they have been exploited as porous organic cages, where their gas adsorption properties have been investigated. By incorporating them in a lipid bilayer membrane, an iodide selective synthetic ion channel has also been demonstrated. Further, we have explored electrocatalytic reduction of carbon dioxide using Fe(III) metalated porphyrin boxes. Additionally, the precise size and ease of metalation of porphyrin boxes allowed us to utilize them as premade building blocks for creating coordination-based hierarchical superstructures. Considering these developments, it may be worth combining the photophysical properties of porphyrin with the shape-persistent porous nature of porphyrin boxes to explore other novel applications. This Account summarizes our recent work on porphyrin boxes, starting with their design, structural features, and applications in different fields. We also try to provide scientific insight into the future opportunities that these amazing boxes have in store for exploring the still uncharted challenging domains in the field of supramolecular chemistry in a confined space.
Collapse
Affiliation(s)
- Rahul Dev Mukhopadhyay
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaehyoung Koo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
50
|
Synthesis and Photophysical Properties of a Series of Novel Porphyrin Dendrimers Containing Organoiron Complexes. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|